The complexity of learning halfspaces using generalized linear methods

Amit Daniely Dept. of Mathematics, The Hebrew University, Jerusalem, Israel
Shai Shalev-Shwartz School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel

Abstract

Many popular learning algorithms (E.g. Kernel SVM, logistic regression, Lasso, and Fourier-Transform based algorithms) operate by reducing the problem to a convex optimization problem over a set of functions. These methods offer the currently best approach to several central problems such as learning halfspaces and learning DNF's. In addition they are widely used in numerous application domains. Despite their importance, there are still very few proof techniques to show limits on the power of these algorithms.

We study the performance of this approach in the problem of (agnostically and improperly) learning halfspaces with margin γ. Let \mathcal{D} be a distribution over labeled examples. The γ-margin error of a hyperplane h is the probability of an example to fall on the wrong side of h or at a distance $\leq \gamma$ from it. The γ-margin error of the best h is denoted $\operatorname{Err}_{\gamma}(\mathcal{D})$. An $\alpha(\gamma)$-approximation algorithm receives γ, ϵ as input and, using i.i.d. samples of \mathcal{D}, outputs a classifier with error rate $\leq \alpha(\gamma) \operatorname{Err}_{\gamma}(\mathcal{D})+\epsilon$. Such an algorithm is efficient if it uses poly $\left(\frac{1}{\gamma}, \frac{1}{\epsilon}\right)$ samples and runs in time polynomial in the sample size.

The best approximation ratio achievable by an efficient algorithm is $O\left(\frac{1 / \gamma}{\sqrt{\log (1 / \gamma)}}\right)$ and is achieved using an algorithm from the above class. Our main result shows that the approximation ratio of every efficient algorithm from this family must be $\geq \Omega\left(\frac{1 / \gamma}{\operatorname{poly}(\log (1 / \gamma))}\right)$, essentially matching the best known upper bound.

1. Introduction

Let \mathcal{X} be some set and let \mathcal{D} be a distribution over $\mathcal{X} \times\{ \pm 1\}$. The basic learning task is, based on an i.i.d. sample, to find a function $f: \mathcal{X} \rightarrow\{ \pm 1\}$ whose error, $\operatorname{Err}_{\mathcal{D}, 0-1}(f):=$ $\operatorname{Pr}_{(X, Y) \sim \mathcal{D}}(f(X) \neq Y)$, is as small as possible. A learning problem is defined by specifying a class H of competitors (e.g. H is a class of functions from \mathcal{X} to $\{ \pm 1\}$). Given such a class, the corresponding learning problem is to find $f: \mathcal{X} \rightarrow\{ \pm 1\}$ whose error is small relatively to the error of the best competitor in H. Ignoring computational aspects, the celebrated PAC/VC theory essentially tells us that the best algorithm for every learning problem is an Empirical Risk Minimizer (ERM) - namely, one that returns the competitor in H of least empirical error. Unfortunately, for many learning problems, implementing the ERM paradigm is $N P$-hard and even $N P$-hard to approximate.

We consider here a very popular family of algorithms to cope with this hardness, which we collectively call "the generalized linear family". It proceeds as follows: fix some set $W \subset$ $\mathbb{R}^{\mathcal{X}}$ and return a function of the form $f(x)=\operatorname{sign}(g(x)-b)$ where the pair $(g, b) \in W \times \mathbb{R}$ empirically minimizes some convex loss. In order that such a method be useful, the set W should be "small" (to prevent overfitting) and "nicely behaved" (to make the optimization problem computationally feasible). The two main choices for such a set W are

- A (usually convex) subset of a finite dimensional space of functions (e.g. if $\mathcal{X} \subset \mathbb{R}^{d}$ then W can be the space of all polynomials of degree ≤ 17 and coefficients bounded by d^{3}). We refer to such algorithms as finite dimensional learners.
- A ball in a reproducing kernel Hilbet space. We refer to such algorithms as as kernel based learners.

The generalized linear family has been applied extensively to tackle learning problems (e.g. Linial et al. (1989); Kushilevitz and Mansour (1991); Klivans and Servedio (2001); Kalai et al. (2005); Blais et al. (2008); Shalev-Shwartz et al. (2011) - see section 1.4). Their statistical charactersitics have been thoroughly studied as well (Vapnik, 1998; Anthony and Bartlet, 1999; Schölkopf et al., 1998; Cristianini and Shawe-Taylor, 2000; Steinwart and Christmann, 2008). Moreover, the significance of this approach is by no means only theoretical - algorithms from this family are widely used in practice.

Nevertheless, very few lower bounds are known on the performance of this family of algorithms (i.e., theorems of the form "Every kernel-based/finite-dimensional algorithm for the learning problem X will perform poorly"). The main focus of this paper is to develop a variety of techniques for proving such lower bounds.

We consider the basic problem of learning large margin halfspaces (to be defined precisely in Section 1.1). The best known efficient (in $\frac{1}{\gamma}$) algorithm for this problem (Birnbaum and Shalev-Shwartz, 2012) is a kernel based learner that achieves an approximation ratio of $\frac{1 / \gamma}{\sqrt{\log (1 / \gamma)}}$. (We note, however, that this approximation ratio was first obtained by (Long and Servedio, 2011) using a "boosting based" algorithm that does not belong to the generalized linear family). The best known exact algorithm (that is, $\alpha(\gamma)=1$), is also a kernel based learner and runs in time $\exp \left(\Theta\left(\frac{1}{\gamma} \log \left(\frac{1}{\gamma}\right)\right)\right)$ (Shalev-Shwartz et al., 2011).

Our main results show that efficient kernel based learners cannot achieve better approximation ratio than $\Omega\left(\frac{1 / \gamma}{\operatorname{poly}(\log (1 / \gamma))}\right)$, essentially matching the best known upper bound.

Also, we show that efficient finite dimensional learners cannot achieve better approximation ratio than $\Omega\left(\frac{1 / \sqrt{\gamma}}{\operatorname{poly}(\log (1 / \gamma))}\right)$. In addition, we show that the running time of kernel based learners with approximation ratio of $\left(\frac{1}{\gamma}\right)^{1-\epsilon}$ as well as of finite dimensional learners with approximation ratio of $\left(\frac{1}{\gamma}\right)^{\frac{1}{2}-\epsilon}$ must be exponential in $1 / \gamma$.

The difficulty in proving such lower bounds is the need to quantify over all possible choices of "small and nicely behaved" sets W. In order to address this hurdle we employ a variety of mathematical methods some of which are new in this domain. In particular, we make intensive use of harmonic analysis on the sphere, reproducing kernel Hilbert spaces, orthogonal polynomials and John's Lemma. In addition, we develop a new symmetrization technique, and also prove a new result, which is of independent interest: a fundamental fact that stands behind the theoretical analysis of kernel based learners is that for every subset \mathcal{X} of a unit ball in a Hilbert space H, it is possible to learn affine functionals of norm $\leq C$ over \mathcal{X} w.r.t. the hinge loss using $\frac{C^{2}}{\epsilon^{2}}$ examples. We show a (weak) inverse of this fact. Namely, we show that for every \mathcal{X}, if affine functionals can be learnt using m examples, then there exists an equivalent inner product on H under which \mathcal{X} is contained in a unit ball, and the affine functional retuned by any learning algorithm must have norm $\leq O\left(m^{3}\right)$.

1.1. Learning large margin halfspaces

We view \mathbb{R}^{d} as a subspace of the Hilbert space $H=\ell^{2}$ corresponding to the first d coordinates. Since the notion of margin is defined relative to a suitable scaling of the examples, we consider throughout only distributions that are supported in the unit ball, B, of H. Also, all the distributions we consider are supported in \mathbb{R}^{d} for some $d<\infty$. We denote by S^{d-1} the unit sphere of \mathbb{R}^{d}.

It will be convenient to use loss functions. A loss function is any function $l: \mathbb{R} \rightarrow[0, \infty)$. Given a loss function l and $f: B \rightarrow \mathbb{R}$, we denote $\operatorname{Err}_{\mathcal{D}, l}(f)=\mathbb{E}_{(x, y) \sim \mathcal{D}}(l(y f(x)))$. Two loss functions of particular relevance are the $0-1$ loss function, $l_{0-1}(x)=\left\{\begin{array}{ll}1 & x \leq 0 \\ 0 & x>0\end{array}\right.$, and the γ-margin loss function, $l_{\gamma}(x)=\left\{\begin{array}{ll}1 & x \leq \gamma \\ 0 & x>\gamma\end{array}\right.$. We use shorthands such as $\operatorname{Err}_{\mathcal{D}, 0-1}$ instead of $\operatorname{Err}_{\mathcal{D}, l_{0-1}}$.

A halfspace, parameterized by $w \in B$ and $b \in \mathbb{R}$, is the classifier $f(x)=\operatorname{sign}\left(\Lambda_{w, b}(x)\right)$, where $\Lambda_{w, b}(x):=\langle w, x\rangle+b$. Given a distribution \mathcal{D} over $B \times\{ \pm 1\}$, the error rate of $\Lambda_{w, b}$ is

$$
\operatorname{Err}_{\mathcal{D}, 0-1}\left(\Lambda_{w, b}\right)=\operatorname{Pr}_{(x, y) \sim \mathcal{D}}\left(\operatorname{sign}\left(\Lambda_{w, b}(x)\right) \neq y\right)=\operatorname{Pr}_{(x, y) \sim \mathcal{D}}\left(y \Lambda_{w, b}(x) \leq 0\right) .
$$

The γ-margin error rate of $\Lambda_{w, b}$ is $\operatorname{Err}_{\mathcal{D}, \gamma}\left(\Lambda_{w, b}\right)=\operatorname{Pr}_{(x, y) \sim \mathcal{D}}\left(y \Lambda_{w, b}(x) \leq \gamma\right)$. Note that if $\|w\|=1$ then $\left|\Lambda_{w, b}(x)\right|$ is the distance of x from the separating hyperplane. Therefore, the γ-margin error rate is the probability of x to either be on the wrong side of the hyperplane or to be at a distance of at most γ from the hyperplane. The least γ-margin error rate of a halfspace classifier is denoted $\operatorname{Err}_{\gamma}(\mathcal{D})=\min _{w \in B, b \in \mathbb{R}} \operatorname{Err}_{\mathcal{D}, \gamma}\left(\Lambda_{w, b}\right)$.

A learning algorithm receives γ, ϵ and an access to i.i.d. samples from \mathcal{D}. The algorithm should return a classifier (which need not be an affine function). We say that the algorithm has approximation ratio $\alpha(\gamma)$ if for every γ, ϵ and for every distribution, it outputs (w.h.p. over the i.i.d. \mathcal{D}-samples) a classifier with error rate $\leq \alpha(\gamma) \operatorname{Err}_{\gamma}(\mathcal{D})+\epsilon$. An efficient algorithm uses poly $(1 / \gamma, 1 / \epsilon)$ samples, runs in time polynomial in the size of the sample ${ }^{1}$ and outputs a classifier f such that $f(x)$ can be evaluated in time polynomial in the sample size.

1.2. Kernel-SVM and kernel-based learners

The SVM paradigm, introduced by Vapnik is inspired by the idea of separation with margin. For the reader's convenience we first describe the basic (kernel-free) variant of SVM. It is well known (e.g. Anthony and Bartlet (1999)) that the affine function that minimizes the empirical γ-margin error rate over an i.i.d. sample of size $\operatorname{poly}(1 / \gamma, 1 / \epsilon)$ has error rate $\leq \operatorname{Err}_{\gamma}(\mathcal{D})+\epsilon$. However, this minimization problem is $N P$-hard and even $N P$-hard to approximate (Guruswami and Raghavendra, 2006; Feldman et al., 2006).

SVM deals with this hardness by replacing the margin loss with a convex surrogate loss, in particular, the hinge loss ${ }^{2} l_{\text {hinge }}(x)=(1-x)_{+}$. Note that for $x \in[-2,2], l_{0-1}(x) \leq$ $l_{\text {hinge }}(x / \gamma) \leq(1+2 / \gamma) l_{\gamma}(x)$, from which it easily follows that by solving

$$
\min _{w, b} \operatorname{Err}_{\mathcal{D}, \text { hinge }}\left(\frac{1}{\gamma} \Lambda_{w, b}\right) \text { s.t. } \quad w \in H, b \in \mathbb{R}, \quad\|w\|_{H} \leq 1
$$

we obtain an approximation ratio of $\alpha(\gamma)=1+2 / \gamma$. It is more convenient to consider the problem

$$
\begin{equation*}
\min _{w, b} \operatorname{Err}_{\mathcal{D}, \text { hinge }}\left(\Lambda_{w, b}\right) \quad \text { s.t. } \quad w \in H, b \in \mathbb{R}, \quad\|w\|_{H} \leq C, \tag{1}
\end{equation*}
$$

which is equivalent for $C=\frac{1}{\gamma}$. The basic (kernel-free) variant of SVM essentially solves Problem (1), which can be approximated, up to an additive error of ϵ, by an efficient algorithm running on a sample of size poly $\left(\frac{1}{\gamma}, \frac{1}{\epsilon}\right)$.

Kernel-free SVM minimizes the hinge loss over the space of affine functionals of bounded norm. The family of Kernel-SVM algorithms is obtained by replacing the space of affine functionals with other, possibly much larger, spaces (e.g., a polynomial kernel of degree t extends the repertoire of possible output functions from affine functionals to all polynomials of degree at most t). This is accomplished by embedding B into the unit ball of another Hilbert space on which we apply basic-SVM. Concretely, let $\psi: B \rightarrow B_{1}$, where B_{1} is the unit ball of a Hilbert space H_{1}. The embedding ψ need not be computed directly. Rather, it is enough that we can efficiently compute the corresponding kernel, $k(x, y):=\langle\psi(x), \psi(y)\rangle_{H_{1}}$ (this property, sometimes crucial, is called the kernel trick). It remains to solve the following problem

$$
\begin{equation*}
\min _{w, b} \operatorname{Err}_{\mathcal{D} \text {,hinge }}\left(\Lambda_{w, b} \circ \psi\right) \quad \text { s.t. } \quad w \in H_{1}, b \in \mathbb{R},\|w\|_{H_{1}} \leq C . \tag{2}
\end{equation*}
$$

This problem can be approximated, up to an additive error of ϵ, using poly (C / ϵ) samples and time. We prove lower bounds to all approximate solutions of program (2). In fact, our

[^0]results work with arbitrary (not just hinge loss) convex surrogate losses and arbitrary (not just efficiently computable) kernels.

Although we formulate our results for Problem (2), they apply as well to the following commonly used formulation of the kernel SVM problem, where the constraint $\|w\|_{H_{1}} \leq C$ is replaced by a regularization term. Namely

$$
\begin{equation*}
\min _{w \in H_{1}, b \in \mathbb{R}} \frac{1}{C^{2}}\|w\|_{H_{1}}^{2}+\operatorname{Err}_{\mathcal{D}, \text { hinge }}\left(\Lambda_{w, b} \circ \psi\right) \tag{3}
\end{equation*}
$$

The optimum of program (3) is ≤ 1 as shown by the zero solution $w=0, b=0$. Thus, if w, b is an approximate optimal solution, then $\frac{\|w\|_{H_{1}}^{2}}{C^{2}} \leq 2 \Rightarrow\|w\|_{H_{1}} \leq 2 C$. This observation makes it easy to modify our results on program (2) to apply to program (3).

1.3. Finite dimensional learners

The SVM algorithms embed the data in a (possibly infinite dimensional) Hilbert space, and minimize the hinge loss over all affine functionals of bounded norm. The kernel trick sometimes allows us to work in infinite dimensional Hilbert spaces. Even without it, we can still embed the data in \mathbb{R}^{m} for some m, and minimize a convex loss over a collection of affine functionals. For example, some algorithms do not constraint the affine functional, while in the Lasso method (Tibshirani, 1996) the affine functional (represented as a vector in \mathbb{R}^{m}) must have small L^{1}-norm.

Without the kernel trick, such algorithms work directly in \mathbb{R}^{m}. Thus, every algorithm must have time complexity $\Omega(m)$, and therefore m is a lower bound on the complexity of the algorithm. In this work we will lower bound the performance of any algorithm with $m \leq$ poly $(1 / \gamma)$. Concretely, we prove lower bounds for any approximate solution to a problem of the form

$$
\begin{equation*}
\min _{w, b} \operatorname{Err}_{\mathcal{D}, l}\left(\Lambda_{w, b} \circ \psi\right) \quad \text { s.t. } \quad w \in W \subset \mathbb{R}^{m}, b \in \mathbb{R}, \tag{4}
\end{equation*}
$$

where l is some surrogate loss function (see formal definition in the next section) and $\psi: B \rightarrow \mathbb{R}^{m}$.

It is not hard to see that for any m-dimensional space V of functions over the ball, there exists an embedding $\psi: B \rightarrow \mathbb{R}^{m}$ such that $\{f+b: f \in V, b \in \mathbb{R}\}=\left\{\Lambda_{w, b} \circ \psi: w \in\right.$ $\left.\mathbb{R}^{m}, b \in \mathbb{R}\right\}$. Hence, our lower bounds hold for any method that optimizes a surrogate loss over a subset of a finite dimensional space of functions, and return the threshold function corresponding to the optimum.

1.4. Previous Results and Related Work

The problem of learning halfspaces and in particular large margin halfspaces is as old as the field of machine learning, starting with the perceptron algorithm (Rosenblatt, 1958). Since then it has been a fundamental challenge in machine learning and has inspired much of the existing theory as well as many popular algorithms.

The generalized linear method has its roots in the work of Gauss and Legendre who used the least squares method for astronomical computations. This method has played a key role in modern statistics. Its first application in computational learning theory is in
(Linial et al., 1989) where it is shown that $A C^{0}$ functions are learnable in quasi-polynomial time w.r.t. the uniform distribution. Subsequently, many authors have used the method to tackle various learning problems. For example, Klivans and Servedio (2001) derived the fastest algorithm for learning DNF and Kushilevitz and Mansour (1991) used it to develop an algorithm for decision trees. The main uses of the linear method in the problem of learning halfspaces appear in the next paragraph. Needless to say we are unable here to offer a comprehensive survey of its uses in computational learning theory in general.

The best currently known approximation ratios in the problem of learning large margin halfspaces are due to (Birnbaum and Shalev-Shwartz, 2012) and (Long and Servedio, 2011) and achieve an approximation ratio of $\frac{1}{\gamma \cdot \sqrt{\log (1 / \gamma)}}$. The algorithm of (Birnbaum and ShalevShwartz, 2012) is a kernel based learner, while (Long and Servedio, 2011) used a "boosting based" approach (that does not belong to the generalized linear method). The fastest exact algorithm is due to Shalev-Shwartz et al. (2011) and runs in time $\exp \left(\Theta\left(\frac{1}{\gamma} \log \left(\frac{1}{\epsilon \gamma}\right)\right)\right)$, and is also a kernel based learner. Better running times can be achieved under distributional assumptions. For data which is separable with margin γ, i.e. $\operatorname{Err}_{\gamma}(\mathcal{D})=0$, the perceptron algorithm (as well as SVM with a linear kernel) can find a classifier with error $\leq \epsilon$ with time and sample complexity $\leq \operatorname{poly}(1 / \gamma, 1 / \epsilon)$. Kalai et al. (2005) gave a finite dimensional learner which is the fastest known algorithm for learning halfspaces w.r.t. the uniform distribution over S^{d-1} and the d-dimensional boolean cube (running in time $d^{O(1 / \epsilon)^{4}}$). They also designed a finite dimensional learner of halfspaces w.r.t. log-concave distributions. Blais et al. (2008) extended these results from uniform to product distributions. In this work, we focus on algorithms which work for any distribution and whose runtime is polynomial in both $1 / \gamma$ and $1 / \epsilon$.

The problem of proper ${ }^{3}$ learning of halfspaces in the non-separable case was shown to be hard to approximate within any constant approximation factor (Feldman et al., 2006; Guruswami and Raghavendra, 2006). It has been recently shown (Shalev-Shwartz et al., 2011) that improper learning under the margin assumption is also hard (under some cryptographic assumptions). Namely, no polynomial time algorithm can achieve an approximation ratio of $\alpha(\gamma)=1$. In another recent result Daniely et al. (2013) have shown that under a certain complexity assumption, for every constant α, no polynomial time algorithm can achieve an approximation ratio of α.

Ben-David et al. (2012) (see also Long and Servedio (2011)) addressed the performance of methods that minimize a convex loss over the class of affine functional of bounded norm (in our terminology, they considered the narrow class of finite dimensional learners that optimize over the space of linear functionals). They showed that the best approximation ratio of such methods is $\Theta(1 / \gamma)$. Our results can be seen as a substantial generalization of their results.

The learning theory literature contains consistency results for learning with the so-called universal kernels and well-calibrated surrogate loss functions. This includes the study of asymptotic relations between surrogate convex loss functions and the 0-1 loss function (Zhang, 2004; Bartlett et al., 2006; Steinwart and Christmann, 2008). It is shown that the approximation ratio of SVM with a universal kernel tends to 1 as the sample size grows.

[^1]Our result implies that this convergence is very slow, e.g., an exponentially large (in $\frac{1}{\gamma}$) sample is needed to make the error $<2 \operatorname{Err}_{\gamma}(\mathcal{D})$.

Also related are Ben-David et al. (2003) and Warmuth and Vishwanathan (2005). These papers show the existence of learning problems with limitations on the ability to learn them using linear methods.

2. Results

We first define the two families of algorithms to which our lower bounds apply. We start with the class of surrogate loss functions. This class includes the most popular choices such as the squared loss $(1-x)^{2}$, the logistic $\operatorname{losss}^{\log _{2}}\left(1+e^{-x}\right)$, the hinge loss $(1-x)_{+}$etc.

Definition 1 (Surrogate loss function) A function $l: \mathbb{R} \rightarrow \mathbb{R}$ is called a surrogate loss function if l is convex and is bounded below by the 0-1 loss.

The first family of algorithms contains kernel based algorithms, such as kernel SVM. In the definitions below we set the accuracy parameter ϵ to be $\sqrt{\gamma}$. Since our goal is to prove lower bounds, this choice is without loss of generality, and is intended for the sake of simplifying the theorems statements.

Definition 2 (Kernel based learner) Let $l: \mathbb{R} \rightarrow \mathbb{R}$ be a surrogate loss function. A kernel based learning algorithm, A, receives as input $\gamma \in(0,1)$. It then selects $C=C_{A}(\gamma)$ and an absolutely continuous feature mapping, $\psi=\psi_{A}(\gamma)$, which maps the original space H into the unit ball of a new space H_{1} (see Section 1.2). The algorithm returns a function

$$
A(\gamma) \in\left\{\Lambda_{w, b} \circ \psi: w \in H_{1}, b \in \mathbb{R},\|w\|_{H_{1}} \leq C\right\}
$$

such that, with probability $\geq 1-\exp (-1 / \gamma)$,

$$
\operatorname{Err}_{\mathcal{D}, l}(A(\gamma)) \leq \inf \left\{\operatorname{Err}_{\mathcal{D}, l}\left(\Lambda_{w, b} \circ \psi\right): w \in H_{1}, b \in \mathbb{R},\|w\|_{H_{1}} \leq C\right\}+\sqrt{\gamma}
$$

We denote by $m_{A}(\gamma)$ the maximal number of examples A uses. We say that A is efficient if $m_{A}(\gamma) \leq \operatorname{poly}(1 / \gamma)$.

Note that the definition of kernel based learner allows for any predefined convex surrogate loss, not just the hinge loss. Namely, we consider the program

$$
\begin{equation*}
\min _{w, b} \operatorname{Err}_{\mathcal{D}, l}\left(\Lambda_{w, b} \circ \psi\right) \quad \text { s.t. } \quad w \in H_{1}, b \in \mathbb{R},\|w\|_{H_{1}} \leq C \tag{5}
\end{equation*}
$$

We note that our results hold even if the kernel corresponds to ψ is hard to compute.
The second family of learning algorithms involves an arbitrary feature mapping and domain constraint on the vector w, as in program (4).

Definition 3 (Finite dimensional learner) Let $l: \mathbb{R} \rightarrow \mathbb{R}$ be some surrogate loss function. A finite dimensional learning algorithm, A, receives as input $\gamma \in(0,1)$. It then selects a continuous embedding $\psi=\psi_{A}(\gamma): B \rightarrow \mathbb{R}^{m}$ and a constraint set $W=W_{A}(\gamma) \subseteq \mathbb{R}^{m}$. The algorithm returns, with probability $\geq 1-\exp (-1 / \gamma)$, a function $A(\gamma) \in\left\{\Lambda_{w, b} \circ \psi: w \in\right.$ $W, b \in \mathbb{R}\}$ such that $\operatorname{Err}_{\mathcal{D}, l}(A(\gamma)) \leq \inf \left\{\operatorname{Err}_{\mathcal{D}, l}\left(\Lambda_{w, b} \circ \psi\right): w \in W, b \in \mathbb{R}\right\}+\sqrt{\gamma}$. We say that A is efficient if $m=m_{A}(\gamma) \leq \operatorname{poly}(1 / \gamma)$.

2.1. Main Results

We begin with a lower bound on the performance of efficient kernel-based algorithms.
Theorem 4 Let l be an arbitrary surrogate loss and let A be an efficient kernel-based learner w.r.t. l. Then, for every $\gamma>0$, there exists a distribution \mathcal{D} on B such that, w.p. $\geq 1-10 \exp (-1 / \gamma), \frac{\operatorname{Err}_{\mathcal{D}, 0-1}(A(\gamma))}{\operatorname{Err}_{\gamma}(\mathcal{D})} \geq \Omega\left(\frac{1}{\gamma \cdot \operatorname{poly}(\log (1 / \gamma))}\right)$.

Next we show that kernel-based learners that achieve approximation ratio of $\left(\frac{1}{\gamma}\right)^{1-\epsilon}$ for some constant $\epsilon>0$ must suffer exponential complexity.

Theorem 5 Let l be an arbitrary surrogate loss, let $\epsilon>0$ and let A be a kernel-based learner w.r.t. l such that for every $\gamma>0$ and every distribution \mathcal{D} on B, w.p. $\geq 1 / 2$, $\frac{\operatorname{Err}_{\nabla, 0-1}(A(\gamma))}{\operatorname{Err}_{\gamma}(\mathcal{D})} \leq\left(\frac{1}{\gamma}\right)^{1-\epsilon}$. Then, for some $a=a(\epsilon)>0, m_{A}(\gamma)=\Omega\left(\exp \left((1 / \gamma)^{a}\right)\right)$.

These two theorems follow from the following result.
Theorem 6 Let l be an arbitrary surrogate loss and let A be a kernel-based learner w.r.t. l for which $m_{A}(\gamma)=\exp \left(o\left(\gamma^{-2 / 7}\right)\right)$. Then, for every $\gamma>0$, there exists a distribution \mathcal{D} on B such that, w.p. $\geq 1-10 \exp (-1 / \gamma), \frac{\operatorname{Err}_{\mathcal{D}, 0-1}(A(\gamma))}{\operatorname{Err}(\mathcal{D})} \geq \Omega\left(\frac{1}{\gamma \cdot \operatorname{poly}\left(\log \left(m_{A}(\gamma)\right)\right)}\right)$.

It is shown in (Birnbaum and Shalev-Shwartz, 2012) that solving kernel SVM with some specific kernel (i.e. some specific ψ) yields an approximation ratio of $O\left(\frac{1}{\gamma \sqrt{\log (1 / \gamma)}}\right)$. It follows that our lower bound in Theorem 6 is essentially tight. Also, this theorem can be viewed as a substantial generalization of (Ben-David et al., 2012; Long and Servedio, 2011), who give an approximation ratio of $\Omega\left(\frac{1}{\gamma}\right)$ with no embedding. Also relevant is (Shalev-Shwartz et al., 2011), which shows that for a certain ψ, and $m_{A}(\gamma)=\operatorname{poly}(\exp ((1 / \gamma) \cdot \log (1 /(\gamma)))$, kernel SVM has approximation ratio of 1 . Theorem 6 shows that for kernel-based learner to achieve a constant approximation ratio, m_{A} must be exponential in $1 / \gamma$.

Next we give lower bounds on the performance of finite dimensional learners.
Theorem 7 Let l be a Lipschitz surrogate loss and let A be a finite dimensional learner w.r.t. l. Assume that $m_{A}(\gamma)=\exp \left(o\left(\gamma^{-1 / 8}\right)\right)$. Then, for every $\gamma>0$, there exists a distribution \mathcal{D} on $S^{d-1} \times\{ \pm 1\}$ with $d=O\left(\log \left(m_{A}(\gamma) / \gamma\right)\right)$ such that, w.p. $\geq 1-\exp (-1 / \gamma)$, $\frac{\operatorname{Err}_{\mathcal{D}, 0-1}(A(\gamma))}{\operatorname{Err}_{\gamma}(\mathcal{D})} \geq \Omega\left(\frac{1}{\sqrt{\gamma} \operatorname{poly}\left(\log \left(m_{A}(\gamma) / \gamma\right)\right)}\right)$.

Corollary 8 Let l be a Lipschitz surrogate loss and let A be an efficient finite dimensional learner w.r.t. l. Then, for every $\gamma>0$, there exists a distribution \mathcal{D} on $S^{d-1} \times\{ \pm 1\}$ with $d=O(\log (1 / \gamma))$ such that, w.p. $\geq 1-\exp (-1 / \gamma), \frac{\operatorname{Err}_{\mathcal{D}, 0-1}(A(\gamma))}{\operatorname{Err}_{\gamma}(\mathcal{D})} \geq \Omega\left(\frac{1}{\sqrt{\gamma} \operatorname{poly}(\log (1 / \gamma))}\right)$.

Corollary 9 Let l be a Lipschitz surrogate loss, let $\epsilon>0$ and let A be a finite dimensional learner w.r.t. l such that for every $\gamma>0$ and every distribution \mathcal{D} on B^{d} with $d=\omega(\log (1 / \gamma))$ it holds that w.p. $\geq 1 / 2, \frac{\operatorname{Err}_{\mathcal{D}, 0-1}(A(\gamma))}{\operatorname{Err}_{\gamma}(\mathcal{D})} \leq\left(\frac{1}{\gamma}\right)^{\frac{1}{2}-\epsilon}$. Then, for some $a=a(\epsilon)>0, m_{A}(\gamma)=\Omega\left(\exp \left((1 / \gamma)^{a}\right)\right)$.

2.2. Proof techniques

To give the reader some idea of our arguments, we sketch some of the main ingredients of the proof of Theorem 6. At the end of this section we sketch the idea of the proof of Theorem 7. We note, however, that the actual proofs are organized somewhat differently.

We will construct a distribution \mathcal{D} over $S^{d-1} \times\{ \pm 1\}$ (recall that \mathbb{R}^{d} is viewed as standardly embedded in $H=\ell^{2}$). Thus, we can assume that the program is formulated in terms of the unit sphere, $S^{\infty} \subset \ell^{2}$, and not the unit ball.

Fix an embedding ψ and $C>0$. Denote by $k: S^{\infty} \times S^{\infty} \rightarrow \mathbb{R}$ the corresponding kernel $k(x, y)=\langle\psi(x), \psi(y)\rangle_{H_{1}}$ and consider the following set of functions over $S^{\infty}: H_{k}=$ $\left\{\Lambda_{v, 0} \circ \psi: v \in H_{1}\right\} . H_{k}$ is a Hilbert space with norm $\|f\|_{H_{k}}=\inf \left\{\|v\|_{H_{1}}: \Lambda_{v, 0} \circ \psi=f\right\}$. The subscript k indicates that H_{k} is uniquely determined (as a Hilbert space) given the kernel k. With this interpretation, program (5) is equivalent to the program

$$
\begin{equation*}
\min _{f \in H_{k}, b \in \mathbb{R}} \operatorname{Err}_{\mathcal{D}, l}(f+b) \quad \text { s.t. }\|f\|_{H_{k}} \leq C \tag{6}
\end{equation*}
$$

For simplicity we focus on l being the hinge-loss (the generalization to other surrogate loss functions is rather technical). The proof may be split into four steps:

1. Our first step is to show that we can restrict to the case $C=$ poly $\left(\frac{1}{\gamma}\right)$. We show that for every subset \mathcal{X} of a Hilbert space H, if affine functionals on \mathcal{X} can be learnt using m examples w.r.t. the hinge loss, then there exists an equivalent inner product on H under which \mathcal{X} is contained in a unit ball, and the affine functional returned by any learning algorithm must have norm $\leq O\left(m^{3}\right)$. Since we consider algorithms with polynomial sample complexity, this allows us to argue as if $C=\operatorname{poly}\left(\frac{1}{\gamma}\right)$.
2. We consider the one-dimensional problem of improperly learning halfspaces (i.e. thresholds on the line) by optimizing the hinge loss over the space of univariate polynomials of degree bounded by $\log (C)$. We construct a distribution \mathcal{D} over $[-1,1] \times\{ \pm 1\}$ that is a convex combination of two distributions. One that is separable by a γ-margin halfspace and the other representing a tiny amount of noise. We show that each solution of the problem of minimizing the hinge-loss w.r.t. \mathcal{D} over the space of such polynomials has the property that $f(\gamma) \approx f(-\gamma)$.
3. We pull back the distribution \mathcal{D} w.r.t. a direction $e \in S^{d-1}$ to a distribution over $S^{d-1} \times\{ \pm 1\}$. Let f be an approximate solution of program (6). We show that f takes almost the same value on instances for which $\langle x, e\rangle=\gamma$ and $\langle x, e\rangle=-\gamma$. This step can be further broken into three substeps -
(a) First, we assume that the kernel is symmetric and $f(x)$ depends only on $\langle x, e\rangle$. This substep uses a characterization of Hilbert spaces corresponding to symmetric kernels, from which it follows that f has the form $f(x)=\sum_{n=1}^{\infty} \alpha_{n} P_{d, n}(\langle x, e\rangle)$. Here $P_{d, n}$ are the d-dimensional Legendre polynomials and $\sum_{n=0}^{\infty} \alpha_{n}^{2}<C^{2}$. This allows us to rely on the results for the one-dimensional case from step (1).
(b) By symmetrizing f, we relax the assumption that f depends only on $\langle x, e\rangle$.
(c) By averaging the kernel over the group of linear isometries on \mathbb{R}^{d}, we relax the assumption that the kernel is symmetric.
4. Finally, we show that for the distribution from the previous step, if f is an approximate solution to program (6) then f predicts the same value, 1 , on instances for which $\langle x, e\rangle=\gamma$ and $\langle x, e\rangle=-\gamma$. This establishes our claim, as the constructed distribution assigns the value -1 to instances for which $\langle x, e\rangle=-\gamma$.

We now expand on this brief description of the main steps.
Polynomial sample implies small C. Let \mathcal{X} be a subset of the unit ball of some Hilbert space H and let $C>0$. Assume that affine functionals over \mathcal{X} with norm $\leq C$ can be learnt using m examples with error ϵ and confidence δ. That is, assume that there is an algorithm such that

- Its input is a sample of m points in $\mathcal{X} \times\{ \pm 1\}$ and its output is an affine functional $\Lambda_{w, b}$ with $\|w\| \leq C$.
- For every distribution \mathcal{D} on $\mathcal{X} \times\{ \pm 1\}$, it returns, with probability $1-\delta, w, b$ with $\operatorname{Err}_{\mathcal{D}, \text { hinge }}\left(\Lambda_{w, b}\right) \leq \inf _{\left\|w^{\prime}\right\| \leq C, b^{\prime} \in \mathbb{R}} \operatorname{Err}_{\mathcal{D}, \text { hinge }}\left(\Lambda_{w^{\prime}, b^{\prime}}\right)+\epsilon$.
We will show that there is an equivalent inner product $\langle\cdot, \cdot\rangle^{\prime}$ on H under which \mathcal{X} is contained in a unit ball (not necessarily around 0) and the affine functional returned by any learning algorithm as above, must have norm $\leq O\left(m^{3}\right)$ w.r.t. the new norm.

The construction of the norm is done as follows. We first find an affine subspace $M \subset H$ of dimension $d \leq m$ that is very close to \mathcal{X} in the sense that the distance of every point in \mathcal{X} from M is $\leq \frac{m}{C}$. To find such an M, we assume toward a contradiction that there is no such M, and use this to show that there is a subset $A \subset \mathcal{X}$ such that every function $f: A \rightarrow[-1,1]$ can be realized by some affine functional with norm $\leq C$. This contradicts the assumption that affine functionals with norm $\leq C$ can be learnt using m examples.

Having the subspace M at hand, we construct, using John's lemma (e.g. Matousek (2002)), an inner product $\langle\cdot, \cdot\rangle^{\prime \prime}$ on M and a distribution μ_{N} on \mathcal{X} with the property that the projection of \mathcal{X} on M is contained in a ball of radius $\frac{1}{2}$ w.r.t. $\langle\cdot, \cdot\rangle^{\prime \prime}$, and the hinge error of every affine functional w.r.t. μ_{N} is lower bounded by the norm of the affine functional, divided by m^{2}. We show that that this entails that any affine functional returned by the algorithm must have a norm $\leq O\left(m^{3}\right)$ w.r.t. the inner product $\langle\cdot, \cdot\rangle^{\prime \prime}$.

Finally, we construct an inner product $\langle\cdot, \cdot\rangle^{\prime}$ on H by putting the norm $\langle\cdot, \cdot\rangle^{\prime \prime}$ on M and multiplying the original inner product by $\frac{C^{2}}{2 m^{2}}$ on M^{\perp}.

The one dimensional distribution. We define a distribution \mathcal{D} on $[-1,1]$ as follows. Start with the distribution \mathcal{D}_{1} that takes the values $\pm(\gamma, 1)$, where $\mathcal{D}_{1}(\gamma, 1)=0.7$ and $\mathcal{D}_{1}(-\gamma,-1)=0.3$. Clearly, for this distribution, the threshold 0 has zero error rate. To construct \mathcal{D}, we perturb \mathcal{D}_{1} with "noise" as follows. Let $\mathcal{D}=(1-\lambda) \mathcal{D}_{1}+\lambda \mathcal{D}_{2}$, where \mathcal{D}_{2} is defined as follows. The probability of the labels is uniform and independent of the instance and the marginal probability over the instances is defined by the density function $\rho(x)=\left\{\begin{array}{ll}0 & \text { if }|x|>1 / 8 \\ \frac{8}{\pi \sqrt{1-(8 x)^{2}}} & \text { if }|x| \leq 1 / 8\end{array}\right.$. This choice of ρ simplifies our calculations due to its relation to Chebyshev polynomials. However, other choices of ρ which are supported on a small interval around zero can also work.

Note that the error of the threshold 0 on \mathcal{D} is $\lambda / 2$. We next show that each polynomial f of degree $K=\log (C)$ with $\operatorname{Err}_{\mathcal{D}, \text { hinge }}(f) \leq 1$ must have $f(\gamma) \approx f(-\gamma)$. Indeed, if $1 \geq \operatorname{Err}_{\mathcal{D}, \text { hinge }}(f)=(1-\lambda) \operatorname{Err}_{\mathcal{D}_{1}, \text { hinge }}(f)+\lambda \operatorname{Err}_{\mathcal{D}_{2}, \text { hinge }}(f)$ then $\operatorname{Err}_{\mathcal{D}_{2}, \text { hinge }}(f) \leq \frac{1}{\lambda}$. But, $\operatorname{Err}_{\mathcal{D}_{2}, \text { hinge }}(f)=\frac{1}{2} \int_{-1}^{1} l_{\text {hinge }}(f(x)) \rho(x) d x+\frac{1}{2} \int_{-1}^{1} l_{\text {hinge }}(-f(x)) \rho(x) d x \geq \frac{1}{2} \int_{-1}^{1} l_{\text {hinge }}(-|f(x)|) \rho(x) d x$ and using the convexity of $l_{\text {hinge }}$ we obtain from Jensen's inequality that

$$
\geq \frac{1}{2} l_{\text {hinge }}\left(\int_{-1}^{1}-|f(x)| \rho(x) d x\right)=\frac{1}{2}\left(1+\int_{-1}^{1}|f(x)| \rho(x) d x\right) \geq \frac{1}{2} \int_{-1}^{1}|f(x)| \rho(x) d x=: \frac{1}{2}\|f\|_{1, d \rho} .
$$

This shows that $\|f\|_{1, d \rho} \leq \frac{2}{\lambda}$. We next write $f=\sum_{i=1}^{K} \alpha_{i} \tilde{T}_{i}$, where $\left\{\tilde{T}_{i}\right\}$ are the orthonormal polynomials corresponding to the measure $d \rho$. Since \tilde{T}_{i} are related to Chebyshev polynomials we can uniformly bound their ℓ_{∞} norm, hence obtain that

$$
\sqrt{\sum_{i} \alpha_{i}^{2}}=\|f\|_{2, d \rho} \leq O(\sqrt{K})\|f\|_{1, d \rho} \leq O\left(\frac{\sqrt{K}}{\lambda}\right)
$$

Based on the above, and using a bound on the derivatives of Chebyshev polynomials, we can bound the derivative of the polynomial $f:\left|f^{\prime}(x)\right| \leq \sum_{i}\left|\alpha_{i}\right|\left|\tilde{T}_{i}^{\prime}(x)\right| \leq O\left(\frac{K^{3}}{\lambda}\right)$. Hence, by choosing $\lambda=\omega\left(\gamma K^{3}\right)=\omega\left(\gamma \log ^{3}(C)\right)$ we obtain $|f(\gamma)-f(-\gamma)| \leq 2 \gamma \max _{x}\left|f^{\prime}(x)\right|=$ $O\left(\frac{\gamma K^{3}}{\lambda}\right)=o(1)$, as required.

Pulling back to the $d-1$ dimensional sphere. Given the distribution \mathcal{D} over $[-1,1] \times\{ \pm 1\}$ described before, and some $e \in S^{d-1}$, we now define a distribution \mathcal{D}_{e} on $S^{d-1} \times\{ \pm 1\}$. To sample from \mathcal{D}_{e}, we first sample (α, β) from \mathcal{D} and (uniformly and independently) a vector z from the 1-codimensional sphere of S^{d-1} that is orthogonal to e. The constructed point is $\left(\alpha e+\sqrt{1-\alpha^{2}} z, \beta\right)$.

For any $f \in H_{k}$ and $a \in[-1,1]$ define $\bar{f}(a)$ to be the expectation of f over the 1codimensional sphere $\left\{x \in S^{d-1}:\langle x, e\rangle=a\right\}$. We will show that for any $f \in H_{k}$, such that $\|f\|_{H_{k}} \leq C$ and $\operatorname{Err}_{\mathcal{D}_{e}, \text { hinge }}(f) \leq 1$, we have that $|\bar{f}(\gamma)-\bar{f}(-\gamma)|=o(1)$.

To do so, let us first assume that f is symmetric with respect to e, and hence can be written as $f(x)=\sum_{n=0}^{\infty} \alpha_{n} P_{d, n}(\langle x, e\rangle)$, where $\alpha_{n} \in \mathbb{R}$ and $P_{d, n}$ is the d-dimensional Legendre polynomial of degree n. Furthermore, by a characterization of Hilbert spaces corresponding to symmetric kernels, it follows that $\sum \alpha_{n}^{2} \leq C^{2}$.

Since f is symmetric w.r.t. e we have, $\bar{f}(a)=\sum_{n=0}^{\infty} \alpha_{n} P_{d, n}(a)$. For $|a| \leq 1 / 8$, we have that $\left|P_{d, n}(a)\right|$ tends to zero exponentially fast with both d and n. Hence, if d is large enough then $\bar{f}(a) \approx \sum_{n=0}^{\log (C)} \alpha_{n} P_{d, n}(a)=: \tilde{f}(a)$. Note that \tilde{f} is a polynomial of degree bounded by $\log (C)$. In addition, $\operatorname{Err}_{\mathcal{D}_{e}, \text { hinge }}(f)=\operatorname{Err}_{\mathcal{D}, \text { hinge }}(\bar{f}) \approx \operatorname{Err}_{\mathcal{D}, \text { hinge }}(\tilde{f})$. Hence, if $1 \geq \operatorname{Err}_{\mathcal{D}_{e}, \text { hinge }}(f)$ then by the previous subsection, $|\bar{f}(\gamma)-\bar{f}(-\gamma)|=o(1)$.

Symmetrization of f. In the above, we assumed that both the kernel function is symmetric and that f is symmetric w.r.t. e. Our next step is to relax the latter assumption, while still assuming that the kernel function is symmetric.

Let $\mathbb{O}(e)$ be the group of linear isometries that fix e, namely, $\mathbb{O}(e)=\{A \in \mathbb{O}(d)$: $A e=e\}$. By assuming that k is a symmetric kernel, we have that for all $A \in \mathbb{O}(e)$,
the function $g(x)=f(A x)$ is also in H_{k}. Furthermore, $\|g\|_{H_{k}}=\|f\|_{H_{k}}$ and by the construction of \mathcal{D}_{e} we also have $\operatorname{Err}_{\mathcal{D}_{e}, \text { hinge }}(g)=\operatorname{Err}_{\mathcal{D}_{e}, \text { hinge }}(f)$. Let $\mathcal{P}_{e} f(x)=\int_{\mathbb{O}(e)} f(A x) d A$ be the symmetrization of f w.r.t. e. On one hand, $\mathcal{P}_{e} f \in H_{k}$, $\left\|\mathcal{P}_{e} f\right\|_{H_{k}} \leq\|f\|_{H_{k}}$, and $\operatorname{Err}_{\mathcal{D}_{e}, \text { hinge }}\left(\mathcal{P}_{e} f\right) \leq \operatorname{Err}_{\mathcal{D}_{e}, \text { hinge }}(f)$. On the other hand, $\bar{f}=\overline{\mathcal{P}_{e} f}$. Since for $\mathcal{P}_{e} f$ we have shown that $\left|\overline{\mathcal{P}_{e} f}(\gamma)-\overline{\mathcal{P}_{e} f}(-\gamma)\right|=o(1)$, it follows that $|\bar{f}(\gamma)-\bar{f}(-\gamma)|=o(1)$ as well.

Symmetrization of the kernel. Our final step is to remove the assumption that the kernel is symmetric. To do so, we first symmetrize the kernel as follows. Recall that $\mathbb{O}(d)$ is the group of linear isometries of \mathbb{R}^{d}. Define the following symmetric kernel: $k_{s}(x, y)=$ $\int_{\mathbb{O}(d)} k(A x, A y) d A$. We show that the corresponding Hilbert space consists of functions of the form $f(x)=\int_{\mathscr{O}(d)} f_{A}(A x) d A$, where for every $A f_{A} \in H_{k}$. Moreover,

$$
\begin{equation*}
\|f\|_{H_{k_{s}}}^{2} \leq \int_{\mathbb{O}(d)}\left\|f_{A}\right\|_{H_{k}}^{2} d A \tag{7}
\end{equation*}
$$

Let α be the maximal number such that

$$
\forall e \in S^{d-1} \exists f_{e} \in H_{k} \text { s.t. }\left\|f_{e}\right\|_{H_{k}} \leq C, \operatorname{Err}_{D_{e}, \text { hinge }}\left(f_{e}\right) \leq 1,\left|\bar{f}_{e}(\gamma)-\bar{f}_{e}(-\gamma)\right|>\alpha
$$

Since H_{k} is closed to negation, it follows that α satisfies

$$
\forall e \in S^{d-1} \exists f_{e} \in H_{k} \text { s.t. }\left\|f_{e}\right\|_{H_{k}} \leq C, \operatorname{Err}_{D_{e}, \text { hinge }}\left(f_{e}\right) \leq 1, \bar{f}_{e}(\gamma)-\bar{f}_{e}(-\gamma)>\alpha
$$

Fix some $v \in S^{d-1}$ and define $f \in H_{k_{s}}$ to be $f(x)=\int_{\mathbb{O}(d)} f_{A v}(A x) d A$. By Equation (7) we have that $\|f\|_{H_{k_{s}}} \leq C$. It is also possible to show that for all $A \operatorname{Err}_{\mathcal{D}_{v}, \text { hinge }}\left(f_{A v} \circ A\right)=$ $\operatorname{Err}_{\mathcal{D}_{A v}, \text { hinge }}\left(f_{A v}\right) \leq 1$. Therefore, by the convexity of the loss, $\operatorname{Err}_{\mathcal{D}_{v}, \text { hinge }}(f) \leq 1$. It follows, by the previous sections, that $|\bar{f}(\gamma)-\bar{f}(-\gamma)|=o(1)$. But, we show that $\bar{f}(\gamma)-\bar{f}(-\gamma)>\alpha$. It therefore follows that $\alpha=o(1)$, as required.

Concluding the proof. We have shown that for every kernel, there exists some direction e such that for all $f \in H_{k}$ that satisfies $\|f\|_{H_{k}} \leq C$ and $\operatorname{Err}_{\mathcal{D}_{e}, \text { hinge }}(f) \leq 1$ we have that $|\bar{f}(\gamma)-\bar{f}(-\gamma)|=o(1)$.

Next, consider f which is also an (approximated) optimal solution of program (2) with respect to \mathcal{D}_{e}. Since $\operatorname{Err}_{\mathcal{D}_{e}, \text { hinge }}(0)=1$, we clearly have that $\operatorname{Err}_{\mathcal{D}_{e}, \text { hinge }}(f) \leq 1$, hence $|\bar{f}(\gamma)-\bar{f}(-\gamma)|=o(1)$. Next we show that $\bar{f}(-\gamma)>1 / 2$, which will imply that f predicts the label 1 for most instances on the 1 co-dimensional sphere such that $\langle x, e\rangle=-\gamma$. Hence, its $0-1$ error is close to $0.3(1-\lambda) \geq 0.2$ while $\operatorname{Err}_{\gamma}\left(\mathcal{D}_{e}\right)=\lambda / 2$. By choosing $\lambda=O\left(\gamma \log ^{3.1}(C)\right)$ we obtain that the approximation ratio is $\Omega\left(\frac{1}{\gamma \log ^{3.1}(C)}\right)$.

It is therefore left to show that $\bar{f}(-\gamma)>1 / 2$. Let $a=\bar{f}(\gamma) \approx \bar{f}(-\gamma)$. On $(1-\lambda)$ fraction fraction of the distribution, the hinge-loss would be (on average and roughly) $0.3[1+a]_{+}+0.7[1-a]_{+}$. This function is minimized for $a=1$, which concludes our proof since λ is $o(1)$.

The proof of Theorem 7. To prove Theorem 7, we prove, using John's Lemma (Matousek, 2002), that for every embedding $\psi: S^{d-1} \rightarrow B_{1}$, we can construct a kernel $k: S^{d-1} \times S^{d-1} \rightarrow \mathbb{R}$ and a probability measure μ_{N} over S^{d-1} with the following properties: If f is an approximate solution of program (4), where γ fraction of the distribution \mathcal{D} is perturbed by μ_{N}, then $\|f\|_{k} \leq O\left(\frac{m^{1.5}}{\gamma}\right)$. Using this, we adapt the proof as sketched above to prove Theorem 7 .

3. Conclusion

We developed a variety of proof techniques to lower bound the performance of generalized linear methods. We applied them to prove lower bounds on the task of learning large margin halfspaces. Some of our lower bounds nearly match the best known upper bounds and we conjecture that the rest of our bounds can be improved as well to match the best known upper bounds. As we describe next, our work leaves much for future research.

First, regarding the task of learning large margin halfspaces, our analysis suggests that if better approximation ratios are at all possible then they would require methods other than optimizing a convex surrogate over a regularized linear class of classifiers.

Second, similar to the problem of learning large margin halfsapces, for many learning problems the best known algorithms belong to the generalized linear family. Understanding the limits of the generalized linear method for these problems is therefore of particular interest and might indicate where is the line discriminating between feasibility and infeasibility for these problems. We believe that our techniques will prove useful in proving lower bounds on the performance of generalized linear methods for these and other learning problems. E.g., our techniques yield lower bounds on the performance of generalized linear algorithms that learn halfspaces over the boolean cube $\{ \pm 1\}^{n}$: it can be shown that these methods cannot achieve approximation ratios better than $\tilde{\Omega}(\sqrt{n})$ even if the algorithm competes only with halfspaces defined by vectors in $\{ \pm 1\}^{n}$. These ideas will be elaborated on in a long version of this manuscript.

Third, while our results indicate the limitations of generalized linear methods, it is an empirical fact that these methods perform very well in practice. Therefore, it is of great interest to find conditions on distributions that hold in practice, under which these methods are guaranteed to perform well. We note that learning halfspaces under distributional assumptions, has already been addressed to a certain degree. For example, (Kalai et al., 2005; Blais et al., 2008) show positive results under several assumptions on the marginal distribution (namely, they assume that the distribution is either uniform, log-concave or a product distribution). There is still much to do here, specifically in search of better runtimes. Currently these results yield a runtime which is exponential in poly $(1 / \epsilon)$, where ϵ is the excess error of the learnt hypothesis.

Fourth, as part of our proof, we have shown a (weak) inverse (lemma 28) of the famous fact that affine functionals of norm $\leq C$ can be learnt using poly (C) samples. We made no attempts to prove a quantitative optimal result in this vein, and we strongly believe that much sharper versions can be proved. This interesting direction is largely left as an open problem.

There are several more concrete points that deserve further work. In our work the surrogate loss is fixed in advance. We believe that similar results hold even if the loss depends on γ. This belief is supported by our results about the integrality gap (see section A). As explained in Section C, this is a subtle issue which is related to questions about sample complexity. In view of Theorems 12 and 13, we believe that, as in Theorem 6, the lower bound in Theorems 7 and 10 can be improved to depend on $\frac{1}{\gamma}$ rather than on $\frac{1}{\sqrt{\gamma}}$. Finally, it is of interest to investigate the performance of linear algorithms when the data is restricted to reside in a small dimensional ball. This is done to a certain extent in section A, leading us to conjecture that our results remains valid even if the dimension is logarithmic.

References

Martin Anthony and Peter Bartlet. Neural Network Learning: Theoretical Foundations. Cambridge University Press, 1999.
K. Atkinson and W. Han. Spherical Harmonics and Approximations on the Unit Sphere: An Introduction, volume 2044. Springer, 2012.
P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101:138-156, 2006.
S. Ben-David, D. Loker, N. Srebro, and K. Sridharan. Minimizing the misclassification error rate using a surrogate convex loss. In $I C M L, 2012$.

Shai Ben-David, Nadav Eiron, and Hans Ulrich Simon. Limitations of learning via embeddings in euclidean half spaces. The Journal of Machine Learning Research, 3:441-461, 2003.
A. Birnbaum and S. Shalev-Shwartz. Learning halfspaces with the zero-one loss: Timeaccuracy tradeoffs. In NIPS, 2012.
E. Blais, R. O'Donnell, and K Wimmer. Polynomial regression under arbitrary product distributions. In COLT, 2008.
N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge University Press, 2000.

Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case complexity to improper learning complexity. arXiv preprint arXiv:1311.2272, 2013.
V. Feldman, P. Gopalan, S. Khot, and A.K. Ponnuswami. New results for learning noisy parities and halfspaces. In In Proceedings of the 47 th Annual IEEE Symposium on Foundations of Computer Science, 2006.
G.B. Folland. A course in abstract harmonic analysis. CRC, 1994.
V. Guruswami and P. Raghavendra. Hardness of learning halfspaces with noise. In Proceedings of the 47 th Foundations of Computer Science (FOCS), 2006.
A. Kalai, A.R. Klivans, Y. Mansour, and R. Servedio. Agnostically learning halfspaces. In Proceedings of the 46th Foundations of Computer Science (FOCS), 2005.
A.R. Klivans and R. Servedio. Learning DNF in time $2^{\tilde{O}\left(n^{1 / 3}\right)}$. In $S T O C$, pages 258-265. ACM, 2001.

Kosaku Yosida. Functional Analysis. Springer-Verlag, Heidelberg, 1963.
Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier spectrum. In $S T O C$, pages 455-464, May 1991.

Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform, and learnability. In $F O C S$, pages 574-579, October 1989.
P.M. Long and R.A. Servedio. Learning large-margin halfspaces with more malicious noise. In NIPS, 2011.
J. Matousek. Lectures on discrete geometry, volume 212. Springer, 2002.
V.D. Milman and G. Schechtman. Asymptotic Theory of Finite Dimensional Normed Spaces: Isoperimetric Inequalities in Riemannian Manifolds, volume 1200. Springer, 2002.
F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65:386-407, 1958. (Reprinted in Neurocomputing (MIT Press, 1988).).
S. Saitoh. Theory of reproducing kernels and its applications. Longman Scientific \& Technical England, 1988.

IJ Schoenberg. Positive definite functions on spheres. Duke. Math. J., 1942.
B. Schölkopf, C. Burges, and A. Smola, editors. Advances in Kernel Methods - Support Vector Learning. MIT Press, 1998.
S. Shalev-Shwartz, O. Shamir, and K. Sridharan. Learning kernel-based halfspaces with the 0-1 loss. SIAM Journal on Computing, 40:1623-1646, 2011.
I. Steinwart and A. Christmann. Support vector machines. Springer, 2008.
R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B., 58(1):267-288, 1996.
V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

Manfred K Warmuth and SVN Vishwanathan. Leaving the span. In Learning Theory, pages 366-381. Springer, 2005.
T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. The Annals of Statistics, 32:56-85, 2004.

Appendix A. Additional Results

Low dimensional distributions. It is of interest to examine Theorem 6 when \mathcal{D} is supported on B^{d} for d small. We show that for $d=O(\log (1 / \gamma))$, the approximation ratio is $\Omega\left(\frac{1}{\sqrt{\gamma} \cdot \operatorname{poly}(\log (1 / \gamma))}\right)$. Most commonly used kernels (e.g., the polynomial, RBF, and Hyperbolic tangent kernels, as well as the kernel used in (Shalev-Shwartz et al., 2011)) are symmetric. Namely, for all unit vectors $x, y \in B, k(x, y):=\langle\psi(x), \psi(y)\rangle_{H_{1}}$ depends only on $\langle x, y\rangle_{H}$. For symmetric kernels, we show that even with the restriction that $d=O(\log (1 / \gamma))$, the approximation ratio is still $\Omega\left(\frac{1}{\gamma \cdot \operatorname{poly}(\log (1 / \gamma))}\right)$. However, the result for symmetric kernels is only proved for (idealized) algorithms that return the exact solution of program (5).

Theorem 10 Let A be a kernel-based learner corresponding to a Lipschitz surrogate. Assume that $m_{A}(\gamma)=\exp \left(o\left(\gamma^{-1 / 8}\right)\right)$. Then, for every $\gamma>0$, there exists a distribution \mathcal{D} on B^{d}, for $d=O\left(\log \left(m_{A}(\gamma) / \gamma\right)\right)$, such that, w.p. $\geq 1-\exp (-1 / \gamma)$,

$$
\frac{\operatorname{Err}_{\mathcal{D}, 0-1}(A(\gamma))}{\operatorname{Err}_{\gamma}(\mathcal{D})} \geq \Omega\left(\frac{1}{\sqrt{\gamma} \cdot \operatorname{poly}\left(\log \left(m_{A}(\gamma)\right)\right)}\right)
$$

Theorem 11 Assume that $m_{A}(\gamma)=\exp \left(o\left(\gamma^{-2 / 7}\right)\right)$ and ψ is continuous and symmetric. For every $\gamma>0$, there exists a distribution \mathcal{D} on B^{d}, for $d=O\left(\log \left(m_{A}(\gamma)\right)\right)$ and a solution to program (5) whose 0 -1-error is $\Omega\left(\frac{1}{\gamma \operatorname{poly}\left(\log \left(m_{A}(\gamma)\right)\right)}\right) \cdot \operatorname{Err}_{\gamma}(\mathcal{D})$.

The integrality gap. In bounding the approximation ratio, we considered a predefined loss l. We believe that similar bounds hold as well for algorithms that can choose l according to γ. However, at the moment, we only know to lower bound the integrality gap, as defined below.

If we let l depend on γ, we should redefine the complexity of Program (5) to be $C \cdot L$, where L is the Lipschitz constant of l. (See the discussion following Program (5)). The (γ)integrality gap of program (5) and (4) is defined as the worst case, over all possible choices of \mathcal{D}, of the ratio between the optimum of the program, running on the input γ, to $\operatorname{Err}_{\gamma}(\mathcal{D})$. We note that $\operatorname{Err}_{\mathcal{D}, 0-1}(f) \leq \operatorname{Err}_{\mathcal{D}, l}(f)$ for every convex surrogate l. Thus, the integrality gap always upper bounds the approximation ratio. Moreover, this fact establishes most (if not all) guarantees for algorithms that solve Program (5) or Program (4).

We denote by $\partial_{+} f$ the right derivative of the real function f. Note that $\partial_{+} f$ always exists for f convex. Also, $\forall x \in \mathbb{R},\left|\partial_{+} f(x)\right| \leq L$ if f is L-Lipschitz. We prove:

Theorem 12 Assume that $C=\exp \left(o\left(\gamma^{-2 / 7}\right)\right)$ and ψ is continuous. For every $\gamma>0$, there exists a distribution \mathcal{D} on B^{d}, for $d=O(\log (C))$ such that the optimum of Program (5) is $\Omega\left(\frac{1}{\gamma \operatorname{poly}\left(\log \left(C \cdot\left|\partial_{+} l(0)\right|\right)\right)}\right) \cdot \operatorname{Err}_{\gamma}(\mathcal{D})$.

Thus Program (5) has itegrality gap $\Omega\left(\frac{1}{\gamma \text { poly }(\log (C \cdot L))}\right)$. For Program (4) we prove a similar lower bound:

Theorem 13 Let m, d, γ such that $d=\omega(\log (m / \gamma))$ and $m=\exp \left(o\left(\gamma^{-2 / 7}\right)\right)$. There exist a distribution \mathcal{D} on $S^{d-1} \times\{ \pm 1\}$ such that the optimum of Program (4) is $\Omega\left(\frac{1}{\gamma \operatorname{poly}(\log (m / \gamma))}\right) \cdot \operatorname{Err}_{\gamma}(\mathcal{D})$.

Appendix B. Proofs

B.1. Background and Notation

Here we introduce some notations and terminology to be used throughout. The L^{p} norm corresponding to a measure μ is denoted $\|\cdot\|_{p, \mu}$. Also, $\mathbb{N}=\{1,2, \ldots\}$ and $\mathbb{N}_{0}=\{0,1,2, \ldots\}$. For a collection of function $\mathcal{F} \subset \mathcal{Y}^{\mathcal{X}}$ and $A \subset \mathcal{X}$ we denote $\left.\mathcal{F}\right|_{A}=\left\{\left.f\right|_{A} \mid f \in \mathcal{F}\right\}$. Let H be a Hilbert space. We denote the projection on a closed convex subset of H by P_{C}. We denote the norm of an affine functional Λ on H by $\|\Lambda\|_{H}=\sup _{\|x\|_{H}=1}|\Lambda(x)-\Lambda(0)|$.

B.1.1. Reproducing Kernel Hilbert Spaces

All the theorems we quote here are standard and can be found, e.g., in Chapter 2 of (Saitoh, 1988). Let H be a Hilbert space of functions from a set S to \mathbb{C}. Note that H consists of functions and not of equivalence classes of functions. We say that H is a reproducing kernel Hilbert space (RKHS for short) if, for every $x \in S$, the linear functional $f \rightarrow f(x)$ is bounded.

A function $k: S \times S \rightarrow \mathbb{C}$ is a reproducing kernel (or just a kernel) if, for every $x_{1}, \ldots, x_{n} \in S$, the matrix $\left\{k\left(x_{i}, x_{j}\right)\right\}_{1 \leq i, j \leq n}$ is positive semi-definite.

Kernels and RKHSs are essentially synonymous:

Theorem 14

1. For every kernel k there exists a unique $R K H S H_{k}$ such that for every $y \in S, k(\cdot, y) \in$ H_{k} and $\forall f \in H, f(y)=\langle f(\cdot), k(\cdot, y)\rangle_{H_{k}}$.
2. A Hilbert space $H \subseteq \mathbb{C}^{S}$ is a RKHS if and only if there exists a kernel $k: S \times S \rightarrow \mathbb{R}$ such that $H=H_{k}$.
3. For every kernel $k, \overline{\operatorname{span}\{k(\cdot, y)\}_{y \in S}}=H_{k}$. Moreover,

$$
\left\langle\sum_{i=1}^{n} \alpha_{i} k\left(\cdot, x_{i}\right), \sum_{i=1}^{n} \beta_{i} k\left(\cdot, y_{i}\right)\right\rangle_{H_{k}}=\sum_{1 \leq i, j, \leq n} \alpha_{i} \bar{\beta}_{j} k\left(y_{j}, x_{i}\right)
$$

4. If the kernel $k: S \times S \rightarrow \mathbb{R}$ takes only real values, then $H_{k}^{\mathbb{R}}:=\left\{\operatorname{Re}(f): f \in H_{k}\right\} \subset H_{k}$. Moreover, $H_{k}^{\mathbb{R}}$ is a real Hilbert space with the inner product induced from H_{k}.
5. For every kernel k, convergence in H_{k} implies point-wise convergence. If $\sup _{x \in S} k(x, x)<$ ∞ then this convergence is uniform.

There is also a tight connection between embeddings of S into a Hilbert space and RKHSs.

Theorem 15 A function $k: S \times S \rightarrow \mathbb{R}$ is a kernel iff there exists a mapping $\phi: S \rightarrow H$ to some real Hilbert space for which $k(x, y)=\langle\phi(y), \phi(x)\rangle_{H}$. Also,

$$
H_{k}=\left\{f_{v}: v \in H\right\}
$$

Where $f_{v}(x)=\langle v, \phi(x)\rangle_{H}$. The mapping $v \mapsto f_{v}$, restricted to $\overline{\operatorname{span}(\phi(S))}$, is a Hilbert space isomorphism.

A kernel $k: S \times S \rightarrow \mathbb{R}$ is called normalized if $\sup _{x \in S} k(x, x)=1$. Also,
Theorem 16 Let $k: S \times S \rightarrow \mathbb{R}$ be a kernel and let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be an orthonormal basis of a H_{k}. Then, $k(x, y)=\sum_{n=1}^{\infty} f_{n}(x) f_{n}(y)$.

B.1.2. Unitary Representations of Compact Groups

Proofs of the results stated here can be found in (Folland, 1994), chapter 5. Let G be a compact group. A unitary representation (or just a representation) of G is a group homomorphism $\rho: G \rightarrow U(H)$ where $U(H)$ is the class of unitary operators over a Hilbert space H, such that, for every $v \in H$, the mapping $a \mapsto \rho(a) v$ is continuous.

We say that a closed subspace $M \subset H$ is invariant (to ρ) if for every $a \in G, v \in M$, $\rho(a) v \in M$. We note that if M is invariant then so is M^{\perp}. We denote by $\left.\rho\right|_{M}: G \rightarrow U(M)$ the restriction of ρ to M. That is, $\forall a \in G,\left.\rho\right|_{M}(a)=\left.\rho(a)\right|_{M}$. We say that $\rho: G \rightarrow U(H)$ is reducible if $H=M \oplus M^{\perp}$ such that M, M^{\perp} are both non zero closed and invariant subspaces of H. A basic result is that every representation of a compact group is a sum of irreducible representation.

Theorem 17 Let $\rho: G \rightarrow U(H)$ be a representation of a compact group G. Then, $H=\oplus_{n \in I} H_{n}$, where every H_{n} is invariant to ρ and $\left.\rho\right|_{H_{n}}$ is irreducible.

We shall also use the following Lemma.
Lemma 18 Let G be a compact group, V a finite dimensional vector space and let $\rho: G \rightarrow$ $G L(V)$ be a continuous homomorphism of groups (here, $G L(V)$ is the group of invertible linear operators over V). Then,

1. There exists an inner product on V making ρ a unitary representation.
2. Moreover, if V has no non-trivial invariant subspaces (here a subspace $U \subset V$ is called invariant if, $\forall a \in G, f \in U, \rho(a) f \in U)$ then this inner product is unique up to scalar multiple.

B.1.3. Harmonic Analysis on the Sphere

All the results stated here can be found in (Atkinson and Han, 2012), chapters 1 and 2. Denote by $\mathbb{O}(d)$ the group of unitary operators over \mathbb{R}^{d} and by $d A$ the uniform probability measure over $\mathbb{O}(d)$ (that is, $d A$ is the unique probability measure satisfying $\int_{\mathbb{O}(d)} f(A) d A=$ $\int_{\mathscr{O}(d)} f(A B) d A=\int_{\mathscr{O}(d)} f(B A) d A$ for every $B \in \mathbb{O}(d)$ and every integrable function f : $\mathbb{O}(d) \rightarrow \mathbb{C})$. Denote by $d x=d x_{d-1}$ the Lebesgue (area) measure over S^{d-1} and let $L^{2}\left(S^{d-1}\right):=L^{2}\left(S^{d-1}, d x\right)$. Given a measurable set $Z \subseteq S^{d-1}$, we sometime denote its Lebesgue measure by $|Z|$. Also, denote $d m=\frac{d x}{\left|S^{d-1}\right|}$ the Lebesgue measure, normalized to be a probability measure.

For every $n \in \mathbb{N}_{0}$, we denote by \mathbb{Y}_{n}^{d} the linear space of d-variables harmonic (i.e., satisfying $\Delta p=0$) homogeneous polynomials of degree n. It holds that

$$
\begin{equation*}
N_{d, n}=\operatorname{dim}\left(\mathbb{Y}_{n}^{d}\right)=\binom{d+n-1}{d-1}-\binom{d+n-3}{d-1}=\frac{(2 n+d-2)(n+d-3)!}{n!(d-2)!} \tag{8}
\end{equation*}
$$

Denote by $\mathcal{P}_{d, n}: L^{2}\left(S^{d-1}\right) \rightarrow \mathbb{Y}_{n}^{d}$ the orthogonal projection onto \mathbb{Y}_{n}^{d}.
We denote by $\rho: \mathbb{O}(d) \rightarrow U\left(L^{2}\left(S^{d-1}\right)\right)$ the unitary representation defined by

$$
\rho(A) f=f \circ A^{-1}
$$

We say that a closed subspace $M \subset L^{2}\left(S^{d-1}\right)$ is invariant if it is invariant w.r.t. ρ (that is, $\forall f \in M, A \in \mathbb{O}(d), f \circ A \in M)$. We say that an invariant space M is primitive if $\left.\rho\right|_{M}$ is irreducible.

Theorem 19

1. $L^{2}\left(S^{d-1}\right)=\oplus_{n=0}^{\infty} \mathbb{Y}_{n}^{d}$.
2. The primitive finite dimensional subspaces of $L^{2}\left(S^{d-1}\right)$ are exactly $\left\{\mathbb{Y}_{n}^{d}\right\}_{n=0}^{\infty}$.

Lemma 20 Fix an orthonormal basis $Y_{n, j}^{d}, 1 \leq j \leq N_{d, n}$ to \mathbb{Y}_{n}^{d}. For every $x \in S^{d-1}$ it holds that

$$
\sum_{j=1}^{N_{d, n}}\left|Y_{n, j}^{d}(x)\right|^{2}=\frac{N_{d, n}}{\left|S^{d-1}\right|}
$$

B.1.4. Legendre and Chebyshev Polynomials

The results stated here can be found at (Atkinson and Han, 2012). Fix $d \geq 2$. The d dimensional Legendre polynomials are the sequence of polynomials over $[-1,1]$ defined by the recursion formula

$$
\begin{gathered}
P_{d, n}(x)=\frac{2 n+d-4}{n+d-3} x P_{d, n-1}(x)+\frac{n-1}{n+d-3} P_{d, n-2}(x) \\
P_{d, 0} \equiv 1, P_{d, 1}(x)=x
\end{gathered}
$$

We shall make use of the following properties of the Legendre polynomials.

Proposition 21

1. For every $d \geq 2$, the sequence $\left\{P_{d, n}\right\}$ is orthogonal basis of the Hilbert space $L^{2}\left([-1,1],\left(1-x^{2}\right)^{\frac{d-3}{2}} d x\right)$.
2. For every $n, d,\left\|P_{d, n}\right\|_{\infty}=1$.

The Chebyshev polynomials of the first kind are defined as $T_{n}:=P_{2, n}$. The Chebyshev polynomials of the second kind are the polynomials over $[-1,1]$ defined by the recursion formula

$$
\begin{gathered}
U_{n}(x)=2 x U_{n-1}(x)-U_{n-2}(x) \\
U_{0} \equiv 1, U_{1}(x)=2 x
\end{gathered}
$$

We shall make use of the following properties of the Chebyshev polynomials.

Proposition 22

1. For every $n \geq 1, T_{n}^{\prime}=n U_{n-1}$.
2. $\left\|U_{n}\right\|_{\infty}=n+1$.

Given a measure μ over $[-1,1]$, the orthogonal polynomials corresponding to μ are the sequence of polynomials obtained upon the Gram-Schmidt procedure applied to $1, x, x^{2}, x^{3}, \ldots$. We note that the $1, \sqrt{2} T_{1}, \sqrt{2} T_{2}, \sqrt{2} T_{3}, \ldots$ are the orthogonal polynomials corresponding to the probability measure $d \mu=\frac{d x}{\pi \sqrt{1-x^{2}}}$

B.1.5. Bochner Integral and Bochner Spaces

Proofs and elaborations on the material appearing in this section can be found in (Kosaku Yosida, 1963). Let (X, \mathfrak{m}, μ) be a measure space and let H be a Hilbert space. A function $f: X \rightarrow H$ is (Bochner) measurable if there exits a sequence of function $f_{n}: X \rightarrow H$ such that

- For almost every $x \in X, f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
- The range of every f_{n} is countable and, for every $v \in H, f^{-1}(v)$ is measurable.

A measurable function $f: X \rightarrow H$ is (Bochner) integrable if there exists a sequence of simple measurable functions (in the usual sense) s_{n} such that $\lim _{n \rightarrow \infty} \int_{X}\left\|f(x)-s_{n}(x)\right\|_{H} d \mu(x)=$ 0 . We define the integral of f to be $\int_{X} f d \mu=\lim _{n \rightarrow \infty} \int s_{n} d \mu$, where the integral of a simple function $s=\sum_{i=1}^{n} 1_{A_{i}} v_{i}, A_{i} \in \mathfrak{m}, v_{i} \in H$ is $\int_{X} s d \mu=\sum_{i=1}^{n} \mu\left(A_{i}\right) v_{i}$.

Define by $L^{2}(X, H)$ the Kolmogorov quotient (by equality almost everywhere) of all measurable functions $f: X \rightarrow H$ such that $\int_{X}\|f\|_{H}^{2} d \mu<\infty$.
Theorem $23 L^{2}(X, H)$ in a Hilbert space w.r.t. the inner product $\langle f, g\rangle_{L^{2}(X, H)}=\int_{X}\langle f(x), g(x)\rangle_{H} d \mu(x)$

B.2. Learnability implies small radius

The purpose of this section is to show that if \mathcal{X} is a subset of some Hilbert space H such that it is possible to learn affine functionals over \mathcal{X} w.r.t. some loss, then we can essentially assume that \mathcal{X} is contained is a unit ball and the returned affine functional is of norm $O\left(m^{3}\right)$, where m is the number of examples.

Lemma 24 (John's Lemma) (Matousek, 2002) Let V be an m-dimensional real vector space and let K be a full-dimensional compact convex set. There exists an inner product on V so that K is contained in a unit ball and contains a ball of radius $\frac{1}{m}$, both are centered at (the same) $x \in K$. Moreover, if K is 0 -symmetric it is possible to take $x=0$ and the ratio between the radiuses can be improved to \sqrt{m}.

Lemma 25 Let l be a convex surrogate, let V an m-dimensional vector space and let $\mathcal{X} \subset V$ be a bounded subset that spans V as an affine space. There exists an inner product $\langle\cdot, \cdot\rangle$ on V and a probability measure μ_{N} such that

- For every $w \in V, b \in \mathbb{R},\|w\| \leq 4 m^{2} \operatorname{Err}_{\mu_{N}, \text { hinge }}\left(\Lambda_{w, b}\right)$
- \mathcal{X} is contained in a unit ball.

Proof Let us apply John's Lemma to $K=\operatorname{conv}(\mathcal{X})$. It yields an inner product on V with K contained in a unit ball and containing the ball with radius $\frac{1}{m}$ both centered at the same $x \in V$. It remains to prove the existence of the measure μ_{N}. W.l.o.g., we assume that $x=0$.

Let $e_{1}, \ldots, e_{m} \in V$ be an orthonormal basis. For every $i \in[m]$, represent both $\frac{1}{m} e_{i}$ and $-\frac{1}{m} e_{i}$ as a convex combination of $m+1$ elements from \mathcal{X} :

$$
\frac{1}{m} e_{i}=\sum_{j=1}^{m+1} \lambda_{i}^{j} x_{i}^{j},-\frac{1}{m} e_{i}=\sum_{j=1}^{m+1} \rho_{i}^{j} z_{i}^{j}
$$

Now, define

$$
\mu_{N}\left(x_{i}^{j}, 1\right)=\mu_{N}\left(x_{i}^{j},-1\right)=\frac{\lambda_{i}^{j}}{4 m}, \quad \mu_{N}\left(z_{i}^{j}, 1\right)=\mu_{N}\left(z_{i}^{j},-1\right)=\frac{\rho_{i}^{j}}{4 m} .
$$

Finally, let $v \in V, b \in \mathbb{R}$. We have

$$
\begin{aligned}
\operatorname{Err}_{\mu_{N}, \text { hinge }}\left(\Lambda_{w, b}\right)= & \sum_{i=1}^{m} \sum_{j=1}^{m+1} \frac{\lambda_{i}^{j}}{4 m}\left[l_{\text {hinge }}\left(\Lambda_{w, b}\left(x_{i}^{j}\right)\right)+l_{\text {hinge }}\left(-\Lambda_{w, b}\left(x_{i}^{j}\right)\right)\right] \\
& +\frac{\rho_{i}^{j}}{4 m}\left[l_{\text {hinge }}\left(\Lambda_{w, b}\left(z_{i}^{j}\right)\right)+l_{\text {hinge }}\left(-\Lambda_{w, b}\left(z_{i}^{j}\right)\right)\right] \\
\geq & \frac{1}{4 m} \sum_{i=1}^{m}\left[l_{\text {hinge }}\left(\sum_{j=1}^{m+1} \lambda_{i}^{j}\left(\Lambda_{w, b}\left(x_{i}^{j}\right)\right)\right)+l_{\text {hinge }}\left(-\sum_{j=1}^{m+1} \lambda_{i}^{j}\left(\Lambda_{w, b}\left(x_{i}^{j}\right)\right)\right)\right] \\
& +\left[l_{\text {hinge }}\left(\sum_{j=1}^{m+1} \rho_{i}^{j}\left(\Lambda_{w, b}\left(z_{i}^{j}\right)\right)\right)+l_{\text {hinge }}\left(-\sum_{j=1}^{m+1} \rho_{i}^{j}\left(\Lambda_{w, b}\left(z_{i}^{j}\right)\right)\right)\right] \\
= & \frac{1}{4 m} \sum_{i=1}^{m} l_{\text {hinge }}\left(\left\langle w, \frac{e_{i}}{m}\right\rangle+b\right)+l_{\text {hinge }}\left(-\left\langle w, \frac{e_{i}}{m}\right\rangle-b\right) \\
& +l_{\text {hinge }}\left(-\left\langle w, \frac{e_{i}}{m}\right\rangle+b\right)+l_{\text {hinge }}\left(\left\langle w, \frac{e_{i}}{m}\right\rangle-b\right) \\
\geq & \frac{1}{4 m} \sum_{i=1}^{m} l_{\text {hinge }}\left(-\frac{\left|\left\langle w, e_{i}\right\rangle\right|}{m}\right) \\
\geq & \frac{1}{4 m^{2}} \sum_{i=1}^{m}\left|\left\langle w, e_{i}\right\rangle\right| \\
\geq & \frac{1}{4 m^{2}}\|w\|
\end{aligned}
$$

Let \mathcal{X} be a bounded subset of some Hilbert space H and let $C>0$. Denote

$$
\mathcal{F}_{H}(\mathcal{X}, C)=\left\{\Lambda_{w, b}|\mathcal{X}|\|w\|_{H} \leq C, b \in \mathbb{R}\right\} .
$$

Denote by \mathcal{M} the collection of all affine subspaces of H that are spanned by points from \mathcal{X}. Denote by $t=t_{H}(\mathcal{X}, C)$ be the maximal number such that for every affine subspace $M \in \mathcal{M}$ of dimension less than t there is $x \in \mathcal{X}$ such that $d(x, M)>\frac{t}{C}$.

Lemma 26 Let \mathcal{X} be a bounded subset of some Hilbert space H and let $C>0$. There is $A \subset \mathcal{X}$ with $|A|=t_{H}(\mathcal{X}, C)$ such that $\left.[-1,1]^{A} \subset \mathcal{F}_{H}(\mathcal{X}, C)\right|_{A}$.

Proof Denote $t=t_{H}(\mathcal{X}, C)$. Let $x_{0}, \ldots, x_{t} \in \mathcal{X}$ be points such that the (t dimensional) volume of the parallelogram Q defined by the vectors

$$
x_{1}-x_{0}, \ldots, x_{t}-x_{0}
$$

is maximal (if the supremum is not attained, the argument can be carried out with a parallelogram whose volume is sufficiently close to the supremum). Let $A=\left\{x_{1}, \ldots, x_{t}\right\}$. We claim that for every $1 \leq i \leq t$, the distance of x_{i} from the affine span, M_{i}, of $A \cup\left\{x_{0}\right\} \backslash$ $\left\{x_{i}\right\}$ is $\geq \frac{t}{C}$. Indeed, the volume of Q is the ($t-1$ dimensional) volume of the parallelogram $Q \cap\left(M_{i}-x_{0}\right)$ times $d\left(x_{i}, M_{i}\right)$. By the maximality of x_{0}, \ldots, x_{t} and the definition of t, $d\left(x_{i}, M_{i}\right) \geq \frac{t}{C}$.

For $1 \leq i \leq t$ Let $v_{i}=x_{i}-P_{M_{i}} x_{i}$. Note that $\left\|v_{i}\right\|_{H}=d\left(x_{i}, M_{i}\right) \geq \frac{t}{C}$ Now, given a function $f: A \rightarrow[-1,1]$, we will show that $f \in \mathcal{F}_{H}(\mathcal{X}, C)$. Consider the affine functional

$$
\Lambda(x)=\sum_{i=1}^{t} \frac{f\left(x_{i}\right)}{\left\|v_{i}\right\|_{H}^{2}}\left\langle v_{i}, x-P_{M_{i}}(x)\right\rangle_{H}=\left\langle\sum_{i=1}^{t} \frac{f\left(x_{i}\right) v_{i}}{\left\|v_{i}\right\|_{H}^{2}}, x\right\rangle_{H}-\sum_{i=1}^{t}\left\langle\frac{f\left(x_{i}\right) v_{i}}{\left\|v_{i}\right\|_{H}^{2}}, P_{M_{i}}(x)\right\rangle_{H} .
$$

Note that since v_{i} is perpendicular to $M_{i}, b:=-\sum_{i=1}^{t}\left\langle\frac{f\left(x_{i}\right) v_{i}}{\left\|v_{i}\right\|_{H}^{2}}, P_{M_{i}}(x)\right\rangle_{H}$ does not depend on x. Let $w:=\sum_{i=1}^{t} \frac{f\left(x_{i}\right) v_{i}}{\left\|v_{i}\right\|_{H}^{2}}$. We have

$$
\|w\|_{H} \leq \sum_{i=1}^{t}\left|f\left(x_{i}\right)\right| \frac{1}{\left\|v_{i}\right\|} \leq t \frac{C}{t}=C .
$$

Therefore, $\left.\Lambda\right|_{\mathcal{X}} \in \mathcal{F}_{H}(\mathcal{X}, C)$. Finally, for every $1 \leq j \leq t$ we have

$$
\Lambda\left(x_{j}\right)=\sum_{i=1}^{t} \frac{f\left(x_{i}\right)}{\left\|v_{i}\right\|_{H}^{2}}\left\langle v_{i}, v_{j}-P_{i}\left(v_{j}\right)\right\rangle=f\left(x_{i}\right) .
$$

Here, the last inequality follows form that fact that for $i \neq j$, since v_{i} is perpendicular to $M_{i},\left\langle v_{i}, v_{j}-P_{i}\left(v_{j}\right)\right\rangle=0$. Therefore, $f=\left.\Lambda\right|_{A}$.

Let $l: \mathbb{R} \rightarrow \mathbb{R}$ be a surrogate loss function. We say that an algorithm (ϵ, δ)-learns $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ using m examples w.r.t. l if:

- Its input is a sample of m points in $\mathcal{X} \times\{ \pm 1\}$ and its output is a hypothesis in \mathcal{F}.
- For every distribution \mathcal{D} on $\mathcal{X} \times\{ \pm 1\}$, it returns, with probability $1-\delta, \hat{f} \in \mathcal{F}$ with $\operatorname{Err}_{\mathcal{D}, l}(\hat{f}) \leq \inf _{f \in \mathcal{F}} \operatorname{Err}_{\mathcal{D}, l}(f)+\epsilon$

Lemma 27 Suppose that an algorithm $\mathcal{A}(\epsilon, \delta)$-learns \mathcal{F} using m examples w.r.t. a surrogate loss l. Then, for every pair of distributions \mathcal{D} and \mathcal{D}^{\prime} on $\mathcal{X} \times\{ \pm 1\}$, if $\hat{f} \in \mathcal{F}$ is the hypothesis returned by \mathcal{A} running on \mathcal{D}, then $\operatorname{Err}_{\mathcal{D}^{\prime}, l}(f) \leq m(l(0)+\epsilon)$ w.p. $\geq 1-2 e \delta$.

Proof Suppose toward a contradiction that w.p. $\geq 2 e \delta$ we have $\operatorname{Err}_{\mathcal{D}^{\prime}, l}(f)>a$ for $a>$ $m(l(0)+\epsilon)$. Consider the following distribution, $\tilde{\mathcal{D}}$: w.p. $\frac{1}{m}$ we sample from \mathcal{D}^{\prime} and with probability $1-\frac{1}{m}$ we sample from \mathcal{D}. Suppose now that we run the algorithm \mathcal{A} on $\tilde{\mathcal{D}}$.

Conditioning on the event that all the samples are from \mathcal{D}, we have, w.p. $\geq 2 e \delta$, $\operatorname{Err}_{\mathcal{D}^{\prime}, l}(\hat{f})>a$ and therefore, $\operatorname{Err}_{\tilde{\mathcal{D}}, l}(\hat{f})>\frac{a}{m}$. The probability that indeed all the m samples are from \mathcal{D} is $\left(1-\frac{1}{m}\right)^{m}>\frac{1}{2 e}$. Hence, with probability $>\delta$, we have $\operatorname{Err}_{\tilde{\mathcal{D}}, l}(\hat{f})>\frac{a}{m}$.

On the other hand, With probability $\geq 1-\delta$ we have $\operatorname{Err}_{\tilde{\mathcal{D}}, l}(\hat{f}) \leq \inf _{f \in \mathcal{F}} \operatorname{Err}_{\tilde{\mathcal{D}}}(f)+\epsilon \leq$ $\operatorname{Err}_{\mathcal{D}, l}(0)+\epsilon=l(0)+\epsilon$. Hence, with positive probability,

$$
\frac{a}{m} \leq l(0)+\epsilon
$$

It follows that $a \leq m(l(0)+\epsilon)$.

Lemma 28 For every surrogate loss l with $\partial_{+} l(0)<0$ there is a constant $c>0$ such that the following holds. Let \mathcal{X} be a bounded subset of a Hilbert space H. If $\mathcal{F}_{H}(\mathcal{X}, C)$ is (ϵ, δ)-learnable using m example w.r.t. l then there is an inner product $\langle\cdot, \cdot\rangle_{s}$ on H such that

- \mathcal{X} is contained in a unit ball w.r.t. $\|\cdot\|_{s}$.
- If $\mathcal{A}(\epsilon, \delta)$-learns $\mathcal{F}_{H}(\mathcal{X}, C)$ then for every distribution \mathcal{D} on $\mathcal{X} \times\{ \pm 1\}$, the hypothesis $\Lambda_{w, b}$ returned by \mathcal{A} has $\left\|\Lambda_{w, b}\right\|_{s} \leq c \cdot m^{3}$ w.p. $1-2 e \delta$.
- The norm $\|\cdot\|_{s}$ is equivalent ${ }^{4}$ to $\|\cdot\|_{H}$.

Remark 29 If \mathcal{X} is the image of some mapping $\psi: \mathcal{Z} \rightarrow H$ then it follows from the lemma that there is a normalized kernel k on \mathcal{Z} such that the hypothesis returned by the learning algorithm (interpreted as a function from \mathcal{Z} to \mathbb{R}) if the form $f+b$ with $\|f\|_{k} \leq c \cdot m^{3}$. Also, if ψ is continuous/absolutely continuous, then so is k.

Proof Let $t=t_{H}(\mathcal{X}, C)$. By lemma 26 there is some $A \subset \mathcal{X}$ such that $[-1,1]^{A} \subset$ $\left.\mathcal{F}_{H}(\mathcal{X}, C)\right|_{A}$. Since $\mathcal{F}_{H}(\mathcal{X}, C)$ is (ϵ, δ)-learnable using m examples, it is not hard to see that we must have $t \leq c^{\prime} \cdot m$ for some $c^{\prime}>0$ that depends only on l.

Therefore, there exists an affine subspace $M \subset H$ of dimension $d \leq c^{\prime} m$, such that for every $x \in \mathcal{X}, d(x, M)<\frac{d}{C} \leq \frac{c^{\prime} m}{C}$. Moreover, we can assume that M is spanned by some subset of \mathcal{X}. Denote by \tilde{M} the linear space corresponding to to M (i.e., \tilde{M} is the translation of M that contains 0). By lemma 25 , there is an inner product $\langle\cdot, \cdot\rangle_{1}$ on \tilde{M}, and a probability measure μ_{N} on $P_{\tilde{M}} \mathcal{X}$ such that

- For every $w \in H, b \in \mathbb{R}$ we have $\left\|\Lambda_{P_{\bar{M}} w, b}\right\|_{1} \leq 4 d^{2} \operatorname{Err}_{\mu_{N}, \text { hinge }}\left(\Lambda_{w, b}\right)$.
- For all $x \in \mathcal{X},\left\|P_{\tilde{M}} x\right\|_{1} \leq 1$.

Finally, define

$$
\langle x, y\rangle_{s}=\frac{1}{2}\left\langle P_{\tilde{M}}(x), P_{\tilde{M}}(y)\right\rangle_{1}+\frac{C^{2}}{2 d^{2}}\left\langle P_{\tilde{M}^{\perp}}(x), P_{\tilde{M}^{\perp}}(y)\right\rangle_{H} .
$$

The first and last assertions of the lemma are easy to verify, so we proceed to the second. Let $\Lambda_{w, b}$ be the hypothesis returned by \mathcal{A} after running on some m examples sampled from some distribution \mathcal{D}. Let \mathcal{D}_{N} be a probability measure on \mathcal{X} whose projection on \tilde{M} is μ_{N}.
4. Two norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ on a vector space X are equivalent if for some $c_{1}, c_{2}>0, \forall x \in A, c_{1} \cdot\|x\| \leq$ $\|x\|^{\prime} \leq c_{2}\|x\|$

By lemma 27 we have, with probability $\geq 1-2 e \delta, \operatorname{Err}_{\mathcal{D}_{N}, l}\left(\Lambda_{w, b}\right) \leq(l(0)+1) m$. We claim that in this case $\operatorname{Err}_{\mu_{N}, \text { hinge }}\left(\Lambda_{w, b}\right) \leq\left(\frac{l(0)+1}{\partial_{+} l(0)}+2\right) m$. Indeed,

$$
\begin{aligned}
\operatorname{Err}_{\mu_{N}, \text { hinge }}\left(\Lambda_{w, b}\right) & =\underset{(x, y) \sim \mu_{N}}{\mathbb{E}} l_{\text {hinge }}\left(y \Lambda_{w, b}(x)\right) \\
& =\underset{(x, y) \sim \mathcal{D}_{N}}{\mathbb{E}} l_{\text {hinge }}\left(y \Lambda_{w, b}\left(P_{\tilde{M}} x\right)\right) \\
& =\underset{(x, y) \sim \mathcal{D}_{N}}{\mathbb{E}} l_{\text {hinge }}\left(y \Lambda_{w, b}\left(x+\left(x-P_{\tilde{M}} x\right)\right)\right) \\
& \leq \underset{(x, y) \sim \mathcal{D}_{N}}{\mathbb{E}} l_{\text {hinge }}\left(y \Lambda_{w, b}(x)\right)+\|w\|_{H} \cdot d\left(x, P_{\tilde{M}} x\right) \\
& \leq \operatorname{Err}_{\mathcal{D}_{N}, \text { hinge }}\left(\Lambda_{w, b}\right)+C \cdot \frac{m}{C} \\
& \leq \frac{1}{\left|\partial_{+} l(0)\right|} \operatorname{Err}_{\mathcal{D}_{N}, l}\left(\Lambda_{w, b}\right)+1+m \\
& \leq \frac{l(0)+1}{\partial_{+} l(0)} m+2 m
\end{aligned}
$$

By the properties of μ_{N}, it follows that $\left\|\Lambda_{P_{\bar{M}} w, b}\right\|_{1}=O\left(m^{3}\right)$ (here, the constant in the big-O notation depends only on l). Finally, we have,

$$
\begin{aligned}
\left\|\Lambda_{w}\right\|_{s}^{2} & =\left\|\Lambda_{P_{\tilde{M}} w}\right\|_{s}^{2}+\left\|\Lambda_{P_{\tilde{M}} \perp w}\right\|_{s}^{2} \\
& =2\left\|\Lambda_{P_{\tilde{M}} w}\right\|_{1}^{2}+\frac{2 m^{2}}{C^{2}}\left\|\Lambda_{P_{\tilde{M}} \perp w}\right\|_{H}^{2} \\
& \leq O\left(m^{6}\right)+2 m^{2} \leq O\left(m^{6}\right)
\end{aligned}
$$

B.3. Symmetric Kernels and Symmetrization

In this section we concern symmetric kernels. Fix $d \geq 2$ and let $k: S^{d-1} \times S^{d-1} \rightarrow \mathbb{R}$ be a continuous positive definite kernel. We say that k is symmetric if

$$
\forall A \in \mathbb{O}(d), x, y \in S^{d-1}, k(A x, A y)=k(x, y)
$$

In other words, $k(x, y)$ depends only on $\langle x, y\rangle_{\mathbb{R}^{d}}$. A RKHS is called symmetric if its reproducing kernel is symmetric. The next theorem characterize symmetric RKHSs. We note that Theorems of the same spirit have already been proved (e.g. (Schoenberg, 1942)).

Theorem 30 Let $k: S^{d-1} \times S^{d-1} \rightarrow \mathbb{R}$ be a normalized, symmetric and continuous kernel. Then,

1. The group $\mathbb{O}(d)$ acts on H_{k}. That is, for every $A \in \mathbb{O}(d)$ and every $f \in H_{k}$ if holds that $f \circ A \in H_{k}$ and $\|f\|_{H_{k}}=\|f \circ A\|_{H_{k}}$.
2. The mapping $\rho: \mathbb{O}(d) \rightarrow U\left(H_{k}\right)$ defined by $\rho(A) f=f \circ A^{-1}$ is a unitary representation.
3. The space H_{k} consists of continuous functions.
4. The decomposition of ρ into a sum of irreducible representation is $H=\oplus_{n \in I} \mathbb{Y}_{n}^{d}$ for some set $I \subset \mathbb{N}_{0}$. Moreover,

$$
\forall f, g \in H_{k},\langle f, g\rangle_{H_{k}}=\sum_{n \in I} a_{n}^{2}\left\langle\mathcal{P}_{d, n} f, \mathcal{P}_{d, n} g\right\rangle_{L^{2}\left(S^{d-1}\right)}
$$

Where $\left\{a_{n}\right\}_{n \in I}$ are positive numbers.
5. It holds that $\sum_{n \in I} \frac{N_{d, n}}{\left|S^{d-1}\right|} a_{n}^{-2}=1$.

Proof Let $f \in H_{k}, A \in \mathbb{O}(d)$. To prove part 1, assume first that

$$
\begin{equation*}
\forall x \in S^{d-1}, f(x)=\sum_{i=1}^{n} \alpha_{i} k\left(x, y_{i}\right) \tag{9}
\end{equation*}
$$

For some $y_{1}, \ldots, y_{n} \in S^{d-1}$ and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$. We have, since k is symmetric, that

$$
\begin{aligned}
f \circ A(x) & =\sum_{i=1}^{n} \alpha_{i} k\left(A x, y_{i}\right) \\
& =\sum_{i=1}^{n} \alpha_{i} k\left(A^{-1} A x, A^{-1} y_{i}\right) \\
& =\sum_{i=1}^{n} \alpha_{i} k\left(x, A^{-1} y_{i}\right)
\end{aligned}
$$

Thus, by Theorem 14, $f \circ A \in H_{k}$. Moreover, it holds that

$$
\begin{aligned}
\|f \circ A\|_{H_{k}}^{2} & =\sum_{1 \leq i, j \leq n} \alpha_{i} \bar{\alpha}_{j} k\left(A^{-1} y_{j}, A^{-1} y_{i}\right) \\
& =\sum_{1 \leq i, j \leq n} \alpha_{i} \bar{\alpha}_{j} k\left(y_{j}, y_{i}\right)=\|f\|_{H_{k}}^{2}
\end{aligned}
$$

Thus, part 1 holds for function $f \in H_{k}$ of the form (9). For general $f \in H_{k}$, by Theorem 14, there is a sequence $f_{n} \in H_{k}$ of functions of the from (9) that converges to f in H_{k}. From what we have shown for functions of the form (9) if follows that $\left\|\mid f_{n}-f_{m}\right\|_{H_{k}}=\left\|f_{n} \circ A-f_{m} \circ A\right\|_{H_{k}}$, thus $f_{n} \circ A$ is a Cauchy sequence, hence, has a limit $g \in H_{k}$. By Theorem 14, convergence in H_{k} entails point wise convergence, thus, $g=f \circ A$. Finally,

$$
\|f\|_{H_{k}}=\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{H_{k}}=\lim _{n \rightarrow \infty}\left\|f_{n} \circ A\right\|_{H_{k}}=\|f \circ A\|_{H_{k}}
$$

We proceed to part 2. It is not hard to check that ρ is group homomorphism, so it only remains to validate that for every $f \in H$ the mapping $A \mapsto \rho(A) f$ is continuous. Let $\epsilon>0$ and let $A \in \mathbb{O}(d)$. We must show that there exists a neighbourhood U of A such that
$\forall B \in U,\left\|f \circ A^{-1}-f \circ B^{-1}\right\|_{H_{k}}<\epsilon$. Choose $g(\cdot)=\sum_{i=1}^{n} \alpha_{i} k\left(\cdot, y_{i}\right)$ such that $\|g-f\|_{H_{k}}<\frac{\epsilon}{3}$. By part 1, it holds that

$$
\begin{aligned}
\left\|f \circ A^{-1}-f \circ B^{-1}\right\|_{H_{k}} & \leq\left\|f \circ A^{-1}-g \circ A^{-1}\right\|_{H_{k}}+\left\|g \circ A^{-1}-g \circ B^{-1}\right\|_{H_{k}}+\left\|g \circ B^{-1}-f \circ B^{-1}\right\|_{H_{k}} \\
& =\|f-g\|_{H_{k}}+\left\|g \circ A^{-1}-g \circ B^{-1}\right\|_{H_{k}}+\|g-f\|_{H_{k}} \\
& <\frac{\epsilon}{3}+\left\|g \circ A^{-1}-g \circ B^{-1}\right\|_{H_{k}}+\frac{\epsilon}{3}
\end{aligned}
$$

Thus, it is enough to find a neighbourhood U of A such that $\forall B \in U,\left\|g \circ A^{-1}-g \circ B^{-1}\right\|_{H_{k}}<$ $\frac{\epsilon}{3}$. However,

$$
\begin{aligned}
\left\|g \circ A^{-1}-g \circ B^{-1}\right\|_{H_{k}}^{2} & =\left\|g \circ A^{-1}\right\|_{H_{k}}^{2}+\left\|g \circ B^{-1}\right\|_{H_{k}}^{2}-2 \operatorname{Re}\left[\left\langle\sum_{i=1}^{n} \alpha_{i} k\left(\cdot, y_{i}\right) \circ A^{-1}, \sum_{i=1}^{n} \alpha_{i} k\left(\cdot, y_{i}\right) \circ B^{-1}\right\rangle\right] \\
& =2\left\|g \circ A^{-1}\right\|_{H_{k}}^{2}-2 \operatorname{Re}\left[\left\langle\sum_{i=1}^{n} \alpha_{i} k\left(\cdot, A y_{i}\right), \sum_{i=1}^{n} \alpha_{i} k\left(\cdot, B y_{i}\right)\right\rangle\right] \\
& =2\left\|g \circ A^{-1}\right\|_{H_{k}}^{2}-\operatorname{Re}\left[\sum_{i, j=1}^{n} \alpha_{i} \bar{\alpha}_{j} k\left(B y_{j}, A y_{i}\right)\right]
\end{aligned}
$$

Since k is continuous, the last expression tends to $2\left\|g \circ A^{-1}\right\|_{H_{k}}^{2}-\operatorname{Re}\left[\sum_{i, j=1}^{n} \alpha_{i} \bar{\alpha}_{j} k\left(A y_{j}, A y_{i}\right)\right]=$ $\|g \circ A-g \circ A\|_{H_{k}}^{2}=0$ as $B \rightarrow A$. Thus, there exists a neighbourhood U such that $\forall B \in U,\left\|g \circ A^{-1}-g \circ B^{-1}\right\|_{H_{k}}<\frac{\epsilon}{3}$ as required.

To see part 3, note that every function in H_{k} is a limit in H_{k} of functions of the form (9). Since k is continuous, every function in H_{k} is a limit in H_{k} of continuous functions. However, by Theorem 14, every function is in fact a uniform limit of continuous function, thus - continuous itself.

We proceed to part 4. By Theorem $17 H_{k}=\oplus_{i \in I} V_{i}$ where each V_{i} is a finite dimensional space that is invariant to ρ. By Theorem 19 each V_{i} must be Y_{n} for some n, thus, $H=$ $\oplus_{n \in I} \Psi_{n}^{d}$. By the uniqueness part in Lemma 18 and Theorem 19, the restriction of $\langle\cdot, \cdot\rangle_{H_{k}}$ to each $\mathbb{Y}_{n}^{d}, n \in I$ equals to $\langle\cdot, \cdot\rangle_{L^{2}\left(S^{d-1}\right)}$ up to scalar multiple, proving the formula for $\langle\cdot, \cdot\rangle_{H_{k}}$

Finally, to see equation part 5 , note that if for every $n \in I,\left\{Y_{n, j}^{d}\right\}_{j \in\left[N_{d, n}\right]}$ in an orthonormal basis of \mathbb{Y}_{n}^{d} w.r.t. $\langle\cdot, \cdot\rangle_{L^{2}\left(S^{d-1}\right)}$ then $\left\{\frac{1}{a_{n}} Y_{n, j}^{d}\right\}_{n \in I, j \in\left[N_{d, n}\right]}$ is an orthogonal basis of H. By Theorem 16 and Lemma 20, it follows that, for every $x \in S^{d-1}$,

$$
1=k(x, x)=\sum_{n \in I} a_{n}^{-2} \sum_{j=1}^{N_{d, n}}\left(Y_{n, j}^{d}(x)\right)^{2}=\sum_{n \in I} \frac{N_{d, n}}{\left|S^{d-1}\right|} a_{n}^{-2}
$$

SYMMETRIZATION

Let $k: S^{d-1} \times S^{d-1} \rightarrow \mathbb{R}$ be a normalized continuous kernel. We define its symmetrization by

$$
\forall x, y \in S^{d-1}, k_{s}(x, y)=\int_{\mathbb{O}(d)} k(A x, A y) d A
$$

The complexity of learning halfspaces using generalized linear methods

Theorem 31

1. k_{s} is symmetric continuous kernel with $\sup _{x \in S^{d-1}} k_{s}(x, x) \leq 1$.
2. For every $\Phi \in L^{2}\left(\mathbb{O}(d), H_{k}\right)$ define $\bar{\Phi}: S^{d-1} \rightarrow \mathbb{C}$ by $\bar{\Phi}(x)=\int_{\mathbb{O}(d)} \Phi(A)(A x) d A$. Then

$$
H_{k_{s}}=\left\{\bar{\Phi}: \Phi \in L^{2}\left(\mathbb{O}(d), H_{k}\right)\right\}
$$

Moreover, for every $\Phi \in L^{2}\left(\mathbb{O}(d), H_{k}\right),\|\bar{\Phi}\|_{H_{k_{s}}} \leq\|\Phi\|_{L^{2}\left(\mathbb{O}(d), H_{k}\right)}$.
Proof Part 1. follows readily from the definition. We proceed to part 2. Define $\phi: S^{d-1} \rightarrow$ $L^{2}\left(\mathbb{O}(d), H_{k}\right)$ by

$$
\phi(x)(A)(\cdot)=k(A x, \cdot)
$$

Note that

$$
\begin{aligned}
\langle\phi(x), \phi(y)\rangle_{L^{2}\left(\mathbb{O}(d), H_{k}\right)} & =\int_{\mathbb{O}(d)}\langle\phi(x)(A), \phi(y)(A)\rangle \\
& =\int_{\mathbb{O}(d)}\langle\phi(x)(A), \phi(y)(A)\rangle \\
& =k_{s}(x, y)
\end{aligned}
$$

Thus, the Theorem follows from Theorem B.1.1

B.4. Lemma 35 and its proof

Lemma 32 For every $n>0, d \geq 5$ and $t \in[-1,1]$ it holds that

$$
\left|P_{d, n}(t)\right| \leq \min \left\{\frac{\Gamma\left(\frac{d-1}{2}\right)}{\sqrt{\pi}}\left[\frac{4}{n\left(1-t^{2}\right)}\right]^{\frac{d-2}{2}},\left(\frac{n}{n+d-2}+2|t|\right)^{\frac{n}{2}}\right\}
$$

Moreover, if $\frac{n}{n+d-2}+2|t| \leq 1$ we also have

$$
\left|P_{d, n}(t)\right| \leq \sqrt{\prod_{i=1}^{n}\left(\frac{i}{i+d-2}+2|t|\right)}
$$

Finally, there exist constants $E>0$ and $0<r, s<1$ such that for every $K>0, d \geq 5$ and $t \in\left[-\frac{1}{8}, \frac{1}{8}\right]$ we have

$$
\sum_{n=K}^{\infty}\left|P_{d, n}(t)\right| \leq E r^{K}+E s^{d}
$$

Proof In (Atkinson and Han, 2012) it is shown that $\left|P_{d, n}(t)\right| \leq \frac{\Gamma\left(\frac{d-1}{2}\right)}{\sqrt{\pi}}\left[\frac{4}{n\left(1-t^{2}\right)}\right]^{\frac{d-2}{2}}$. We shall prove, by induction on k that

$$
\left|P_{d, n}(t)\right| \leq \sqrt{\prod_{i=1}^{n}\left(\frac{i}{i+d-2}+2|t|\right)}
$$

Whenever $\frac{n}{n+d-2}+2|t| \leq 1$. For $n=0,1$ it follows from the fact that $P_{d, 0} \equiv 1$ and $P_{d, 1}(t)=t$. Let $n>1$. By the induction hypothesis and the recursion formula for the Legendre polynomials we have

$$
\begin{aligned}
\left|P_{d, n}(t)\right| & \leq \frac{2 n+d-4}{n+d-3}|t|\left|P_{d, n-1}(t)\right|+\frac{n-1}{n+d-3}\left|P_{d, n-2}(t)\right| \\
& \leq 2|t|\left|P_{d, n-1}(t)\right|+\frac{n-1}{n+d-3}\left|P_{d, n-2}(t)\right| \\
& \leq 2|t| \sqrt{\prod_{i=1}^{n-1}\left(\frac{i}{i+d-2}+2|t|\right)}+\frac{n-1}{n+d-3} \sqrt{\prod_{i=1}^{n-2}\left(\frac{i}{i+d-2}+2|t|\right)} \\
& \leq 2|t| \sqrt{\prod_{i=1}^{n-2}\left(\frac{i}{i+d-2}+2|t|\right)}+\frac{n-1}{n+d-3} \sqrt{\prod_{i=1}^{n-2}\left(\frac{i}{i+d-2}+2|t|\right)} \\
& \leq \sqrt{\left(2|t|+\frac{n-1}{n+d-3}\right)\left(2|t|+\frac{n}{n+d-2}\right)} \sqrt{\prod_{i=1}^{n-2}\left(\frac{i}{i+d-2}+2|t|\right)} \\
& =\sqrt{\prod_{i=1}^{n}\left(\frac{i}{i+d-2}+2|t|\right)}
\end{aligned}
$$

Now, every $K, \bar{K} \geq 0$ such that $\left(\frac{\bar{K}}{K+d-2}+2|t|\right)^{\frac{1}{2}}<1$, we have

$$
\begin{aligned}
\sum_{n=K}^{\infty}\left|P_{d, n}(t)\right| & \leq \sum_{n=K}^{\bar{K}}\left(\frac{n}{n+d-2}+2|t|\right)^{\frac{n}{2}}+\sum_{n=\bar{K}+1}^{\infty} \frac{\Gamma\left(\frac{d-1}{2}\right)}{\sqrt{\pi}}\left[\frac{4}{n\left(1-t^{2}\right)}\right]^{\frac{d-2}{2}} \\
& \leq \sum_{n=K}^{\bar{K}}\left(\frac{\bar{K}}{\bar{K}+d-2}+2|t|\right)^{\frac{n}{2}}+\sum_{n=\bar{K}+1}^{\infty} \frac{\Gamma\left(\frac{d-1}{2}\right)}{\sqrt{\pi}}\left[\frac{4}{n\left(1-t^{2}\right)}\right]^{\frac{d-2}{2}} \\
& \leq \sum_{n=K}^{\infty}\left(\frac{\bar{K}}{\bar{K}+d-2}+2|t|\right)^{\frac{n}{2}}+\frac{\Gamma\left(\frac{d-1}{2}\right)}{\sqrt{\pi}}\left[\frac{4}{\left(1-t^{2}\right)}\right]^{\frac{d-2}{2}} \sum_{n=\bar{K}+1}^{\infty} n^{-\frac{d-2}{2}} \\
& \leq \frac{\left(\frac{\bar{K}}{\bar{K}+d-2}+2|t|\right)^{\frac{K}{2}}}{1-\left(\frac{\bar{K}}{\bar{K}+d-2}+2|t|\right)^{\frac{1}{2}}}+\frac{\Gamma\left(\frac{d-1}{2}\right)}{\sqrt{\pi}}\left[\frac{4}{\left(1-t^{2}\right)}\right]^{\frac{d-2}{2}} \sum_{n=\bar{K}+1}^{\infty} n^{-\frac{d-2}{2}} \\
& \leq \frac{\left(\frac{\bar{K}}{K+d-2}+2|t|\right)^{\frac{K}{2}}}{1-\left(\frac{\bar{K}}{K+d-2}+2|t|\right)^{\frac{1}{2}}}+\frac{\Gamma\left(\frac{d-1}{2}\right)}{\sqrt{\pi}}\left[\frac{4}{\left(1-t^{2}\right)}\right]^{\frac{d-2}{2}} \int_{\bar{K}}^{\infty} x^{-\frac{d-2}{2}} d x \\
& =\frac{\left(\frac{\bar{K}}{K+d-2}+2|t|\right)^{\frac{K}{2}}}{1-\left(\frac{\bar{K}}{K+d-2}+2|t|\right)^{\frac{1}{2}}}+\frac{\Gamma\left(\frac{d-1}{2}\right)}{\sqrt{\pi}}\left[\frac{4}{\left(1-t^{2}\right)}\right]^{\frac{d-2}{2}} \frac{K^{-\frac{d-4}{2}}}{\frac{d-4}{2}}
\end{aligned}
$$

(We limit ourselves to $d \geq 5$ to guarantee the convergence of $\sum n^{-\frac{d-2}{2}}$.) In particular, if $|t| \leq \frac{1}{8}$ and $\bar{K}=d-2$, we have,

$$
\begin{aligned}
\sum_{n=K}^{\infty}\left|P_{d, n}(t)\right| & \leq\left(\frac{1}{1-\left(\frac{3}{4}\right)^{\frac{1}{2}}}\right)\left(\frac{3}{4}\right)^{\frac{K}{2}}+\frac{\Gamma\left(\frac{d-1}{2}\right)}{\sqrt{\pi}}\left[\frac{4.07}{(d-2)}\right]^{\frac{d-2}{2}} \frac{d-2}{\frac{d-4}{2}} \\
& \leq\left(\frac{1}{1-\left(\frac{3}{4}\right)^{\frac{1}{2}}}\right)\left(\frac{3}{4}\right)^{\frac{K}{2}}+\frac{6 \Gamma\left(\frac{d-1}{2}\right)}{\sqrt{\pi}}\left[\frac{4.07}{(d-2)}\right]^{\frac{d-2}{2}} \\
& \sim\left(\frac{1}{1-\left(\frac{3}{4}\right)^{\frac{1}{2}}}\right)\left(\frac{3}{4}\right)^{\frac{K}{2}}+\frac{6}{\sqrt{\pi}}\left[\frac{4.07}{(d-2)}\right]^{\frac{d-2}{2}} \sqrt{\frac{2 \pi}{\frac{d-2}{2}}}\left(\frac{d-2}{2 e}\right)^{\frac{d-2}{2}} \\
& =\left(\frac{1}{1-\left(\frac{3}{4}\right)^{\frac{1}{2}}}\right)\left(\frac{3}{4}\right)^{\frac{K}{2}}+12\left[\frac{4.07}{2 e}\right]^{\frac{d-2}{2}}
\end{aligned}
$$

Lemma 33 Let μ be a probability measure on $[-1,1]$ and let p_{0}, p_{1}, \ldots be the corresponding orthogonal polynomials. Then, for every $f \in \operatorname{span}\left\{p_{0}, \ldots, p_{K-1}\right\}$ we have

$$
\|f\|_{2} \leq \sqrt{K}\|f\|_{1} \cdot \max _{0 \leq i \leq K-1}\left\|p_{i}\right\|_{\infty}
$$

Here, all L^{p} norms are w.r.t. μ.
Proof Write $f=\sum_{i=0}^{K-1} \alpha_{i} p_{i}$ and denote $M=\max _{0 \leq i \leq K-1}\left\|p_{i}\right\|_{\infty}$. We have

$$
\begin{aligned}
\|f\|_{2}^{2} & \leq\|f\|_{1} \cdot\|f\|_{\infty} \\
& \leq\|f\|_{1} \cdot M \sum_{n=0}^{K-1}\left|\alpha_{k}\right| \\
& \leq\|f\|_{1} \cdot M \sqrt{\sum_{n=0}^{K-1} \alpha_{k}^{2}} \cdot \sqrt{K} \\
& =\|f\|_{1} \cdot M \cdot\|f\|_{2} \sqrt{K}
\end{aligned}
$$

Lemma 34 Let $d \geq 5$ and let $f:[-1,1] \rightarrow \mathbb{R}$ be a continuous function whose expansion in the basis of d-dimensional Legendre polynomials is

$$
f=\sum_{n=0}^{\infty} \alpha_{n} P_{d, n}
$$

Denote $C=\sup _{n}\left|\alpha_{n}\right|$. Let μ be the probability measure on $[-1,1]$ whose density function is

$$
w(x)= \begin{cases}0 & |x|>\frac{1}{8} \\ \frac{8}{\pi \sqrt{1-(8 x)^{2}}} & |x| \leq \frac{1}{8}\end{cases}
$$

Then, for every $K \in \mathbb{N}, \frac{1}{8}>\gamma>0$,

$$
|f(\gamma)-f(-\gamma)| \leq 32 \gamma K^{3.5} \cdot\|f\|_{1, \mu}+\left(32 \gamma K^{3.5}+2\right) \cdot C \cdot E \cdot\left(r^{K}+s^{d}\right)
$$

Here, E, r and s are the constants from Lemma 32.
Proof Let $\bar{f}=\sum_{n=0}^{K-1} \alpha_{n} P_{d, n}$. We have $\|\bar{f}\|_{1, \mu} \leq\|f\|_{1, \mu}+\|\bar{f}-f\|_{\infty, \mu}$. Define $g:[-1,1] \rightarrow \mathbb{R}$ by $g(x)=\bar{f}\left(\frac{x}{8}\right)$ and denote by $d \lambda=\frac{d x}{\pi \sqrt{1-x^{2}}}$. Write,

$$
g=\sum_{n=0}^{K-1} \beta_{n} T_{n}
$$

Where T_{n} are the Chebyshev polynomials. By Lemma 33 it holds that, for every $0 \leq n \leq$ $K-1$,

$$
\left|\beta_{n}\right| \leq \sqrt{2}\|g\|_{2, \lambda} \leq 2 \sqrt{K}\|g\|_{1, \lambda}=2 \sqrt{K}\|\bar{f}\|_{1, \mu}
$$

Now,

$$
g^{\prime}=\sum_{n=1}^{K-1} \beta_{k} n U_{n-1}
$$

Where U_{n} are the Chebyshev polynomials of the second kind. Thus,

$$
\left\|g^{\prime}\right\|_{\infty, \lambda} \leq \sum_{n=1}^{K-1}\left|\beta_{k}\right| \cdot n \cdot\left\|U_{n-1}\right\|_{\infty, \lambda}=\sum_{n=1}^{K-1}\left|\beta_{k}\right| \cdot n^{2} \leq 2 \sqrt{K}\|\bar{f}\|_{1, \mu} \cdot K^{3}
$$

Finally, by Lemma 32,

$$
\begin{aligned}
|f(\gamma)-f(-\gamma)| & \leq|g(8 \gamma)-g(-8 \gamma)|+2\|f-\bar{f}\|_{\infty, \mu} \\
& \leq 32 \gamma K^{3.5} \cdot\|\bar{f}\|_{1, \mu}+2\|f-\bar{f}\|_{\infty, \mu} \\
& \leq 32 \gamma K^{3.5} \cdot\left(\|f\|_{1, \mu}+\|f-\bar{f}\|_{\infty, \mu}\right)+2\|f-\bar{f}\|_{\infty, \mu} \\
& \leq 32 \gamma K^{3.5} \cdot\|f\|_{1, \mu}+\left(32 \gamma K^{3.5}+2\right) \cdot\|f-\bar{f}\|_{\infty, \mu} \\
& \leq 32 \gamma K^{3.5} \cdot\|f\|_{1, \mu}+\left(32 \gamma K^{3.5}+2\right) \cdot E \cdot C \cdot\left(r^{K}+s^{d}\right)
\end{aligned}
$$

For $e \in S^{d-1}$ we define the group $\mathbb{O}(e):=\{A \in \mathbb{O}(d): A e=e\}$. If H_{k} be a symmetric RKHS and $e \in S^{d-1}$ we define Symmetrization around e. This is the operator $\mathcal{P}_{e}: H_{k} \rightarrow H_{k}$ which is the projection on the subspace $\left\{f \in H_{k}: \forall A \in \mathbb{O}(e), f \circ A=f\right\}$. It is not hard to see that $\left(\mathcal{P}_{e} f\right)(x)=\int_{\left\{x^{\prime}:\left\langle x^{\prime}, e\right\rangle=\langle x, e\rangle\right\}} f\left(x^{\prime}\right) d x^{\prime}=\int_{\mathbb{O}(e)} f \circ A(x) d A$. Since $\mathcal{P}_{e} f$ is a convex combination of the functions $\{f \circ A\}_{A \in \mathbb{O}(e)}$, it follows that if $\mathcal{R}: H_{k} \rightarrow \mathbb{R}$ is a convex functional then $\mathcal{R}\left(\mathcal{P}_{e} f\right) \leq \int_{\mathbb{O}(e)} \mathcal{R}(f \circ A) d A$.

Lemma 35 (main) There exists a probability measure μ on $[-1,1]$ with the following properties. For every continuous and normalized kernel $k: S^{d-1} \times S^{d-1} \rightarrow \mathbb{R}$ and $C>0$, there exists $e \in S^{d-1}$ such that, for every $f \in H_{k}$ with $\|f\|_{H_{k}} \leq C, K \in \mathbb{N}$ and $0<\gamma<\frac{1}{8}$,

$$
\begin{aligned}
\left|\int_{\{x:\langle x, e\rangle=\gamma\}} f-\int_{\{x:\langle x, e\rangle=-\gamma\}} f\right| & \leq 32 \gamma K^{3.5} \cdot\|f\|_{1, \mu_{e}}+\left(32 \gamma K^{3.5}+2\right) \cdot E \cdot C \cdot\left(r^{K}+s^{d}\right) \\
& \leq 32 \gamma K^{3.5} \cdot\|f\|_{1, \mu_{e}}+10 \cdot E \cdot K^{3.5} \cdot C \cdot\left(r^{K}+s^{d}\right)
\end{aligned}
$$

The integrals are w.r.t. the uniform probability over $\{x:\langle x, e\rangle=\gamma\}$ and $\{x:\langle x, e\rangle=-\gamma\}$ and E, r, s are the constants from Lemma 32.

Proof Suppose first that k is symmetric. Let μ be the distribution over $[-1,1]$ whose density function is

$$
w(x)= \begin{cases}0 & |x|>\frac{1}{8} \\ \frac{8}{\pi \sqrt{1-(8 x)^{2}}} & |x| \leq \frac{1}{8}\end{cases}
$$

We can assume that f is $\mathbb{O}(e)$-invariant. Otherwise, we can replace f with $\mathcal{P}_{e} f$, which does not change the l.h.s. and does not increase the r.h.s. This assumption yields (see (Atkinson and Han, 2012), pages 17-18)

$$
f(x)=\sum_{n=0}^{\infty} \alpha_{n} P_{d, n}(\langle e, x\rangle)
$$

The $L^{2}\left(S^{d-1}\right)$-norm of the map $x \mapsto P_{d, n}(\langle x, e\rangle)$ is $\frac{\left|S^{d-1}\right|}{N_{d, n}}$ (e.g. (Atkinson and Han, 2012), page 71). Therefore,

$$
\|f\|_{k}^{2}=\sum_{n \in I} \frac{\left|S^{d-1}\right|}{N_{d, n}} a_{n}^{2} \alpha_{n}^{2}
$$

where $\left\{a_{n}\right\}_{n \in I}$ are the numbers corresponding to H_{k} from Theorem 30. In particular (since also for $n \notin I, \alpha_{n}=0$),

$$
\left|\alpha_{n}\right|^{2} \leq \frac{N_{d, n}}{\left|S^{d-1}\right|} a_{n}^{-2}\|f\|_{k}^{2} \leq\|f\|_{k}^{2}
$$

Write

$$
g(t)=f(t e), t \in[-1,1]
$$

By Lemma 34,

$$
|g(\gamma)-g(-\gamma)| \leq 32 \gamma K^{3.5} \cdot\|f\|_{1, \mu}+\left(32 \gamma K^{3.5}+2\right) \cdot E \cdot C \cdot\left(r^{K}+s^{d}\right)
$$

Finally, $\int_{\{x:\langle x, e\rangle=\gamma\}} f=g(\gamma), \int_{\{x:\langle x, e\rangle=-\gamma\}} f=g(-\gamma)$ since f is $\mathbb{O}(e)$-invariant. The Lemma follows.

We proceed to the general case where k is not necessarily symmetric. Assume by way of contradiction that for every $e \in S^{d-1}$, there exists a function f_{e} such that
$\int_{\{x:\langle x, e\rangle=\gamma\}} f_{e}-\int_{\{x:\langle x, e\rangle=-\gamma\}} f_{e}>32 \gamma K^{3.5} \cdot\left\|f_{e}\right\|_{1, \mu_{e}}+\left(32 \gamma K^{3.5}+2\right) \cdot\left\|f_{e}\right\|_{H_{k}} \cdot C \cdot\left(r^{K}+s^{d}\right)$
For convenience we normalize, so l.h.s. equals 1. Fix a vector $e_{0} \in S^{d-1}$. Define $\Phi \in$ $L^{2}\left(\mathbb{O}(d), H_{k}\right)$ by

$$
\Phi(A)=f_{A e_{0}}
$$

and let $f \in H_{k_{s}}$ be the function

$$
f(x)=\int_{\mathbb{O}(d)} \Phi(A)(A x) d A=\int_{\mathbb{O}(d)} f_{A e_{0}}(A x) d A
$$

Now, it holds that

$$
\begin{aligned}
\int_{\left\{x:\left\langle x, e_{0}\right\rangle=\gamma\right\}} f-\int_{\left\{x:\left\langle x, e_{0}\right\rangle=-\gamma\right\}} f & =\int_{\left\{x:\left\langle x, e_{0}\right\rangle=\gamma\right\}} \int_{\mathbb{O}(d)} f_{A e_{0}}(A x) d A d x-\int_{\left\{x:\left\langle x, e_{0}\right\rangle=-\gamma\right\}} \int_{\mathbb{O}(d)} f_{A e_{0}}(A x) d A d x \\
& =\int_{\mathbb{O}(d)} \int_{\left\{x:\left\langle x, e_{0}\right\rangle=\gamma\right\}} f_{A e_{0}}(A x) d x-\int_{\left\{x:\left\langle x, e_{0}\right\rangle=-\gamma\right\}} f_{A e_{0}}(A x) d x d A \\
& =\int_{\mathbb{O}(d)} \int_{\left\{x:\left\langle x, A e_{0}\right\rangle=\gamma\right\}} f_{A e_{0}}(x) d x-\int_{\left\{x:\left\langle x, A e_{0}\right\rangle=-\gamma\right\}} f_{A e_{0}}(x) d x d A \\
& =1
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\|f\|_{1, \mu_{e}} & =\int_{S^{d-1}}\left|\int_{\mathbb{O}(d)} f_{A e_{0}}(A x) d A\right| d \mu_{e_{0}}(x) \\
& \leq \int_{\mathbb{O}(d)} \int_{S^{d-1}}\left|f_{A e_{0}}(A x)\right| d \mu_{e_{0}}(x) d A \\
& \leq \int_{\mathbb{O}(d)} \int_{S^{d-1}}\left|f_{A e_{0}}(x)\right| d \mu_{A e_{0}}(x) d A \\
& =\int_{\mathbb{O}(d)}\left\|f_{A e_{0}}\right\|_{1, \mu_{A e_{0}}} d A
\end{aligned}
$$

Moreover, by Theorem 31,

$$
\|f\|_{H_{k_{s}}}^{2} \leq\|\Phi\|_{L^{2}\left(\mathbb{O}(d), H_{k}\right)}^{2}=\int_{\mathbb{O}(d)}\left\|f_{A e_{0}}\right\|_{H_{k}}^{2} d A \leq C^{2}
$$

Since the Lemma is already proved for symmetric kernels, it follows that

$$
\begin{aligned}
1 & \leq 32 \gamma K^{3.5} \cdot\|f\|_{1, \mu_{e_{0}}}+\left(32 \gamma K^{3.5}+2\right) \cdot E \cdot C \cdot\left(r^{K}+s^{d}\right) \\
& \leq 32 \gamma K^{3.5} \cdot \int_{\mathbb{O}(d)}\left\|f_{A e_{0}}\right\|_{1, \mu_{A e_{0}}} d A+\left(32 \gamma K^{3.5}+2\right) \cdot E \cdot C \cdot\left(r^{K}+s^{d}\right) \\
& =\int_{\mathbb{O}(d)} 32 \gamma K^{3.5} \cdot\left\|f_{A e_{0}}\right\|_{1, \mu_{A e_{0}}}+\left(32 \gamma K^{3.5}+2\right) \cdot E \cdot C \cdot\left(r^{K}+s^{d}\right) d A
\end{aligned}
$$

Thus, for some $A \in \mathbb{O}(d)$

$$
1 \leq 32 \gamma K^{3.5} \cdot\left\|f_{A e_{0}}\right\|_{1, \mu_{A e_{0}}}+\left(32 \gamma K^{3.5}+2\right) \cdot E \cdot C \cdot\left(r^{K}+s^{d}\right)
$$

Contradicting Equation (10).

B.5. Proofs of the main Theorems

We are now ready to prove Theorems 6 and 11. We only consider distributions that supported on the unit sphere, and we can therefore assume that the problem is formulated
it terms of the unit sphere and not the unit ball. Also, we reformulate program (5) as follows: Given $l: \mathbb{R} \rightarrow \mathbb{R}$ a convex surrogate, a constant $C>0$ and a continuous kernel $k: S^{\infty} \times S^{\infty} \rightarrow \mathbb{R}$ with $\sup _{x \in S^{\infty}} k(x, x) \leq 1$, we want to solve

$$
\begin{array}{cl}
\min & \operatorname{Err}_{\mathcal{D}, l}(f+b) \\
\text { s.t. } & f \in H_{k}, b \in \mathbb{R} \tag{11}\\
& \|f\|_{H_{k}} \leq C
\end{array}
$$

We can assume that $\partial_{+} l(0)<0$, for otherwise the approximation ratio is ∞. To see that, let the distribution \mathcal{D} be concentrated on a single point on the sphere and always return the label 1. Of course, $\operatorname{Err}_{\gamma}(\mathcal{D})=0$. However, if $\partial_{+} l(0) \geq 0$, it is bot hard to see that if f, b is the solution of program (11), then $f(x)+b \leq 0$, so that $\operatorname{Err}_{0-1}(f+b)=1$.

Lemma 36 Let l be a surrogate loss, μ a probability measure on S^{d-1} and $f \in C\left(S^{d-1}\right)$. Let $\bar{\mu}$ be the probability measure on $S^{d-1} \times\{ \pm 1\}$ which is the product measure of μ and the uniform distribution on $\{ \pm 1\}$. Then

$$
\|f\|_{1, \mu} \leq \frac{2}{\left|\partial_{+} l(0)\right|} \operatorname{Err}_{\bar{\mu}, l}(f)
$$

Proof By Jansen's inequaliy, it holds that

$$
\begin{aligned}
\operatorname{Err}_{\bar{\mu}, l}(f) & =\mathbb{E}_{(x, y) \sim \bar{\mu}} l(y \cdot f(x)) \\
& =\frac{1}{2} \mathbb{E}_{(x, y) \sim \bar{\mu}} l(f(x))+l(-f(x)) \\
& \geq \frac{1}{2} \mathbb{E}_{(x, y) \sim \bar{\mu}} l(-|f(x)|) \\
& \geq \frac{1}{2} l\left(-\mathbb{E}_{(x, y) \sim \bar{\mu}}|f(x)|\right)
\end{aligned}
$$

It follows that $l\left(-\|f\|_{1, \mu}\right) \leq 2 \operatorname{Err}_{\bar{\mu}, l}(f)$. By the convexity of l, it follows that for every $x \in \mathbb{R}, l(x) \geq l(0)+x \cdot \partial_{+} l(0)=l(0)-x \cdot\left|\partial_{+} l(0)\right| \geq-x \cdot\left|\partial_{+} l(0)\right|$. Thus,

$$
\|f\|_{1, \mu} \leq \frac{2}{\left|\partial_{+} l(0)\right|} \operatorname{Err}_{\bar{\mu}, l}(f)
$$

B.5.1. TheOrems 6 AND 11

We will need Levy's measure concentration Lemma (e.g., (Milman and Schechtman, 2002)). Let $f: X \rightarrow Y$ be an absolutely continuous map between metric spaces. We define its modulus of continuity as

$$
\forall \epsilon>0, \omega_{f}(\epsilon)=\sup \{d(f(x), f(y)): x, y \in X, d(x, y) \leq \epsilon\}
$$

Theorem 37 (Levy's Lemma) There exists a constant $\eta>0$ such that for every continuous function $f: S^{d-1} \rightarrow \mathbb{R}$,

$$
\operatorname{Pr}\left(|f-\mathbb{E} f|>\omega_{f}(\epsilon)\right) \leq \exp \left(-\eta d \epsilon^{2}\right)
$$

Here, both probability and expectation are w.r.t. the uniform distribution.

We note that $\omega_{f \circ g} \leq \omega_{f} \cdot \omega_{g}$ and that $\omega_{\Lambda_{v}}(\epsilon)=\|v\| \cdot \epsilon$. Thus, if $\psi: S^{\infty} \rightarrow H_{1}$ is an absolutely continuous embedding such that $k(x, y)=\langle\psi(x), \psi(y)\rangle_{H_{1}}$, then for every $v \in H_{1}$, it holds that $\omega_{\Lambda_{v, 0} \circ \psi} \leq\|v\|_{H_{1}} \cdot \omega_{\psi}$. Suppose now that $f \in H_{k}$ with $\|f\|_{H_{k}} \leq C$. Let $v \in H_{1}$ such that $f=\Lambda_{v, 0} \circ \psi$ and $\|v\|_{H_{1}}=\|f\|_{H_{k}} \leq C$. It follows from Levi's Lemma that

$$
\begin{equation*}
\operatorname{Pr}\left(|f-\mathbb{E} f|>C \cdot \omega_{\psi}(\epsilon)\right) \leq \operatorname{Pr}\left(|f-\mathbb{E} f|>\omega_{f}(\epsilon)\right) \leq \exp \left(-\eta d \epsilon^{2}\right) \tag{12}
\end{equation*}
$$

Again, when both probability and expectation are w.r.t. the uniform distribution over S^{d-1}. Proof (of Theorems 6 and 11) Let $\beta>\alpha>0$ such that $l(\alpha)>l(\beta)$. Choose $0<\theta<1$ large enough so that $(1-\theta) l(-\beta)+\theta l(\beta)<\theta l(\alpha)$. Define probability measures μ^{1}, μ^{2}, μ over $[-1,1] \times\{ \pm 1\}$ as follows.

$$
\mu^{1}((-\gamma,-1))=1-\theta, \mu^{1}((\gamma, 1))=\theta
$$

The measure μ^{2} is the product of uniform $\{ \pm 1\}$ and the measure on $[-1,1]$ whose density function is

$$
w(x)= \begin{cases}0 & |x|>\frac{1}{8} \\ \frac{8}{\pi \sqrt{1-(8 x)^{2}}} & |x| \leq \frac{1}{8}\end{cases}
$$

Finally, $\mu=(1-\lambda) \mu^{1}+\lambda \mu^{2}$ for $\lambda>0$, which will be chosen later.
By lemma 28 (see remark 29), there is a continuous normalized kernel k^{\prime} such that w.p. $\geq 1-2 e \exp \left(-\frac{1}{\gamma}\right)$ the function returned by the algorithm is of the form $f+b$ with $\|f\|_{H_{k^{\prime}}} \leq c \cdot m_{A}^{3}(\gamma)$ for some $c>0$ (depending only on l). Let $e \in S^{d-1}$ be the vector from Lemma 35 , corresponding to the kernel k^{\prime}. The distribution \mathcal{D} is the pullback of μ w.r.t. e. By considering the affine functional $\Lambda_{e, 0}$, it holds that $\operatorname{Err}_{\gamma}(\mathcal{D}) \leq \lambda$.

Let g be the solution returned by the algorithm. With probability $\geq 1-\exp (-1 / \gamma)$, $g=f+b$, where f, b is a solution to program (11) with $C=C_{A}(\gamma)$ and with an additive error $\leq \sqrt{\gamma}$. Since the value of the zero solution for program (11) is $l(0)$, it follows that

$$
l(0)+\sqrt{\gamma} \geq \operatorname{Err}_{\mu, l}(g)=(1-\lambda) \operatorname{Err}_{\mu_{e}^{1}, l}(g)+\lambda \operatorname{Err}_{\mu_{e}^{2}, l}(g)
$$

Thus, $\operatorname{Err}_{\mu_{e}^{2}, l}(g) \leq \frac{l(0)+\sqrt{\gamma}}{\lambda} \leq \frac{2 l(0)}{\lambda}$. Combining Lemma 36, Lemma 28, and Lemma 35 is follows that w.p. $\geq 1-(1+2 e) \exp \left(-\frac{1}{\gamma}\right) \geq 1-10 \exp \left(-\frac{1}{\gamma}\right)$, for $m=m_{A}(\gamma)$

$$
\left|\int_{\{x:\langle x, e\rangle=\gamma\}} g-\int_{\{x:\langle x, e\rangle=-\gamma\}} g\right| \leq \frac{128 l(0) \gamma K^{3.5}}{\left|\partial_{+} l(0)\right| \lambda}+10 \cdot c \cdot K^{3.5} \cdot E \cdot m^{3} \cdot\left(r^{K}+s^{d}\right)
$$

By choosing $K=\Theta(\log (m)), \lambda=\Theta\left(\gamma K^{3.5}\right)=\Theta\left(\gamma \log ^{3.5}(m)\right)$ and $d=\Theta(\log (m))$, we can make the last bound $\leq \frac{\alpha}{2}$. We claim that $\int_{\{x:\langle x, e\rangle=-\gamma\}} g>\frac{\alpha}{2}$. To see that, note that otherwise $\int_{\{x:\langle x, e\rangle=\gamma\}} g \leq \alpha$ thus,

$$
\begin{aligned}
\mathbb{E}_{(x, y) \sim \mathcal{D}} l((f(x)+b) y) & =\mathbb{E}_{(x, y) \sim \mathcal{D}} l(g(x) y) \\
& \geq \theta(1-\lambda) \cdot \int_{\{x:\langle x, e\rangle=\gamma\}} l(g(x)) d x \\
& \geq \theta(1-\lambda) \cdot l\left(\int_{\{x:\langle x, e\rangle=\gamma\}} g(x) d x\right) \\
& \geq \theta \cdot l(\alpha) \cdot(1-\lambda)=\theta \cdot l(\alpha)+o(1)
\end{aligned}
$$

This contradict the optimality of f, b, as for $f^{\prime}=0, b^{\prime}=\beta$ it holds that

$$
\begin{aligned}
\mathbb{E}_{(x, y) \sim \mathcal{D}} l\left(\left(f^{\prime}(x)+b^{\prime}\right) y\right) & \leq \lambda l(-\beta)+(1-\lambda) \cdot(1-\theta) l(-\beta)+\theta \cdot l(\beta)) \\
& =(1-\theta) l(-\beta)+\theta \cdot l(\beta)+o(1)
\end{aligned}
$$

We can conclude now the proof of Theorem 6. By choosing d large enough and using Equation (12), we can guarantee that $\left.g\right|_{\{x:\langle x, e\rangle=-\gamma\}}$ is very concentrated around its expectation. In particular, if (x, y) are sampled according to \mathcal{D}, then w.p. $>0.5 \cdot(1-\theta) \cdot(1-\lambda)=\Omega(1)$, it holds that $y g(x)<0$. Thus, $\operatorname{Err}_{\mathcal{D}, 0-1}(g)=\Omega(1)$, while $\operatorname{Err}_{\gamma}(\mathcal{D}) \leq \lambda=O(\gamma \operatorname{poly}(\log (m)))$

To conclude the proof of Theorem 11, we note that we can assume that g is $\mathbb{O}(e)$ invariant. Otherwise, we can replace it with $\mathcal{P}_{e} f+b$. This does not increase $\|f\|_{H_{k}}$ nor $\operatorname{Err}_{\mathcal{D}, l}(f+b)$, thus, the solution $\mathcal{P}_{e} f+b$ is optimal as well. Now, it follows that $\left.g\right|_{\{x:\langle x, e\rangle=-\gamma\}}$ is constant and we finish as before.

B.5.2. Theorem 10

Let L be the Lipschitz constant of l. Let $\beta>\alpha>0$ such that $l(\alpha)>l(\beta)$. Choose $0<\theta<1$ large enough so that $(1-\theta) l(-\beta)+\theta l(\beta)<\theta l(\alpha)$. First, define probability measures $\mu^{1}, \mu^{2}, \mu^{3}$ and μ over $[-1,1] \times\{ \pm 1\}$ as follows.

$$
\begin{gathered}
\mu^{1}(\gamma, 1)=\theta, \mu^{1}(-\gamma,-1)=1-\theta \\
\mu^{2}(-\gamma, 1)=1
\end{gathered}
$$

The measure μ^{3} is the product of uniform $\{ \pm 1\}$ and the measure over $[-1,1]$ whose density function is

$$
w(x)= \begin{cases}0 & |x|>\frac{1}{8} \\ \frac{8}{\pi \sqrt{1-(8 x)^{2}}} & |x| \leq \frac{1}{8}\end{cases}
$$

Finally, $\mu=\left(1-\lambda_{1}-\lambda_{2}\right) \mu^{1}+\lambda_{2} \mu^{2}+\lambda_{3} \mu^{3}$ with $\lambda_{2}, \lambda_{3}>0$ to be chosen later.
By lemma 28 (see remark 29), there is a continuous normalized kernel k^{\prime} such that w.p. $\geq 1-2 e \exp \left(-\frac{1}{\gamma}\right)$ the function returned by the algorithm is of the form $f+b$ with $\|f\|_{H_{k^{\prime}}} \leq c \cdot m_{A}^{3}(\gamma)$ for some $c>0$ (depending only on l). Now, let $e \in S^{d-1}$ be the vector from Lemma 35, corresponding to the kernel k^{\prime}. The distribution \mathcal{D} is the pullback of μ w.r.t. e. By considering the affine functional $\Lambda_{e, 0}$, it holds that $\operatorname{Err}_{\gamma}(\mathcal{D}) \leq \lambda_{3}+\lambda_{2}$.

Let g be the solution returned by the algorithm. With probability $\geq 1-\exp (-1 / \gamma)$, $g=f+b$, where f, b is a solution to program (11) with $C=C_{A}(\gamma)$ and with an additive error $\leq \sqrt{\gamma}$. As in the proof of Theorem 6 , it holds that, w.p. $\geq 1-10 \exp \left(-\frac{1}{\gamma}\right)$ for $m=m_{A}(\gamma)$,

$$
\begin{equation*}
\left|\int_{\{x:\langle x, e\rangle=\gamma\}} g-\int_{\{x:\langle x, e\rangle=-\gamma\}} g\right| \leq \frac{128 l(0) \gamma K^{3.5}}{\left|\partial_{+} l(0)\right| \lambda_{3}}+10 \cdot c \cdot K^{3.5} \cdot E \cdot m^{3} \cdot\left(r^{K}+s^{d}\right) \tag{13}
\end{equation*}
$$

Denote the last bound by ϵ. It holds that

$$
\begin{equation*}
\operatorname{Err}_{\mathcal{D}, l}(g)=\left(1-\lambda_{2}-\lambda_{3}\right) \mathbb{E}_{\mu_{e}^{1}} l(y g(x))+\lambda_{2} \mathbb{E}_{\mu_{e}^{2}} l(y g(x))+\lambda_{3} \mathbb{E}_{\mu_{e}^{3}}^{3} l(y g(x)) \tag{14}
\end{equation*}
$$

Now, denote $\delta=\int_{\{x:\langle x, e\rangle=-\gamma\}} g$. It holds that

$$
\begin{align*}
\mathbb{E}_{\mu_{e} l} l(y g(x)) & =\theta \int_{\{x:\langle x, e\rangle=\gamma\}} l(g(x))+(1-\theta) \int_{\{x:\langle x, e\rangle=-\gamma\}} l(-g(x)) \\
& \geq \theta \cdot l\left(\int_{\{x:\langle x, e\rangle=\gamma\}} g\right)+(1-\theta) \cdot l\left(-\int_{\{x:\langle x, e\rangle=-\gamma\}} g\right) \tag{15}\\
& \geq \theta \cdot l(\delta)+(1-\theta) \cdot l(-\delta)-L \epsilon
\end{align*}
$$

Thus,

$$
\operatorname{Err}_{\mathcal{D}, l}(g) \geq\left(1-\lambda_{2}-\lambda_{3}\right)(\theta \cdot l(\delta)+(1-\theta) \cdot l(-\delta))-L \epsilon+\lambda_{2} \mathbb{E}_{\mu_{e}^{2}} l(y g(x))
$$

However, by considering the constant solution δ, it follows that

$$
\begin{aligned}
\operatorname{Err}_{\mathcal{D}, l}(g) & \leq\left(1-\lambda_{2}-\lambda_{3}\right)(\theta l(\delta)+(1-\theta) \cdot l(-\delta))+\lambda_{2} \cdot l(\delta)+\lambda_{3} \frac{1}{2}(l(\delta)+l(-\delta))+\sqrt{\gamma} \\
& \leq\left(1-\lambda_{2}-\lambda_{3}\right)(\theta \cdot l(\delta)+(1-\theta) \cdot l(-\delta))+\lambda_{2} \cdot l(\delta)+\lambda_{3} \cdot l(-|\delta|)+\sqrt{\gamma}
\end{aligned}
$$

Thus,

$$
\begin{align*}
\operatorname{Err}_{\mu_{e}^{2}, l}(g) & \leq \frac{L \epsilon}{\lambda_{2}}+l(\delta)+\frac{\lambda_{3}}{\lambda_{2}} l(-|\delta|)+\frac{\sqrt{\gamma}}{\lambda_{2}} \tag{16}\\
& =\frac{L \cdot l(0) 128 \gamma K^{3.5}}{\left|\partial_{+} l(0)\right| \lambda_{2} \lambda_{3}}+\frac{10 \cdot c \cdot L \cdot K^{3.5}}{\lambda_{2}} \cdot E \cdot m^{3} \cdot\left(r^{K}+s^{d}\right)+l(\delta)+\frac{\lambda_{3}}{\lambda_{2}} l(-|\delta|)+\frac{\sqrt{\gamma}}{\lambda_{2}}
\end{align*}
$$

Now, relying on the assumption that $\gamma \cdot \log ^{8}(m)=o(1)$, it is possible to choose $\lambda_{2}=$ $\Theta\left(\sqrt{\gamma} K^{4}\right)=\Theta\left(\sqrt{\gamma} \log ^{4}(m)\right), \lambda_{3}=\sqrt{\gamma}, K=\Theta(\log (m / \gamma))$, and $d=\Theta(\log (m / \gamma))$ such that the bound in Equation (13), $\frac{L \cdot l(0) 128 \gamma K^{3.5}}{\left|\partial_{+} l(0)\right| \lambda_{2} \lambda_{3}}+\frac{10 \cdot \cdot \cdot K^{3.5}}{\lambda_{2}} \cdot E \cdot m^{3} \cdot\left(r^{K}+s^{d}\right), \lambda_{2}, \lambda_{3}$ and $\frac{\lambda_{3}}{\lambda_{2}}$ are all $o(1)$.

Since the bound in Equation (13) is $o(1)$, it follows, as in the proof of Theorem 6, that $l(\delta) \leq l\left(\frac{\alpha}{2}\right)$ and consequently, $0<\frac{\alpha}{2} \leq \delta$. From equations (14) and (15), it follows that

$$
l(-|\delta|)=l(-\delta) \leq \frac{L \epsilon+\frac{\operatorname{Err}_{\mathcal{D}, l}(g)}{1-\lambda_{2}-\lambda_{3}}}{1-\theta} \leq \frac{L \epsilon+\frac{2 l(0)}{1-\lambda_{2}-\lambda_{3}}}{1-\theta}=O(1)
$$

It now follows from Equation (16) that

$$
\mathbb{E}_{(x, y) \sim \mu_{2}} l(g(x) y)=\operatorname{Err}_{\mu_{e}^{2}, l}(g) \leq l\left(\frac{\alpha}{2}\right)+o(1)
$$

By Markov's inequality,

$$
\operatorname{Pr}_{(x, y) \sim \mu_{2}}(l(g(x) y) \geq l(0)) \leq \frac{l\left(\frac{\alpha}{2}\right)+o(1)}{l(0)}
$$

Thus, if (x, y) are chosen according to μ_{e}^{2}, then w.p. $>\frac{l(0)-l\left(\frac{\alpha}{2}\right)}{l(0)}-o(1), l(g(x))<l(0) \Rightarrow$ $g(x)>0$. Since the marginal distributions of μ_{e}^{1} and μ_{e}^{2} are the same, it follows that, if (x, y) are chosen according to \mathcal{D}, then w.p. $>\left(\frac{l(0)-l\left(\frac{\alpha}{2}\right)}{l(0)}-o(1)\right) \cdot\left(1-\lambda_{2}-\lambda_{3}\right) \cdot(1-\theta)=\Omega(1)$, $y g(x)<0$. Thus, $\operatorname{Err}_{\mathcal{D}, 0-1}(g)=\Omega(1)$ while $\operatorname{Err}_{\gamma}(\mathcal{D}) \leq \lambda_{2}+\lambda_{3}=O(\sqrt{\gamma} \operatorname{poly}(\log (m)))$.

B.5.3. The integrality gap - Theorem 12

Our first step is a reduction to the hinge loss. Let $a=\partial_{+} l(0)$. Define

$$
l^{*}(x)= \begin{cases}a x+1 & x \leq \frac{1}{-a} \\ 0 & o / w\end{cases}
$$

it is not hard to see that l^{*} is a convex surrogate satisfying $\forall x, l^{*}(x) \leq l(x)$ and $\partial_{+} l^{*}(0)=$ $\partial_{+} l(0)$. Thus, if we substitute l with l^{*}, we just decrease the integrality gap, hence can assume that $l=l^{*}$. Now, we note that if we consider program (11) with $l=l^{*}$ the inegrality gap of coincides with what we get by replacing C with $|a| \cdot C$ and l^{*} with the hinge loss. To see that, note that for every $f \in H_{k}, b \in \mathbb{R}, \operatorname{Err}_{\mathcal{D}, l^{*}}(f+b)=\operatorname{Err}_{\mathcal{D}, \text { hinge }}(|a| \cdot f+|a| \cdot b)$, thus, minimizing $\operatorname{Err}_{\mathcal{D}, l^{*}}$ over all functions $f \in H_{k}$ that satisfy $\|f\|_{H_{k}} \leq C$ is equivalent to minimizing $\operatorname{Err}_{\mathcal{D}, \text { hinge }}$ over all functions $f \in H_{k}$ that satisfy $\|f\|_{H_{k}} \leq|a| \cdot C$. Thus, it is enough to prove the Theorem for $l=l_{\text {hinge }}$.

Next, we show that we can assume that the embedding is symmetric (i.e., correspond to a symmetric kernel). As the integrality gap is at least as large as the approximation ratio, using Theorem 11 this will complete our argument. (The reduction to the hinge loss yields bounds with universal constants in the asymptotic terms).

Let $\gamma>0$ and let \mathcal{D} be a distribution on $S^{d-1} \times\{ \pm 1\}$. It is enough to find (a possibly different) distribution \mathcal{D}_{1} with the same γ-margin error as \mathcal{D}, for which the optimum of program (11) (with $l=l_{\text {hinge }}$) is not smaller than the optimum of the program

$$
\begin{array}{cl}
\text { min } & \operatorname{Err}_{\mathcal{D}, \text { hinge }}(f+b) \\
\text { s.t. } & f \in H_{k_{s}}, b \in \mathbb{R} \tag{17}\\
& \|f\|_{H_{k_{s}}} \leq C
\end{array}
$$

Denote the optimal value of program (17) by α and assume, towards contradiction, that whenever $\operatorname{Err}_{\gamma}\left(\mathcal{D}_{1}\right)=\operatorname{Err}_{\gamma}(\mathcal{D})$, the optimum of program (11) is strictly less then α.

For every $A \in \mathbb{O}(d)$, let \mathcal{D}_{A}, be the distribution of the r.v. $(A x, y) \in S^{d-1} \times\{ \pm 1\}$, where $(x, y) \sim \mathcal{D}$. Since clearly $\operatorname{Err}_{\gamma}\left(\mathcal{D}_{A}\right)=\operatorname{Err}_{\gamma}(\mathcal{D})$, there exist $f_{A} \in H_{k}$ and $b_{A} \in \mathbb{R}$ such that $\left\|f_{A}\right\|_{H_{k}} \leq C$ and $\operatorname{Err}_{\mathcal{D}_{A}, \text { hinge }}\left(g_{A}\right)<\alpha$, where $g_{A}:=f_{A}+b_{A}$. Define $f \in H_{k_{s}}$ by $f(x)=\int_{\mathbb{O}(d)} f_{A}(A x) d A$ and let $b=\int_{\mathbb{O}(d)} b_{A} d A$ and $g=f+b$. By Theorem 31, $\|f\|_{H_{k_{s}}} \leq C$. Finally, for $l=l_{\text {hinge }}$,

$$
\begin{aligned}
\operatorname{Err}_{\mathcal{D}, \text { hinge }}(g) & =\mathbb{E}_{(x, y) \sim \mathcal{D}} l(y g(x)) \\
& =\mathbb{E}_{(x, y) \sim \mathcal{D}} l\left(y \mathbb{E}_{A \sim \mathbb{O}(d)} g_{A}(A x)\right) \\
& \leq \mathbb{E}_{(x, y) \sim \mathcal{D}} \mathbb{E}_{A \sim \mathbb{O}(d)} l\left(y g_{A}(A x)\right) \\
& =\mathbb{E}_{A \sim \mathbb{O}(d)} \mathbb{E}_{(x, y) \sim \mathcal{D}} l\left(y g_{A}(A x)\right) \\
& =\mathbb{E}_{A \sim \mathbb{O}(d)} \mathbb{E}_{(x, y) \sim \mathcal{D}_{A}} l\left(y g_{A}(x)\right)<\alpha
\end{aligned}
$$

Contrary to the assumption that α is the optimum of program (17).

B.5.4. Finite dimension - Theorems 7 and 13

Let $V \subseteq C\left(S^{d-1}\right)$ be the linear space $\left\{\Lambda_{v, b} \circ \psi: v \in \mathbb{R}^{m}, b \in \mathbb{R}\right\}$ and denote $\bar{W}=\left\{\Lambda_{v, b} \circ \psi\right.$: $v \in W, b \in \mathbb{R}\}$. We note that $\operatorname{dim}(V) \leq m+1$. Instead of program (4) we consider the
equivalent formulation

$$
\begin{array}{cl}
\min & \operatorname{Err}_{\mathcal{D}, l}(f) \\
\text { s.t. } & f \in \bar{W} \tag{18}
\end{array}
$$

The following lemma is very similar to lemma 25 , but with better dependency on $m\left(m^{1.5}\right.$ instead of m^{2}).

Lemma 38 Let l be a convex surrogate and let $V \subset C\left(S^{d-1}\right)$ an m-dimensional vector space. There exists a continuous kernel $k: S^{d-1} \times S^{d-1} \rightarrow \mathbb{R}$ with $\sup _{x \in S^{d-1}} k(x, x) \leq 1$ such that $H_{k}=V$ as a vector space and there exists a probability measure μ_{N} such that

$$
\forall f \in V,\|f\|_{H_{k}} \leq \frac{2 m^{1.5}}{\left|\partial_{+} l(0)\right|} \operatorname{Err}_{\mu_{N}, l}(f)
$$

Proof Let $\psi: S^{d-1} \rightarrow V^{*}$ be the evaluation operator. It maps each $x \in S^{d-1}$ to the linear functional $f \in V \mapsto f(x)$. We claim that

1. ψ is continuous,
2. $\operatorname{aff}\left(\psi\left(S^{d-1}\right) \cup-\psi\left(S^{d-1}\right)\right)=V^{*}$,
3. $V=\left\{v^{* *} \circ \psi: v^{* *} \in V^{* *}\right\}$.

Proof of 1: We need to show that $\psi\left(x_{n}\right) \rightarrow \psi(x)$ if $x_{n} \rightarrow x$. Since V^{*} is finite dimensional, it suffices to show that $\psi\left(x_{n}\right)(f) \rightarrow \psi(x)(f)$ for every $f \in V$, which follows from the continuity of f.
Proof of 2: Note that $0 \in U=\operatorname{aff}\left(\psi\left(S^{d-1}\right) \cup-\psi\left(S^{d-1}\right)\right)$, so U is a linear space. Now, define $T: U^{*} \rightarrow V$ via $T\left(u^{*}\right)=u^{*} \circ \psi$. We claim that T is onto, whence $\operatorname{dim}(U)=\operatorname{dim}\left(U^{*}\right)=$ $\operatorname{dim}(V)=\operatorname{dim}\left(V^{*}\right)$, so that $U=V^{*}$. Indeed, for $f \in V$, let $u_{f}^{*} \in U^{*}$ be the functional $u_{f}^{*}(u)=u(f)$. Now, $T\left(u_{f}^{*}\right)(x)=u_{f}^{*}(\psi(x))=\psi(x)(f)=f(x)$, thus $T\left(u_{f}^{*}\right)=f$.
Proof of 3: From $U=V^{*}$ it follows that $U^{*}=V^{* *}$, so that the mapping $T: V^{* *} \rightarrow V$ is onto, showing that $V=\left\{v^{* *} \circ \psi: v^{* *} \in V^{* *}\right\}$.

Let us apply John's Lemma to $K=\operatorname{conv}\left(\psi\left(S^{d-1}\right) \cup-\psi\left(S^{d-1}\right)\right)$. It yields an inner product on V^{*} with K contained in the unit ball and containing the ball around 0 with radius $\frac{1}{\sqrt{m}}$. Let k be the kernel $k(x, y)=\langle\psi(x), \psi(y)\rangle$. Since ψ is continuous, k is continuous as well. By Theorem B.1.1 and since T is onto, it follows that, as a vector space, $V=H_{k}$. Since K is contained in the unit ball, it follows that $\sup _{x \in S^{d-1}} k(x, x) \leq 1$. It remains to prove the existence of the measure μ_{N}.

Let $e_{1}, \ldots, e_{m} \in V^{*}$ be an orthonormal basis. For every $i \in[m]$, choose $\left(x_{i}^{1}, y_{i}\right), \ldots,\left(x_{i}^{m+1}, y_{i}\right) \in$ $S^{d-1} \times\{ \pm 1\}$ and $\lambda_{i}^{1}, \ldots, \lambda_{i}^{m+1} \geq 0$ such that $\sum_{j=1}^{m+1} \lambda_{i}^{j}=1$ and $\frac{1}{\sqrt{m}} e_{i}=\sum_{j=1}^{m+1} \lambda_{i}^{j} y_{i} \psi\left(x_{i}^{j}\right)$. Define $\mu_{N}\left(x_{i}^{j}, 1\right)=\mu_{N}\left(x_{i}^{j},-1\right)=\frac{\lambda_{i}^{j}}{2 m}$.

Let $f \in V$. By Theorem B.1.1 there exists $v \in V^{*}$ such that $f=\Lambda_{v, 0} \circ \psi$ and $\|f\|_{H_{k}}=$ $\|v\|_{V^{*}}$. It follows that, for $a=\partial_{+} l(0)$,

$$
\begin{aligned}
\operatorname{Err}_{\mu_{N}, l}(f) & =\sum_{i=1}^{m} \sum_{j=1}^{m+1} \frac{\lambda_{i}^{j}}{2 m}\left[l\left(y_{i} f\left(x_{i}^{j}\right)\right)+l\left(-y_{i} f\left(x_{i}^{j}\right)\right)\right] \\
& \geq \frac{1}{2 m} \sum_{i=1}^{m}\left[l\left(\sum_{j=1}^{m+1} \lambda_{i}^{j} y_{i} f\left(x_{i}^{j}\right)\right)+l\left(-\sum_{j=1}^{m+1} \lambda_{i}^{j} y_{i} f\left(x_{i}^{j}\right)\right)\right] \\
& =\frac{1}{2 m} \sum_{i=1}^{m}\left[l\left(\sum_{j=1}^{m+1} \lambda_{i}^{j} y_{i}\left\langle v, \psi\left(x_{i}^{j}\right)\right\rangle\right)+l\left(-\sum_{j=1}^{m+1} \lambda_{i}^{j} y_{i}\left\langle v, \psi\left(x_{i}^{j}\right)\right\rangle\right)\right] \\
& =\frac{1}{2 m} \sum_{i=1}^{m} l\left(\left\langle v, \sum_{j=1}^{m+1} \lambda_{i}^{j} y_{i} \psi\left(x_{i}^{j}\right)\right\rangle\right)+l\left(-\left\langle v, \sum_{j=1}^{m+1} \lambda_{i}^{j} y_{i} \psi\left(x_{i}^{j}\right)\right\rangle\right) \\
& =\frac{1}{2 m} \sum_{i=1}^{m} l\left(\left\langle v, \frac{e_{i}}{\sqrt{m}}\right\rangle\right)+l\left(-\left\langle v, \frac{e_{i}}{\sqrt{m}}\right\rangle\right) \\
& \geq \frac{1}{2 m} \sum_{i=1}^{m} l\left(-\frac{\left|\left\langle v, e_{i}\right\rangle\right|}{\sqrt{m}}\right) \\
& \geq \frac{|a|}{2 m^{1.5}} \sum_{i=1}^{m}\left|\left\langle v, e_{i}\right\rangle\right| \\
& \geq \frac{|a|}{2 m^{1.5}}\|v\|_{V^{*}}=\frac{|a|}{2 m^{1.5}}\|f\|_{H_{k}}
\end{aligned}
$$

Proof (of Theorem 7) Let L be the Lipschitz constant of l. Let $\beta>\alpha>0$ such that $l(\alpha)>l(\beta)$. Choose $0<\theta<1$ large enough so that $(1-\theta) l(-\beta)+\theta l(\beta)<\theta l(\alpha)$. First, define probability measures $\mu^{1}, \mu^{2}, \mu^{3}$ and μ over $[-1,1] \times\{ \pm 1\}$ as follows.

$$
\begin{gathered}
\mu^{1}(\gamma, 1)=\theta, \mu^{1}(-\gamma,-1)=1-\theta \\
\mu^{2}(-\gamma, 1)=1
\end{gathered}
$$

The measure μ^{3} is the product of uniform $\{ \pm 1\}$ and the measure over $[-1,1]$ whose density function is

$$
w(x)= \begin{cases}0 & |x|>\frac{1}{8} \\ \frac{8}{\pi \sqrt{1-(8 x)^{2}}} & |x| \leq \frac{1}{8}\end{cases}
$$

Let k, μ_{N} be the distribution and kernel from Lemma 38. Now, let $e \in S^{d-1}$ be the vector from Lemma 35. We define the distribution \mathcal{D} corresponding to the measure

$$
\mu=\left(1-\lambda_{2}-\lambda_{3}-\lambda_{N}\right) \mu_{e}^{1}+\lambda_{2} \mu_{e}^{2}+\lambda_{3} \mu_{e}^{3}+\lambda_{N} \mu_{N}
$$

By considering the affine functional $\Lambda_{e, 0}$, it holds that $\operatorname{Err}_{\gamma}(\mathcal{D}) \leq \lambda_{3}+\lambda_{2}+\lambda_{N}$.
Let g be the solution returned by the algorithm. With probability $\geq 1-\exp (-1 / \gamma)$, $g=f+b$, where f, b is a solution to program (18) with an additive error $\leq \sqrt{\gamma}$.

Denote $\|g\|_{H_{k}}=C$. By Lemma 38, it holds that

$$
\begin{aligned}
C & \leq \frac{2 m^{1.5}}{\left|\partial_{+} l(0)\right|} \operatorname{Err}_{\mu_{N}, l}(g) \\
& \leq \frac{2 m^{1.5}}{\left|\partial_{+} l(0)\right|} \frac{\operatorname{Err}_{\mu, l}(g)}{\lambda_{N}} \\
& \leq \frac{2 m^{1.5}}{\left|\partial_{+} l(0)\right|} \frac{l(0)}{\lambda_{N}}
\end{aligned}
$$

As in the proof of Theorem 6, it holds that

$$
\begin{equation*}
\left|\int_{\{x:\langle x, e\rangle=\gamma\}} g-\int_{\{x:\langle x, e\rangle=-\gamma\}} g\right| \leq \frac{128 l(0) \gamma K^{3.5}}{\left|\partial_{+} l(0)\right| \lambda_{3}}+10 \cdot K^{3.5} \cdot E \cdot C \cdot\left(r^{K}+s^{d}\right) \tag{19}
\end{equation*}
$$

Denote the last bound by ϵ. It holds that

$$
\begin{equation*}
\operatorname{Err}_{\mathcal{D}, l}(g)=\left(1-\lambda_{2}-\lambda_{3}-\lambda_{N}\right) \mathbb{E}_{\mu_{e}^{1} l} l(y g(x))+\lambda_{2} \mathbb{E}_{\mu_{e}^{2}} l(y g(x))+\lambda_{3} \mathbb{E}_{\mu_{e}^{3}} l(y g(x))+\lambda_{N} \mathbb{E}_{\mu_{N}} l(y g(x)) \tag{20}
\end{equation*}
$$

Now, denote $\delta=\int_{\{x:\langle x, e\rangle=-\gamma\}} g$. It holds that

$$
\begin{align*}
\mathbb{E}_{\mu_{e} l} l(y g(x)) & =\theta \int_{\{x:\langle x, e\rangle=\gamma\}} l(g(x))+(1-\theta) \int_{\{x:\langle x, e\rangle=-\gamma\}} l(-g(x)) \\
& \geq \theta \cdot l\left(\int_{\{x:\langle x, e\rangle=\gamma\}} g\right)+(1-\theta) \cdot l\left(-\int_{\{x:\langle x, e\rangle=-\gamma\}} g\right) \tag{21}\\
& \geq \theta \cdot l(\delta)+(1-\theta) \cdot l(-\delta)-L \epsilon
\end{align*}
$$

Thus,

$$
\operatorname{Err}_{\mathcal{D}, l}(g) \geq\left(1-\lambda_{2}-\lambda_{3}-\lambda_{N}\right)(\theta \cdot l(\delta)+(1-\theta) \cdot l(-\delta))-L \epsilon+\lambda_{2} \mathbb{E}_{\mu_{e}} l(y g(x))
$$

However, by considering the constant solution δ, it follows that

$$
\begin{aligned}
\operatorname{Err}_{\mathcal{D}, l}(g) & \leq\left(1-\lambda_{2}-\lambda_{3}-\lambda_{N}\right)(a \cdot l(\delta)+(1-\theta) \cdot l(-\delta))+\lambda_{2} \cdot l(\delta)+\left(\lambda_{3}+\lambda_{N}\right) \frac{1}{2}(l(\delta)+l(-\delta))+\sqrt{\gamma} \\
& \leq\left(1-\lambda_{2}-\lambda_{3}-\lambda_{N}\right)(\theta \cdot l(\delta)+(1-\theta) \cdot l(-\delta))+\lambda_{2} \cdot l(\delta)+\left(\lambda_{3}+\lambda_{N}\right) \cdot l(-|\delta|)+\sqrt{\gamma}
\end{aligned}
$$

Thus,

$$
\begin{align*}
\operatorname{Err}_{\mu_{e}^{2}, l}(g) & \leq \frac{L \epsilon}{\lambda_{2}}+l(\delta)+\frac{\lambda_{3}+\lambda_{N}}{\lambda_{2}} l(-|\delta|)+\frac{\sqrt{\gamma}}{\lambda_{2}} \tag{22}\\
& \leq \frac{L \cdot l(0) 128 \gamma K^{3.5}}{\left|\partial_{+} l(0)\right| \lambda_{2} \lambda_{3}}+\frac{10 \cdot L \cdot K^{3.5}}{\lambda_{2}} \cdot E \cdot C \cdot\left(r^{K}+s^{d}\right)+l(\delta)+\frac{\lambda_{3}+\lambda_{N}+\sqrt{\gamma}}{\lambda_{2}} l(-|\delta|)
\end{align*}
$$

Now, relying on the assumption that $\gamma \cdot \log ^{8}(C)=o(1)$, it is possible to choose $\lambda_{2}=$ $\Theta\left(\sqrt{\gamma} K^{4}\right)=\Theta\left(\sqrt{\gamma} \log ^{4}(C)\right), \lambda_{3}=\sqrt{\gamma}, K=\Theta(\log (C / \gamma)), \lambda_{N}=\gamma$ and $d=\Theta(\log (C / \gamma))$ such that the bound in Equation (19), $\frac{L \cdot l(0) 128 \gamma K^{3.5}}{\left|\partial_{+} l(0)\right| \lambda_{2} \lambda_{3}}+\frac{10 K^{3.5}}{\lambda_{2}} \cdot E \cdot C \cdot\left(r^{K}+s^{d}\right), \lambda_{2}, \lambda_{3}, \lambda_{N}$ and $\frac{\lambda_{3}+\lambda_{N}+\sqrt{\gamma}}{\lambda_{2}}$ are all $o(1)$.

Since the bound in Equation (19) is $o(1)$, it follows, as in the proof of Theorem 6, that $l(\delta) \leq l\left(\frac{\alpha}{2}\right)$ and consequently, $0<\frac{\alpha}{2} \leq \delta$. From equations (20) and (21), it follows that

$$
l(-|\delta|)=l(-\delta) \leq \frac{L \epsilon+\frac{\operatorname{Err}_{\mathcal{D}, l}(g)}{1-\lambda_{2}-\lambda_{3}-\lambda_{N}}}{1-\theta} \leq \frac{L \epsilon+\frac{2 l(0)}{1-\lambda_{2}-\lambda_{3}-\lambda_{N}}}{1-\theta}=O(1)
$$

It now follows from Equation (22) that

$$
\mathbb{E}_{(x, y) \sim \mu_{2}} l(g(x) y)=\operatorname{Err}_{\mu_{e}^{2}, l}(g) \leq l\left(\frac{\alpha}{2}\right)+o(1)
$$

By Markov's inequality,

$$
\underset{(x, y) \sim \mu_{2}}{\operatorname{Pr}}(l(g(x) y) \geq l(0)) \leq \frac{l\left(\frac{\alpha}{2}\right)+o(1)}{l(0)}
$$

Thus, if (x, y) are chosen according to μ_{e}^{2}, then w.p. $>\frac{l(0)-l\left(\frac{\alpha}{2}\right)}{l(0)}-o(1), l(g(x))<l(0) \Rightarrow$ $g(x)>0$. Since the marginal distributions of μ_{e}^{1} and μ_{e}^{2} are the same, it follows that, if (x, y) are chosen according to \mathcal{D}, then w.p. $>\left(\frac{l(0)-l\left(\frac{\alpha}{2}\right)}{l(0)}-o(1)\right) \cdot\left(1-\lambda_{2}-\lambda_{3}-\lambda_{N}\right)$. $(1-\theta)=\Omega(1), y g(x)<0$. Thus, $\operatorname{Err}_{\mathcal{D}, 0-1}(g)=\Omega(1)$ while $\operatorname{Err}_{\gamma}(\mathcal{D}) \leq \lambda_{2}+\lambda_{3}+\lambda_{N}=$ $O(\sqrt{\gamma} \operatorname{poly}(\log (C)))=O(\sqrt{\gamma} \operatorname{poly}(\log (m / \gamma)))$.

Proof (of Theorem 13) As in the proof of Theorem 12, we can assume w.l.o.g. that $l=l_{\text {hinge }}$. Let k, μ_{N} be the measure and the kernel from Lemma 38. Let $C=2 m^{1.5} / \gamma$. By (the proof of) Theorem 12, there exists a probability measure $\bar{\mu}$ over $S^{d-1} \times\{ \pm 1\}$ such that for every $f \in H_{k}$ with $\|f\|_{H_{k}} \leq C$ it holds that $\operatorname{Err}_{\bar{\mu}, l}(f)=\Omega(1)$ but $\operatorname{Err}_{\gamma}(\bar{\mu})=$ $O(\gamma \cdot \operatorname{poly}(\log (C)))$. Consider the distribution $\mu=(1-\gamma) \bar{\mu}+\gamma \mu_{N}$. It still holds that $\operatorname{Err}_{\gamma}(\bar{\mu})=O(\gamma \cdot \operatorname{poly}(\log (C)))=O(\gamma \cdot \operatorname{poly}(\log (m / \gamma)))$. Let f be an optimal for program (18). We have that $1 \geq \operatorname{Err}_{\mu, l}(f) \geq \gamma \cdot \operatorname{Err}_{\mu_{N}, l}(f)$. By Lemma 38, $\|f\|_{H_{k}} \leq C$. Thus, $\operatorname{Err}_{\mu, l}(f) \geq(1-\gamma) \operatorname{Err}_{\bar{\mu}, l}(f)=\Omega(1)$.

Appendix C. Choosing a surrogate according to the margin

The purpose of this section is to demonstrate the subtleties relating to the possibility of choosing a convex surrogate l according to the margin γ. Let $k: B \times B \rightarrow \mathbb{R}$ be the kernel

$$
k(x, y)=\frac{1}{1-\frac{1}{2}\langle x, y\rangle_{H}}
$$

and let $\psi: B \rightarrow H_{1}$ be a corresponding embedding (i.e., $\left.k(x, y)=\langle\psi(x), \psi(y)\rangle_{H_{1}}\right)$. In (Shalev-Shwartz et al., 2011) it has been shown that the solution f, b to Program (2), with $C=C(\gamma)=\operatorname{poly}(\exp (1 / \gamma \cdot \log (1 / \gamma)))$ and the embedding ψ, satisfies

$$
\operatorname{Err}_{\text {hinge }}(f+b) \leq \operatorname{Err}_{\gamma}(\mathcal{D})+\gamma
$$

Consequently, every approximated solution to the Program with an additive error of at most γ will have a $0-1$ loss bounded by $\operatorname{Err}_{\gamma}(\mathcal{D})+2 \gamma$.

For every γ, define a 1 -Lipschitz convex surrogate by

$$
l_{\gamma}(x)= \begin{cases}1-x & x \leq 1 / C(\gamma) \\ 1-1 / C(\gamma) & x \geq 1 / C(\gamma)\end{cases}
$$

Claim 1 A function $g: B \rightarrow \mathbb{R}$ is a solutions to Program (5) with $l=l_{\gamma}, C=1$ and the embedding ψ, if and only if $C(\gamma) \cdot g$ is a solutions to Program (2) with $C=C(\gamma)$ and the embedding ψ.

We postpone the proof to the end of the section. We note that Program (5) with $l=l_{\gamma}, C=$ 1 and the embedding ψ, have a complexity of 1 , according to our conventions. Moreover, by Claim 1, the optimal solution to it has a $0-1$ error of at $\operatorname{most}^{\operatorname{Err}}(\mathcal{D})+\gamma$. Thus, if A is an algorithm that is only obligated to return an approximated solution to Program (5) with $l=l_{\gamma}, C=1$ and the embedding ψ, we cannot lower bound its approximation ratio. In particular, our Theorems regarding the approximation ratio are no longer true, as currently stated, if the algorithms are allowed to choose the surrogate according to γ. One might be tempted to think that by the above construction (i.e. taking ψ as our embedding, choosing $C=1$ and $l=l_{\gamma}$, and approximate the program upon a sample of size $\left.\operatorname{poly}(1 / \gamma)\right)$, we have actually gave 1-approximation algorithm. The crux of the matter is that algorithms that approximate the program according to a finite sample of size poly $(1 / \gamma)$ are only guaranteed to find a solution with an additive error of poly (γ). For the loss l_{γ}, such an additive error is meaningless: Since for every function $f, \operatorname{Err}_{\mathcal{D}, l_{\gamma}}(f) \geq 1-1 / C(\gamma)$, the 0 solution has an additive error of $\operatorname{poly}(\gamma)$. Therefore, we cannot argue that the solution returned by the algorithm will have a small $0-1$ error. Indeed we anticipate that the algorithm we have described will suffer from serious over-fitting.

To summarize, we note that the lower bounds we have proved, relies on the fact that the optimal solutions of the programs we considered are very bad. For the algorithm we sketched above, the optimal solution is very good. However, guaranties on approximated solutions obtained from a polynomial sample are meaningless. We conclude that lower bounds for such algorithms will have to involve over-fitting arguments, which are out of the scope of the paper.
Proof (of claim 1) Define

$$
l_{\gamma}^{*}(x)= \begin{cases}1-C(\gamma) x & x \leq \frac{1}{C(\gamma)} \\ 0 & x \geq \frac{1}{C(\gamma)}\end{cases}
$$

Since $l_{\gamma}^{*}(x)=C(\gamma) \cdot\left(l_{\gamma}(x)-\left(1-\frac{1}{C(\gamma)}\right)\right)$, it follows that the solutions to Program (5) with $l=l_{\gamma}^{*}, C=1$ and ψ coincide with the solutions with $l=l_{\gamma}, C=1$ and ψ. Now, we note that, for every function $f: B \rightarrow \mathbb{R}$,

$$
\operatorname{Err}_{\mathcal{D},{ }_{\gamma}^{*}}(f)=\operatorname{Err}_{\mathcal{D}, \text { hinge }}(C(\gamma) \cdot f)
$$

Thus, w, b minimizes $\operatorname{Err}_{\mathcal{D}, l_{\gamma}^{*}}\left(\Lambda_{w, b} \circ \psi\right)$ under the restriction that $\|w\| \leq 1$ if and only if $C(\gamma) \cdot w, C(\gamma) \cdot b$ minimizes $\operatorname{Err}_{\mathcal{D}, \text { hinge }}\left(\Lambda_{w, b} \circ \psi\right)$ under the restriction that $\|w\| \leq C(\gamma)$.

The complexity of learning halfspaces using generalized linear methods

[^0]: 1. The size of a vector $x \in H$ is taken to be the largest index j for which $x_{j} \neq 0$.
 2. As usual, $z_{+}:=\max (z, 0)$.
[^1]: 3. A proper learner must output a halfspace classifier. Here we consider improper learning where the learner can output any classifier.
