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Abstract
We study the problem of learning a most biased coin among a set of coins by tossing the coins
adaptively. The goal is to minimize the number of tosses until we identify a coin whose posterior
probability of being most biased is at least 1 − δ for a given δ. Under a particular probabilistic
model, we give an optimal algorithm, i.e., an algorithm that minimizes the expected number of
future tosses. The problem is closely related to finding the best arm in the multi-armed bandit
problem using adaptive strategies. Our algorithm employs an optimal adaptive strategy—a strategy
that performs the best possible action at each step after observing the outcomes of all previous coin
tosses. Consequently, our algorithm is also optimal for any given starting history of outcomes.
To our knowledge, this is the first algorithm that employs an optimal adaptive strategy under a
Bayesian setting for this problem. Our proof of optimality employs mathematical tools from the
area of Markov games.
Keywords: algorithms, learning, bandits, biased coin, Bayesian, ranking and selection, sequential
selection

1. Introduction

The multi-armed bandit problem is a classical decision-theoretic problem with applications in bioin-
formatics, medical trials, stochastic algorithms, etc. (Gittins et al. (2011)). The input to the problem
is a set of arms, each associated with an unknown stochastic reward. At each step, an agent chooses
an arm and receives a reward. The objective is to find a strategy for choosing the arms in order to
achieve the best expected reward asymptotically. This problem has spawned a rich literature on the
trade off between exploration and exploitation while choosing the arms (Berry and Fristedt (1985);
Lai and Robbins (1985); Auer et al. (2002, 2003)).

The motivation to identify the best bandit arm arises from problems where one would like to
minimize regret within a fixed budget. In the models considered in Bubeck et al. (2009), Audibert
et al. (2010), and Gabillon et al. (2011), the goal is to choose an arm after a finite number of steps
to minimize regret. Here regret is defined to be the difference between the expected reward of
the chosen arm and the expected reward of the optimal arm. The work of Bubeck et al. (2009)
suggested that the exploration-exploitation trade offs for this setting are much different from the
setting where the number of steps is asymptotic. Following this, Audibert et al. (2010) proposed
exploration strategies to perform essentially as well as the best strategy that knows all distributions
up to permutations of the arms. Gabillon et al. (2011) addressed the problem of identifying the best
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arm for each bandit among a collection of bandits within a fixed budget. They proposed strategies
that focus on arms whose expected rewards are closer to that of the optimal arm and show an upper
bound on the probability of error for these strategies that decreases exponentially with the number
of steps allowed.

In contrast, one could also attempt to optimize the budget subject to the quality of the arm
to be identified. This is identical to racing and action elimination algorithms (Maron and Moore
(1994); Even-Dar et al. (2006, 2002)) which address the sample complexity of the pure exploration
problem—given any δ > 0, identify the arm with maximum expected reward with error probability
at most δ while minimizing the total number of steps needed. This PAC-style learning formulation
was introduced by Even-Dar et al. (2002). Given a collection of n arms, Even-Dar et al. (2002)
showed that a total of O((n/ε2) log(1/δ)) steps is sufficient to identify an arm whose expected
reward is at most ε away from the optimal arm with correctness at least 1−δ. Mannor and Tsitsiklis
(2004) showed lower bounds matching up to constant factors under various settings of the rewards.
We attempt to bridge the constant factor gap by addressing the problem from a decision-theoretic
perspective. Given the history of outcomes, does there exist a strategy to choose an arm so that the
expected number of steps needed to learn the best arm is minimized? Our notion of learning the
best arm is to identify an arm whose posterior probability of being the most-rewarding is at least
1− δ.

Although the PAC-style learning problem appears to have garnered the interest of the learning
theory community only over the past decade (Even-Dar et al. (2002); Mannor and Tsitsiklis (2004);
Cicirello and Smith (2005); Bubeck et al. (2009); Audibert et al. (2010); Gabillon et al. (2011)),
it has been actively studied in the field of operations research for several decades as the “ranking
and selection problem”. It was introduced for normally distributed rewards by Bechhofer (1954).
Adaptive strategies for this problem, known as “sequential selection”, can be traced back to Paulson
(1964). Variants of the problem find applications in minimizing the number of experimental simula-
tions to achieve a given confidence level (Paulson (1964); Bechhofer et al. (1995); Kim and Nelson
(2006); Boesel et al. (2003); Pichitlamken and Nelson (2001)). A simple and interesting case of
the problem is when the most rewarding arm and the second-most rewarding arm differ in their
mean rewards by at least ε > 0. This special case is known as the “indifference-zone” assumption
(Bechhofer (1954)). Strategies and their measure of optimality are known for various relaxations of
independence, normality, equal and known variances and indifference-zone assumptions (Kim and
Nelson (2006)). In the Bayesian setting, the mean rewards of the normal distributions are chosen
from some underlying distribution (Gupta and Miescke (1996); Chick and Inoue (2001); Frazier
et al. (2008); Chick and Gans (2009)). In this work, we address a particular Bayesian setting for
Bernoulli rewards satisfying the indifference-zone assumption.

If the rewards from the bandit arms are Bernoulli, then learning the arm with the maximum
expected reward is equivalent to learning the most biased coin by tossing them adaptively. So,
we will focus on this problem in the rest of the paper. Under the indifference zone assumption,
Chernoff bound leads to a trivial upper bound on the number of tosses in the non-adaptive setting
– toss each coin (4/ε2) log (n/δ) times and output the coin with the maximum number of heads
outcomes. Let p̂i and pi denote the empirical and true probability of heads respectively for the ith
coin. By Chernoff bound, |p̂i− pi| ≤ ε/2 with probability at least 1− δ/n. Therefore, by the union
bound, it follows that this trivial toss-each-coin-k-times strategy outputs the most biased coin with
probability at least 1− δ.
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In this work, we give a simple yet optimal strategy for choosing coins to toss in a particular
Bayesian setting. Our strategy is optimal for the following problem: given a current history of out-
comes of all coins and a threshold, minimize the expected number of future tosses needed to find a
coin whose posterior probability of being a most-biased coin is at or above the threshold. Our main
contribution is a proof of optimality by employing tools from the field of Markov games. We also
bound the expected number of coin tosses performed by our strategy. To the best of our knowledge,
this is the first provably optimal strategy for a Bayesian setting of the problem under the indifference
zone assumption.

Setting. A coin is said to be heavy if the probability of heads for the coin is p+ ε and not-heavy if
the heads probability is p− ε for some given ε ∈ (0, 1/2) and p ∈ [ε, 1− ε]. We are given an infinite
collection of coins where each coin in the collection is heavy with probability α and not-heavy with
probability 1−α. Given δ > 0, the algorithm is allowed to toss coins adaptively and has to necessar-
ily perform a coin toss until it identifies a coin whose posterior probability of being heavy is at least
1− δ (i.e., until there exists a coin i for which Pr (Coin i is heavy | Outcomes of all coin tosses) ≥
1− δ). The goal is to minimize the expected number of tosses required.

An adaptive strategy is allowed to choose which coin to toss after observing the history of
outcomes of all previous coin tosses. Given the history of outcomes of coin tosses, the cost of an
adaptive strategy is equal to the expected number of future coin tosses needed by following this
strategy so that it identifies a coin whose posterior probability of being heavy is at least 1 − δ. An
adaptive strategy is said to be optimal if it has the minimum cost.

1.1. Results

Our main result is an optimal adaptive algorithm for the above setting.

Theorem 1 Given δ > 0, there exists an algorithm A that employs an optimal adaptive strategy in
tossing coins to identify a coin whose posterior probability of being heavy is at least 1 − δ. At any
step, the time taken by A to identify the coin to toss is O(1).

We also quantify the number of tosses performed by our optimal adaptive algorithm. We as-
sume an infinite supply of coins under the same probabilistic setting. Let q := 1 − p, ∆H :=
log ((p+ ε)/(p− ε)), ∆T := log ((q + ε)/(q − ε)), B(δ) := log ((1− α)(1− δ)/αδ). Let δ0 be
determined as follows: Consider the unique real value ρ ∈ (0, 1) such that ρ∆H (p+ ε) + ρ−∆T (q−
ε) = 1 (the existence and uniqueness of ρ is elaborated in Section 5). Fix δ0 to be the largest real
value δ such that (1− ρB(δ)+∆H )/(1− ρB(δ)+∆T ) < 2 and B(δ) ≥ ∆H .

Theorem 2 For every δ ∈ (0, δ0], the expected number of tosses performed by algorithm A to
identify a coin whose posterior probability of being heavy is at least 1− δ in the above setting, is at
most

32

ε2

(
1− α
α

+ log

(
(1− α)(1− δ)

αδ

))
.

The implications of our upper bound when the number of coins is bounded but much larger
than 1/α needs to be contrasted with the lower bounds shown by Mannor and Tsitsiklis (2004).
In this case, setting n = c/α in the above expression suggests that our algorithm beats the lower
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bound shown in Theorem 9 of Mannor and Tsitsiklis (2004). We observe that Theorem 9 of Man-
nor and Tsitsiklis (2004) shows a lower bound in the most general Bayesian setting—there ex-
ists a prior distribution of the probabilities of the n coins so that any algorithm requires at least
O((n/ε2) log (1/δ)) tosses in expectation. However, our algorithm works in a particular Bayesian
setting by exploiting prior knowledge about this setting.

1.2. Algorithm

At any stage of the algorithm, let the history of outcomes of a coin i be given by Di := (hi, ti)
where hi and ti refer to the number of outcomes that were heads and tails respectively. Given the
history Di, we define the likelihood ratio of the coin to be

Li :=
Pr (Coin i is heavy|Di)

Pr (Coin i is not-heavy|Di)
=

(
p+ ε

p− ε

)hi (q − ε
q + ε

)ti
.

Algorithm Likelihood-Toss
INITIALIZE Li = 1 for every coin i.
WHILE (Li < (1− α)(1− δ)/αδ for every coin i):

1. Toss coin i∗ for which Li∗ ≥ Li for every coin i. (Break ties arbitrarily.) Let

bi∗ =

{
1 if outcome is head,
0 if outcome is tail.

2. Update Li∗ ← Li∗
(
p+ε
p−ε

)bi∗ (1−p−ε
1−p+ε

)1−bi∗
.

OUTPUT coin i with largest Li.

2. Preliminaries

Our proof of optimality is based on an optimal strategy for multitoken Markov games. We now
formally define the multitoken Markov game and state the optimal strategy that has been studied for
this game. We use the notation and results by Dumitriu et al. (2003).

A Markov system S = (V, P,C, s, t) consists of a state space V , a transition probability function
P : V × V → [0, 1], a positive real cost Cv associated with each state v, a start state s and a target
state t. Let v(0), v(1), . . . , v(k) denote a set of states taken by following the Markov system for k
steps. The cost of such a trip on S is the sum

∑k−1
i=0 Cv(i) of the costs of the exited states.

Let S1, . . . , Sn be n Markov systems, each one of which has a token on its starting state. A
simple multitoken Markov game G := S1 ◦ S2 ◦ · · · ◦ Sn consists of a succession of steps in which
we choose one of the n tokens, which takes a random step in its system (i.e., according to its Pi).
After choosing a token i on state u say, we pay the cost Ci(u) associated with the state u of the
system Si. We terminate as soon as one of the tokens reaches its target state for the first time. A
strategy denotes the policy employed to pick a token given the state of the n Markov systems. The
cost of such a game E[G] is the minimum expected cost taken over all possible strategies. The
strategy that achieves the minimum expected cost is said to be optimal. A strategy is said to be pure
if the choice of the token at any step is deterministic (entirely determined by the state of all Markov
systems).
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Theorem 3 (Dumitriu et al. (2003)) Every Markov game has a pure optimal strategy.

For any strategy π for a Markov game G, we denote the expected cost incurred by playing π on G
by Eπ[G].

The pure optimal strategy in the multitoken Markov game is completely determined by the grade
γ of the states of the systems. The grade γ of a state is defined as follows: Given a Markov system
S = (V, P,C, s, t) and state u, let S(u) = (V, P,C, u, t) denote the Markov system whose starting
state is u. Consider the Markov game Sg(u) – where at any step of the game one is allowed to
either play in S(u) or quit. Quitting incurs a cost of g. Playing in S(u) is equivalent to taking a step
following the Markov system S incurring the cost associated with the state of the system. The game
stops once the target state is reached or once we quit. The grade γ(u) of state u is defined to be the
smallest real value g such that there exists an optimal strategy σ that plays in S(u) in the first step.
We note that, by definition, the cost of the game Sγ(u)(u) is E[Sγ(u)(u)] = γ(u) = Eσ[Sγ(u)(u)].

Theorem 4 (Dumitriu et al. (2003)) Given the states u1, . . . , un of the Markov systems in the mul-
titoken Markov game, the unique optimal strategy is to pick the token i such that γ(ui) is minimal.

We observe that the above results can be extended in a straightforward manner to the case where (1)
the number of Markov systems is countably infinite, i.e., n = ∞ and (2) the Markov systems have
infinite state space but all states are locally finite (i.e., the number of possible transitions from any
fixed state is finite), by working through the proofs in Dumitriu et al. (2003). The Markov systems
that will be considered for our purpose will satisfy these two properties.

We use the following results by Ethier and Khoshnevisan (2002) to bound the number of tosses.

Theorem 5 (Ethier and Khoshnevisan (2002)) Let X ∈ [−ν, µ] be the random variable that de-
termines the step-sizes of a one dimensional random walk with absorbing barriers at −L and W
such that Pr (X > 0) > 0, Pr (X < 0) > 0, E (X) 6= 0. Let L∗ = L + ν, W ∗ = W + µ and
φ(ρ) := E

(
ρX
)
.

1. The function φ(ρ) is convex. If E (X) 6= 0, there exists a unique ρ0 ∈ (0, 1) ∪ (1,∞) such
that φ(ρ0) = 1. If E (X) < 0, then ρ0 > 1 and if E (X) > 0, then ρ0 < 1.

2.

Pr (Absorption at W ) ≥ 1− ρL0
1− ρL+W ∗

0

.

3. If E (X) < 0, then

E (Number of steps to absorption) ≤ L∗

|E (X)|
.

4. If E (X) > 0, then

E (Number of steps to absorption) ≤ (L+W ∗)

E (X)

(
1− ρL∗

0

1− ρL∗+W
0

)
.
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3. Correctness

We first argue the correctness of the algorithm.

Lemma 6 Given the history Di for a coin i,

Pr (Coin i is heavy|Di) ≥ 1− δ if and only if Li ≥
(

1− δ
δ

)(
1− α
α

)
.

Proof The lemma is a straightforward application of Bayes’ theorem.

Pr (Coin i is heavy|Di) =
Pr (Di|Coin i is heavy) Pr (Coin i is heavy)

Pr (Di)

=
α(p+ ε)hi(q − ε)ti

α(p+ ε)hi(q − ε)ti + (1− α)(p− ε)hi(q + ε)ti

=
αLi

αLi + (1− α)
.

Thus, it follows that

Pr (Coin i is heavy|Di) ≥ 1− δ if and only if Li ≥
(

1− δ
δ

)(
1− α
α

)
.

The algorithm computes the likelihood ratio Li for each coin i based on the history of outcomes of
the coin. The algorithm repeatedly tosses coins until there exists i∗ such that Li∗ ≥ (1 − α)(1 −
δ)/αδ. Thus, if i∗ is output by Algorithm Likelihood-Toss, then Pr (Coin i∗ is heavy|Di∗) ≥ 1−δ.
Hence, the success probability of the algorithm is∑

i∗=1,2,...

Pr (Coin i∗ is returned) Pr (Coin i∗ is heavy|Coin i∗ is returned)

≥ (1− δ)
∑

i∗=1,2,...

Pr (Coin i∗ is returned) = 1− δ.

4. Optimality of the Algorithm

Consider the log-likelihood of a coin i defined as Xi := logLi. Given the history of a coin, the
log-likelihood of the coin is determined uniquely. In the beginning, the history is empty and hence
all log-likelihoods are identically zero. The influence of a toss on the log-likelihood is a random
step for Xi – if the outcome of the toss is a head, then Xi ← Xi + ∆H and if the outcome is a tail,
then Xi ← Xi − ∆T . Thus, the toss outcomes of the coin leads to a 1-dimensional random-walk
of the log-likelihood function associated with the coin. Further, since we stop tossing as soon as
the log-likelihood of a coin is greater than B = log (1− α)(1− δ)/αδ, the random-walk has an
absorbing barrier at B. We observe that the random walks performed by the coins are independent
of each other since each coin being heavy is independent of the rest of the coins.
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Thus, we have infinitely many identical Markov systems S1, S2, . . . , with each one starting in
state Xi = 0. Each Markov system also has a target state, namely the boundary B. A strategy
to pick a coin to toss is equivalent to picking a Markov system i. Each toss outcome is equivalent
to the corresponding system taking a step following the transition probability and step size of the
system. The goal to minimize the expected number of future tosses is equivalent to minimizing the
expected number of steps for one of the Markov systems to reach the target state.

Therefore, we are essentially seeking an optimal strategy to play a multitoken Markov game.
We show that the strategy employed by Algorithm Likelihood-Toss is an optimal strategy to play
the multitoken Markov game that arises in our setting.

Let the Markov system associated with the one-dimensional random walk of the log-likelihood
function of the history of the coin be S = (V, P,C, s, t). Here, the state space V consists of every
possible real value that is at most B. The target state is a special state determined by t = B. The
starting state is s = 0. Given the current state X , the transition cost incurred is one while transition
probabilities are defined as follows:

X →

{
min{X + ∆H , B} with probability Pr (Heads|X),

X −∆T with probability 1− Pr (Heads|X)

where

Pr (Heads|X) = Pr (Heads|Heavy coin) Pr (Heavy coin|X)

+ Pr (Heads|Non-heavy coin) Pr (Non-heavy coin|X)

=
(p+ ε)αeX

αeX + (1− α)
+

(p− ε)(1− α)

αeX + (1− α)
.

We observe that the transition probabilities in this random-walk vary with the state of the system (as
opposed to the well-known random-walk under uniform transition probability). It is clear that this
Markov system is locally finite—the number of possible states reachable using one transition from
any fixed state is exactly two. In this modeling of the Markov System for the log-likelihood of each
coin, we do not condition on the coin being heavy or not-heavy. We are postponing this decision by
conditioning based on the history.

4.1. Proof of Optimality

We now show that the grade is a monotonically non-increasing function of the log-likelihood.

Lemma 7 Consider the Markov System S = (V, P,C, s, t) associated with the log-likelihood
function. Let X,Y ∈ V such that X ≥ Y . Then γ(X) ≤ γ(Y ).

Proof Let γ(Y ) = g. Then, by definition of grade, it follows that there exists a pure optimal
strategy σ that chooses to toss the coin in the first step in Sg(Y ) and Eσ[Sg(Y )] = g. We will
specify a mixed strategy π for Sg(X) such that Eπ[Sg(X)] ≤ g and π chooses to play in the system
S(X) in the first step. It follows by definition that γ(X) ≤ g.

The pure strategy σ can be expressed by a (possibly infinite) binary decision treeDσ as follows:
Each node u has an associated label l(u) ∈ R. Each edge has a label from {H,T}. The root node
v is labeled l(v) = Y . On reaching l(u) < B, if σ chooses to play in the system, then u has two
children—the left and right children uL, uR are labeled l(uL) = l(u)+∆H and l(uR) = l(u)−∆T
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respectively. The edges (u, uL), (u, uR) are labeled H and T respectively. On reaching l(u) < B,
if σ decides to quit, then u is a leaf node. Finally, if l(u) ≥ B, then u is a leaf node. We observe
that since σ plays in the system Sg(Y ) in the first step, the root of Dσ is not a leaf. (See Figure 1
for an example.)

Binary Decision Tree Dσ Ternary Decision Tree Dπ

Figure 1: An example of a strategy σ represented as a binary decision treeDσ for the Markov game
Sg(Y ) where B − 2∆H < Y < B − ∆H ; the strategy σ is to continue playing in the
system Sg(Y ) on reaching states Y and Y + ∆H and to quit on reaching states Y −∆T

and Y + ∆H −∆T . The corresponding ternary decision tree Dπ derived from Dσ is also
shown.

We obtain a mixed strategy π for Sg(X) by considering the following ternary tree Dπ derived
from Dσ: Each node u in Dπ has an associated label (lX(u), lY (u)) ∈ R2. Each edge in Dπ has
a label from {HH,HT, TT}. There is an onto mapping m(u) from each node u ∈ Dπ to a node
in Dσ. The root node u is labeled (lX(u) = X, lY (u) = Y ) and m(u) =Root(Dσ). For any node
u, if m(u) is a leaf, then u is a leaf. Let u be a node such that v = m(u) is not a leaf. Let vH
and vT denote the left and right children of v. Create children uHH , uHT , uTT as nodes adjacent
to edges labeled HH,HT, TT respectively. Define the mapping m(uHH) = vH , m(uHT ) = vT ,
m(uTT ) = vT and set

lX(uHH) = lX(u) + ∆H , lX(uHT ) = lX(u) + ∆H , lX(uTT ) = lX(u)−∆T ,

lY (uHH) = lY (u) + ∆H , lY (uHT ) = lY (u)−∆T , lY (uTT ) = lY (u)−∆T .

By construction of Dπ, it follows that if X ≥ Y , then at any node u in Dπ, lX(u) ≥ lY (u) and
hence, Pr (Heads|lX(u)) ≥ Pr (Heads|lY (u)).

Our mixed strategy π for Sg(X) is based on Dπ. The strategy at any step maintains a pointer
to some node u in Dπ. Initialize the pointer to the root node u. If the pointer is at a non-leaf node
u, then π chooses to play in the system. If the step in the system is a backward step (outcome
of coin toss is a tail), then π moves the pointer to uTT . If the step in the system is a forward
step (outcome of coin toss is a head), then π generates a random number r ∈ [0, 1] and moves
the pointer to the node uHH if r < Pr (Heads|lY (u)) / Pr (Heads|lX(u)) and to the node uHT if
r ≥ Pr (Heads|lY (u)) / Pr (Heads|lX(u)). If the pointer is at a leaf node u such that lY (u) < B,
then π quits the system. Otherwise, lY (u) ≥ B and hence lX(u) ≥ B. Thus, the strategy π is a
valid mixed strategy for Sg(X) and π plays in the system Sg(X) in the first step since σ plays in
the system Sg(Y ) in the first step.

It only remains to show that Eπ[Sg(X)] ≤ g. This is shown in Claim 8.
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Claim 8
Eπ[Sg(X)] ≤ g.

Proof The cost of using σ for Sg(Y ) can be simulated by running a random process in Dσ and
considering an associated cost. For each non-leaf node in Dσ associate a cost of 1 and for each leaf
node u in Dσ such that l(u) < B, associate a cost of g. Consider the following random process
RP1(u) for a node u ∈ Dσ: Begin at node u of Dσ. On reaching a non-leaf node v, repeatedly
traverse the treeDσ by taking the left child with probability Pr (Heads|l(v)) and the right child with
the remaining probability until a leaf node is reached. The cost of the random process is the sum of
the cost incurred along the nodes in the path traversed by the random process. Let E[Dσ(u)] denote
the expected cost. Then, by construction of Dσ, it follows that E[Dσ(r)] = Eσ[Sg(l(r))] = g for
the root node r in Dσ.

Next, we give a random process RP2 on Dπ that relates the expected cost of following strategy
π on Sg(X) and the expected cost of following strategy σ on Sg(Y ). We first associate a cost with
each node u inDπ: For each non-leaf node u, if lX(u) < B, then cost cX(u) = 1, and if lY (u) < B,
then cost cY (u) = 1. For each leaf node u, if lX(u) < B, then cost cX(u) = g and if lY (u) < B,
then cost cY (u) = g. The remaining costs are zero. Here, we observe that cX(u) ≤ cY (u) for every
node u ∈ Dπ.

We define the random process RP2(v) for a node v ∈ Dπ as follows: Begin at node v and
repeatedly traverse the tree Dπ by taking one of the three children at each non-leaf node until a leaf
node is reached. On reaching a non-leaf node u, traverse to uHH with probability Pr (Heads|lY (u)),
to uHT with probability Pr (Heads|lX(u)) − Pr (Heads|lY (u)) and to uTT with the remaining
probability. Let P (v) be the set of nodes in the path traversed by the random process RP2(v). Let
the cost incurred be cX(v) =

∑
u∈P (v) cX(u) and cY (v) =

∑
u∈P (v) cY (u). Now, the cost incurred

by following strategy π for Sg(X) is the same as the cost cX(r) incurred by the random process
RP2(r), where r is the root node in Dπ.

By construction of Dπ from Dσ, it follows that for each node v ∈ Dπ, the expected cost cY (v)
of the random process RP2(v) is equal to the expected cost of the random process RP1(m(v)).
Hence, E[cY (r)] = E[Dσ(m(r))] = g for the root node r in Dπ. Next, since cX(u) ≤ cY (u)
for every node u, it follows that E[cX(r)] ≤ E[cY (r)] = g. Finally, the expected cost incurred by
following mixed strategy π for Sg(X) is exactly equal to E[cX(r)].

Proof [Proof of Theorem 1] We use Algorithm Likelihood-Toss. By Lemma 6, the optimal adap-
tive strategy also minimizes the expected number of tosses to identify a coin i such that the log-
likelihood Xi ≥ B.

The strategy adopted by Algorithm Likelihood-Toss at any stage is to toss the coin with maxi-
mum log-likelihood. Let the Markov system associated with the one-dimensional random walk of
the log-likelihood function of the history of the coin be S = (V, P,C, s, t). We have infinitely many
independent and identical Markov systems S1 = S2 = . . . = S associated with the log-likelihood
function of the respective coin. By Theorem 4, the optimal strategy to minimize the expected num-
ber of tosses to identify a coin i such that the log-likelihood Xi ≥ B is to toss the coin i such that
γ(Xi) is minimal. Lemma 7 shows that the grade function γ(X) is monotonically non-increasing.
Thus, tossing the coin with maximum log-likelihood is an optimal strategy.
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By the description of the algorithm, it is clear that the algorithm starts tossing a fresh/new coin
only if the log-likelihood of the current coin decreases below zero. The time to update the likelihood
ratio of the current coin after a coin toss is only a constant and hence the time to identify the coin to
toss is O(1).

5. Number of Coin Tosses

In this section, we give an upper bound on the number of coin tosses performed by Algorithm
Likelihood-Toss. The algorithm repeatedly tosses a coin while the log-likelihood of the coin is at
least zero and starts with a fresh coin if the log-likelihood of the coin is less than zero. The algorithm
terminates if the log-likelihood of a coin is at least B.

Consider the random walk of the log-likelihood function. The random walk has absorbing
barriers at B and at every state less than 0.

Lemma 9 Let C and D denote the expected number of tosses to get absorbed for a non-heavy and
heavy coin respectively. Let π denote the probability that a heavy coin gets absorbed at B. Then,
under the assumptions of Theorem 2,

1.

π ≥ ∆H(p+ ε)−∆T (q − ε)
2(∆H + ∆T )

.

2.
D

π
≤
(

16B

∆H(p+ ε)−∆T (q − ε)

)(
∆H + ∆T

∆H(p+ ε)

)
.

3.

C ≤ 2(∆H + ∆T )

∆T (q + ε)−∆H(p− ε)
.

Proof Consider a modified random walk where the starting state is ∆H as opposed to zero. Let
C ′ and D′ denote the expected number of tosses for the modified walk to get absorbed using a
non-heavy and heavy coin respectively. Let π′ denote the probability that the modified walk gets
absorbed at B using a heavy coin. Then, D ≤ D′ + 1 ≤ 2D′, C ≤ C ′ + 1 ≤ 2C ′, π = (p+ ε)π′.

We use Theorem 5. For the modified random walk, we have that L = ∆H , W = B − ∆H ,
ν = ∆T , µ = ∆H . For the modified random walk using a heavy coin, the step sizes are

X =

{
∆H with probability p+ ε

−∆T with probability q − ε,

and for the modified random walk using a non-heavy coin, the step sizes are

Y =

{
∆H with probability p− ε
−∆T with probability q + ε,

10
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For ε > 0, we have that E (Y ) < 0. Therefore,

C ′ ≤ ∆H + ∆T

∆T (q + ε)−∆H(p− ε)

and hence we have the bound on C.
Now consider the modified random walk using a heavy coin. For ε > 0, we have that E (X) > 0.

Let ρ0 < 1 be the unique real value such that E
(
ρX0
)

= 1. Thus,

π′ ≥ 1− ρ∆H
0

1− ρB+∆H
0

D′ ≤ (∆H +B)

E (X)

(
1− ρ∆H+∆T

0

1− ρB+∆T
0

)
.

Since φ(ρ) is convex, it can be shown that the minimum value of φ(ρ) occurs at

ρmin =

(
∆T (q − ε)
∆H(p+ ε)

) 1
∆H+∆T

and hence, ρ0 < ρmin < 1. Thus,

D′

π′
≤ (∆H +B)

E (X)

(
1− ρB+∆H

0

1− ρB+∆T
0

)(
1− ρ∆H+∆T

0

1− ρ∆H
0

)

≤ 4B

E (X)

(
1− ρ∆H+∆T

0

1− ρ∆H
0

)
(by the assumption δ < δ0)

<
4B

E (X)

(
1− ρ∆H+∆T

min

1− ρ∆H
min

)
(since ρ0 < ρmin)

=
4B

∆H(p+ ε)

 1

1−
(

∆T (q−ε)
∆H(p+ε)

) ∆H
∆H+∆T


≤ 8B(∆H + ∆T )

E (X) ∆H
.

and we obtain the bound on the ratio D/π. Finally, to lower bound π′, we observe that

π′ ≥ 1− ρ∆H
0

1− ρB+∆H
0

≥
1− ρ∆H

min

1− ρB+∆H
min

≥ 1− ρ∆H
min

≥ E (X)

2(∆H + ∆T )(p+ ε)
.

11
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Proof [Proof of Theorem 2] We use Algorithm Likelihood-Toss. Consider the one-dimensional
random walk of the log-likelihood function. The random walk has absorbing barriers at B and at
every state less than 0. Let C and D denote the expected number of tosses to get absorbed for a
non-heavy and heavy coin respectively. Let π denote the probability that a heavy coin gets absorbed
at B. Let D0 and D1 denote the expected number of tosses of a heavy coin to get absorbed at 0 and
B respectively. Then, D = (1− π)D0 + πD1.

Let E denote the expected number of tosses performed by algorithm Likelihood-Toss. Then,

E ≤ (1− α)(C + E) + α((1− π)(D0 + E) + πD1)

⇒ E ≤ (1− α)

α

C

π
+
D

π
.

By Lemma 9, we have that

E ≤
(

4(∆H + ∆T )

∆H(p+ ε)−∆T (q − ε)

)((
1− α
α

)(
∆H + ∆T

∆T (q + ε)−∆H(p− ε)

)
+

(
4B

∆H(p+ ε)

))
.

The final upper bound follows by substituting for ∆H ,∆T and B and using the following inequali-
ties (derived by straightforward calculus),

2

ε
≥ max

{
∆H + ∆T

∆H(p+ ε)−∆T (q − ε)
,

∆H + ∆T

∆T (q + ε)−∆H(p− ε)

}
,

∆H ≥
ε

p− ε
.

6. Discussion

We gave an adaptive strategy that tosses coins in order to achieve a certain stopping condition,
namely, the existence of a coin whose posterior probability of being heavy is at least a given thresh-
old. Our strategy has minimum cost where cost is measured by the expected number of future tosses
by following the strategy to attain the stopping condition. We achieved this by performing the best
possible action after observing the outcome of each coin toss. We note that our algorithm can also be
modified to start from any given history of outcomes by appropriately modifying the initialization
step. The optimality of the action is exhibited using tools from the field of Markov games. A major
limitation of our algorithm is that it is optimal only in the setting where the coins are independently
heavy and non-heavy. It would be interesting to devise an adaptive strategy where the coins are not
necessarily independent—say we have n coins with exactly one heavy coin and the goal is to attain
the stopping condition. In this setting, we note that the posterior probability of a fixed coin being
heavy depends on the outcomes of the tosses of all coins and not just the fixed coin.

12
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