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Abstract
We study a new class of online learning problems where each of the online algorithm’s actions is
assigned an adversarial value, and the loss of the algorithm at each step is a known and determin-
istic function of the values assigned to its recent actions. This class includes problems where the
algorithm’s loss is the minimum over the recent adversarial values, the maximum over the recent
values, or a linear combination of the recent values. We analyze the minimax regret of this class
of problems when the algorithm receives bandit feedback, and prove that when the minimum or
maximum functions are used, the minimax regret is Ω̃(T 2/3) (so called hard online learning prob-
lems), and when a linear function is used, the minimax regret is Õ(

√
T ) (so called easy learning

problems). Previously, the only online learning problem that was known to be provably hard was
the multi-armed bandit with switching costs.

1. Introduction

Online learning is often described as a T -round repeated game between a randomized player and an
adversary. On each round of the game, the player and the adversary play simultaneously: the player
(randomly) chooses an action from an action set X while the adversary assigns a loss value to each
action in X . The player then incurs the loss assigned to the action he chose. At the end of each
round, the adversary sees the player’s action and possibly adapts his strategy. This type of adversary
is called an adaptive adversary (sometimes also called reactive or non-oblivious). In this paper, we
focus on the simplest online learning setting, where X is assumed to be the finite set {1, . . . , k}.

The adversary has unlimited computational power and therefore, without loss of generality,
he can prepare his entire strategy in advance by enumerating over all possible action sequences
and predetermining his response to each one. More formally, we assume that the adversary starts
the game by choosing a sequence of T history-dependent loss functions, f1, . . . , fT , where each
ft : X t 7→ [0, 1] (note that ft depends on the player’s entire history of t actions). With this, the
adversary concludes his role in the game and only the player actively participates in the T rounds.
On round t, the player (randomly) chooses an action Xt from the action set X and incurs the loss
ft(X1:t) (where X1:t is our shorthand for the sequence (X1, . . . , Xt)). The player’s goal is to
accumulate a small total loss,

∑T
t=1 ft(X1:t).
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At the end of each round, the player receives some feedback, which he uses to inform his
choices on future rounds. We distinguish between different feedback models. The least informative
feedback model we consider is bandit feedback, where the player observes his loss on each round,
ft(X1:t), but nothing else. In other words, after choosing his action, the player receives a single
real number. The prediction game with bandit feedback is commonly known as the adversarial
multi-armed bandit problem (Auer et al., 2002) and the actions in X are called arms. A more
informative feedback model is full feedback (also called full information feedback), where the player
also observes the loss he would have incurred had he played a different action on the current round.
In other words, the player receives ft(X1:(t−1), x) for each x ∈ X , for a total of |X | real numbers on
each round. The prediction game with full information is often called prediction with expert advice
(Cesa-Bianchi et al., 1997) and each action is called an expert.

A third feedback model, the most informative of the three, is counterfactual feedback. In this
model, at the end of round t, the player receives the complete definition of the loss function ft. In
other words, he receives the value of ft(x1, . . . , xt) for all (x1 . . . , xt) ∈ X t (for a total of |X |t real
numbers). This form of feedback allows the player to answer questions of the form “how would the
adversary have acted today had I played differently in the past?” This form of feedback is neglected
in the literature, primarily because most of the existing literature focuses on oblivious adversaries
(who do not adapt according to the player’s past actions), for which counterfactual feedback is
equivalent to full feedback.

Since the loss functions are adversarial, their values are only meaningful when compared to an
adequate baseline. Therefore, we evaluate the player using the notion of policy regret (Arora et al.,
2012), abbreviated simply as regret, and defined as

R =
T∑
t=1

ft(X1, . . . , Xt) − min
x∈X

T∑
t=1

ft(x, . . . , x) . (1)

Policy regret compares the player’s cumulative loss to the loss of the best policy in hindsight that
repeats a single action on all T rounds. The player’s goal is to minimize his regret against a worst-
case sequence of loss functions. We note that a different definition of regret, which we call standard
regret, is popular in the literature. However, Arora et al. (2012) showed that standard regret is
completely inadequate for analyzing the performance of online learning algorithms against adaptive
adversaries, so we stick the definition of regret in Eq. (1)

While regret measures a specific player’s performance against a specific sequence of loss func-
tions, the inherent difficulty of the game itself is measured by minimax regret. Intuitively, minimax
regret is the expected regret of an optimal player, when he faces an optimal adversary. More for-
mally, minimax regret is the minimum over all randomized player strategies, of the maximum over
all loss sequences, of E[R]. If the minimax regret grows sublinearly with T , it implies that the
per-round regret rate, R(T )/T , must diminish with the length of the game T . In this case, we say
that the game is learnable. Arora et al. (2012) showed that without additional constraints, online
learning against an adaptive adversary has a minimax regret of Θ(T ), and is therefore unlearnable.
This motivates us to weaken the adaptive adversary and study the minimax regret when we restrict
the sequence of loss functions in different ways.

Easy online learning problems. For many years, the standard practice in online learning research
was to find online learning settings for which the minimax regret is Θ̃(

√
T ). Following Antos et al.

(2012), we call problems for which the minimax regret is Θ̃(
√
T ) easy problems. Initially, minimax
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regret bounds focused on loss functions that are generated by an oblivious adversary. An oblivious
adversary does not adapt his loss values to the player’s past actions. More formally, this type of
adversary first defines a sequence of single-input functions, `1, . . . , `T , where each `t : X 7→ [0, 1],
and then sets

∀ t ft(x1, . . . , xt) = `t(xt) .

When the adversary is oblivious, the definition of regret used in this paper (Eq. (1)) and the afore-
mentioned standard regret are equivalent, so all previous work on oblivious adversaries is relevant
in our setting. In the full feedback model, the Hedge algorithm (Littlestone and Warmuth, 1994;
Freund and Schapire, 1997) and the Follow the Perturbed Leader algorithm (Kalai and Vempala,
2005) both guarantee a regret of Õ(

√
T ) on any oblivious loss sequence (where Õ ignores loga-

rithmic terms). A matching lower bound of Ω(
√
T ) appears in Cesa-Bianchi and Lugosi (2006),

and allows us to conclude that the minimax regret in this setting is Θ̃(
√
T ). In the bandit feedback

model, the Exp3 algorithm (Auer et al., 2002) guarantees a regret of Õ(
√
T ) against any oblivious

loss sequence and implies that the minimax regret in this setting is also Θ̃(
√
T ).

An adversary that is slightly more powerful than an oblivious adversary is the switching cost
adversary, who penalizes the player each time his action is different than the action he chose on the
previous round. Formally, the switching cost adversary starts by defining a sequence of single-input
functions `1, . . . , `T , where `t : X 7→ [0, 1], and uses them to set

∀ t ft
(
x, x′) = `t(x

′) + 11x′ 6=x . (2)

Note that the range of ft is [0, 2] instead of [0, 1]; if this is a problem, it can be easily resolved by
replacing ft ← ft/2 throughout the analysis. In the full feedback model, the Follow the Lazy Leader
algorithm (Kalai and Vempala, 2005) and the more recent Shrinking Dartboard algorithm (Geulen
et al., 2010) both guarantee a regret of Õ(

√
T ) against any oblivious sequence with a switching cost.

The Ω(
√
T ) lower bound against oblivious adversaries holds in this case, and the minimax regret is

therefore Θ̃(
√
T ).

The switching cost adversary is a special case of a 1-memory adversary, who is constrained to
choose loss functions that depend only on the player’s last two actions (his current action and the
previous action). More generally, the m-memory adversary chooses loss functions that depend on
the player’s last m+ 1 actions (the current action plus m previous actions), where m is a parameter.
In the counterfactual feedback model, the work of Gyorgy and Neu (2011) implies that the minimax
regret against an m-memory adversary is Θ̃(

√
T ).

Hard online learning problems. Recently, Cesa-Bianchi et al. (2013); Dekel et al. (2013) showed
that online learning against a switching cost adversary with bandit feedback (more popularly known
as the multi-armed bandit with switching costs) has a minimax regret of Θ̃(T 2/3). This result proves
that there exists a natural1 online learning problem that is learnable, but at a rate that is substantially
slower then Θ̃(

√
T ). Again following Antos et al. (2012), we say that an online problem is hard if

its minimax regret is Θ̃(T 2/3).
Is the multi-armed bandit with switching costs a one-off example, or are there other natural hard

online learning problems? In this paper, we answer this question by presenting another hard online
learning setting, which is entirely different than the multi-armed bandit with switching costs.

1. By natural, we mean that the problem setting can be described succinctly, and that the parameters that define the
problem are all independent of T . An example of an unnatural problem with a minimax regret of Θ(T 2/3) is the
multi-armed bandit problem with k = T 1/3 arms.
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Composite loss functions. We define a family of adversaries that generate composite loss func-
tions. An adversary in this class is defined by a memory size m ≥ 0 and a loss combining function
g : [0, 1]m+1 7→ [0, 1], both of which are fixed and known to the player. The adversary starts by
defining a sequence of oblivious functions `1, . . . , `T , where each `t : X 7→ [0, 1]. Then, he uses g
and `1:T to define the composite loss functions

∀ t ft(x1:t) = g
(
`t−m(xt−m), . . . , `t(xt)

)
.

For completeness, we assume that `t ≡ 0 for t ≤ 0. The adversary defined above is a special case
of a m-memory adversary.

For example, we could set m = 1 and choose the max function as our loss combining function.
This choice define a 1-memory adversary, with loss functions given by

∀ t ft(x1:t) = max
(
`t−1(xt−1), `t(xt)

)
.

In words, the player’s action on each round is given an oblivious value and the loss at time t is
the maximum of the current oblivious value and previous one. For brevity, we call this adversary
the max-adversary. The max-adversary can be used to represent online decision-making scenarios
where the player’s actions have a prolonged effect, and a poor choice on round t incurs a penalty
on round t and again on round t + 1. Similarly, setting m = 1 and choosing min as the combining
function gives the min adversary. This type of adversary models scenarios where the environment
forgives poor action choices whenever the previous choice was good. Finally, one can also consider
choosing a linear function g. Examples of linear combining functions are

ft(x1:t) =
1

2

(
`t−1(xt−1) + `t(xt)

)
and ft(x1:t) = `t−1(xt−1) .

The main technical contribution of this paper is a Ω̃(T 2/3) lower bound on the minimax regret
against the max and min adversaries, showing that each of them induces a hard online learning
problem when the player receives bandit feedback. In contrast, we show that any linear combining
function induces an easy bandit learning problem, with a minimax regret of Θ̃(

√
T ). Characterizing

the set of combining functions that induce hard bandit learning problems remains an open problem.
Recall that in the bandit feedback model, the player only receives one number as feedback on

each round, namely, the value of ft(X1:t). If the loss is a composite loss, we could also consider a
setting where the feedback consists of the single number `t(Xt). Since the combining function g is
known to the player, he could use the observed values `1(X1), . . . , `t(Xt) to calculate the value of
Ft(X1:t); this implies that this alternative feedback model gives the player more information than
the strict bandit feedback model. However, it turns out that the Ω̃(T 2/3) lower bound holds even in
this alternative feedback model, so our analysis below assumes that the player observes `t(Xt) on
each round.

Organization. This paper is organized as follows. In Sec. 2, we recall the analysis in Dekel et al.
(2013) of the minimax regret of the multi-armed bandit with switching costs. Components of this
analysis play a central role in the lower bounds against the composite loss adversary. In Sec. 3 we
prove a lower bound on the minimax regret against the min-adversary in the bandit feedback setting,
and in Sec. 3.3 we comment on how to prove the same for the max-adversary. A proof that linear
combining functions induce easy online learning problems is given in Sec. 4. We conclude in Sec. 5.
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2. The Multi-Armed Bandit with Switching Costs

In this section, we recall the analysis in Dekel et al. (2013), which proves a Ω̃(T 2/3) lower bound on
the minimax regret of the multi-armed bandit problem with switching costs. The new results in the
sections that follow build upon the constructions and lemmas in Dekel et al. (2013). For simplicity,
we focus on the 2-armed bandit with switching costs, namely, we assume that X = {0, 1} (see
Dekel et al. (2013) for the analysis with arbitrary k).

First, like many other lower bounds in online learning, we apply (the easy direction of) Yao’s
minimax principle (Yao, 1977), which states that the regret of a randomized player against the
worst-case loss sequence is greater or equal to the minimax regret of an optimal deterministic player
against a stochastic loss sequence. In other words, moving the randomness from the player to the
adversary can only make the problem easier for the player. Therefore, it suffices to construct a
stochastic sequence of loss functions2, F1:T , where each Ft is a random oblivious loss function
with a switching cost (as defined in Eq. (2)), such that

E

[
T∑
t=1

Ft(X1:t) − min
x∈X

T∑
t=1

Ft(x, . . . , x)

]
= Ω̃(T 2/3) , (3)

for any deterministic player strategy.
We begin be defining a stochastic processW0:T . Let ξ1:T be T independent zero-mean Gaussian

random variables with variance σ2, where σ is specified below. Let ρ : [T ] 7→ {0}∪[T ] be a function
that assigns each t ∈ [T ] with a parent ρ(t). For now, we allow ρ to be any function that satisfies
ρ(t) < t for all t. Using ξ1:T and ρ, we define

W0 = 0 ,

∀ t ∈ [T ] Wt = Wρ(t) + ξt . (4)

Note that the constraint ρ(t) < t guarantees that a recursive application of ρ always leads back to
zero. The definition of the parent function ρ determines the behavior of the stochastic processes.
For example, setting ρ(t) = 0 implies that Wt = ξt for all t, so the stochastic process is simply a
sequence of i.i.d. Gaussians. On the other hand, setting ρ(t) = t − 1 results in a Gaussian random
walk. Other definitions of ρ can create interesting dependencies between the variables. The specific
setting of ρ that satisfies our needs is defined below.

Next, we explain how the stochastic process W1:T defines the stochastic loss functions F1:T .
First, we randomly choose one of the two actions to be the better action by drawing an unbiased
Bernoulli χ (P(χ = 0) = P(χ = 1)). Then we let ε be a positive gap parameter, whose value is
specified below, and we set

∀t Zt(x) = Wt +
1

2
− ε11x=χ . (5)

Note that Zt(χ) is always smaller than Zt(1 − χ) by a constant gap of ε. Each function in the
sequence Z1:T can take values on the entire real line, whereas we require bounded loss functions.
To resolve this, we confine the values of Z1:T to the interval [0, 1] by applying a clipping operation,

∀ t Lt(x) = clip(Zt(x)) , where clip(α) = min{max{α, 0}, 1} . (6)

2. We use the notation Ui:j as shorthand for the sequence Ui, . . . , Uj throughout.
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The sequence L1:T should be thought of as a stochastic oblivious loss sequence. Finally, as in
Eq. (2), we add a switching cost and define the sequence of loss functions

Ft(x1:T ) = Lt(xt) + 11x′ 6=x .

It remains to specify the parent function ρ, the standard deviation σ, and the gap ε. With the right
settings, we can prove that F1:T is a stochastic loss sequence that satisfies Eq. (3).

We take a closer look at the parent function ρ. First, we define the ancestors of round t, denoted
by ρ∗(t), to be the set of positive indices that are encountered when ρ is applied recursively to t.
Formally, ρ∗(t) is defined recursively as

ρ∗(0) = {}
∀ t ρ∗(t) = ρ∗

(
ρ(t)

)
∪ {ρ(t)} . (7)

Using this definition, the depth of ρ is defined as the size of the largest set of ancestors, d(ρ) =
maxt∈[T ] |ρ∗(t)|. The depth is a key property of ρ and the value of d(ρ) characterizes the extremal
values of W1:T : by definition, there exists a round t such that Wt is the sum of d(ρ) independent
Gaussians, so the typical value of |Wt| is bounded by σ

√
d(ρ). More precisely, Lemma 1 in Dekel

et al. (2013) states that

∀ δ ∈ (0, 1) P
(

max
t∈[T ]
|Wt| ≤ σ

√
2d(ρ) log T

δ

)
≥ 1− δ . (8)

The clipping operation defined in Eq. (6) ensures that the loss is bounded, but the analysis requires
that the unclipped sequence Z1:t already be bounded in [0, 1] with high probability. This implies
that we should choose

σ ∼
(
d(ρ) log

(
T
δ

) )−1/2
. (9)

Another important property of ρ is its width. First, define the cut on round t as

cut(t) = {s ∈ [T ] : ρ(s) < t ≤ s} .

In words, the cut on round t is the set of rounds that are separated from their parent by t. The width
of ρ is then defined as the size of the largest cut, w(ρ) = maxt∈[T ] |cut(t)|.

The analysis in Dekel et al. (2013) characterizes the player’s ability to statistically estimate
the value of χ (namely, to uncover the identity of the better action) as a function of the number
of switches he performs. Each time the player switches actions, he has an opportunity to collect
statistical information on the identity of χ. The amount of information revealed to the player with
each switch is controlled by the depth and width of ρ and the values of ε and σ. Formally, define the
conditional probability measures

Q0(·) = P(· | χ = 0) and Q1(·) = P(· | χ = 1) . (10)

In words, Q0 is the conditional probability when action 0 is better and Q1 is the conditional prob-
ability when action 1 is better. Also, let F be the σ-algebra generated by the player’s observations
throughout the game, L1(X1), . . . , LT (XT ). Since the player’s actions are a deterministic function
of the loss values that he observes, his sequence of actions is measurable by F . The total variation
distance between Q0 and Q1 on F is defined as

dFTV(Q0, Q1) = sup
A∈F

∣∣Q0(A)−Q1(A)
∣∣ .

Dekel et al. (2013) proves the following bound on dFTV(Q0, Q1).
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Lemma 1 Let F1:T be the stochastic loss sequence defined above by the parent function ρ, with
variance σ2 and gap ε. Fix a deterministic player and let M be the number of switches he performs
as he plays the online game. Then,

dFTV(Q0, Q1) ≤ ε

σ

√
w(ρ)E[M ] ,

where Q0 and Q1 are as defined in Eq. (10).

Intuitively, the lemma states that if E[M ] is asymptotically smaller than σ2

ε2w(ρ)
then anyF-measurable

event (e.g., the event that X10 = 1 or the event that the player switches actions on round 20) is al-
most equally likely to occur, whether χ = 0 or χ = 1. In other words, if the player doesn’t switch
often enough, then he certainly cannot identify the better arm.

Our goal is to build a stochastic loss sequence that forces the player to perform many switches,
and Lemma 1 tells us that we must choose a parent function ρ that has a small width. Additionally,
setting the variance σ2 according to Eq. (9) also implies that we want ρ to have a small depth.
Dekel et al. (2013) defines the parent function ρ(t) = t − gcd(t, 2T ) (where gcd(α, β) is the
greatest common divisor of α and β). Put another way, ρ takes the number t, finds its binary
representation, identifies the least significant bit that equals 1, and flips that bit to zero. It them
proves that d(ρ) = Θ(log T ) and w(ρ) = Θ(log T ).

The lower bound on the minimax regret of the multi-armed bandit with switching costs is ob-
tained by setting ε = Θ(T−1/3/ log T ). If the expected number of switches is small, namely
E[M ] ≤ T 2/3/ log2 T , then Lemma 1 implies that the player cannot identify the better action. From
there, it is straightforward to show that the player has a positive probability of choosing the worse
action on each round, resulting in a regret of R = Θ(εT ). Plugging in our choice of ε proves that
R = Ω̃(T 2/3). On the other hand, if the number of switches is large, namely, E[M ] > T 2/3/ log2 T ,
then the regret is Ω(T 2/3) directly due to the switching cost.

Many of the key constructions and ideas behind this proof are reused below.

3. The Min Adversary is Hard

In this section, we lower bound the minimax regret against the min-adversary in the bandit feedback
model where the player only observes a single number, `t(Xt), at the end of round t. The full proof
is rather technical, so we begin with a high level proof sketch. As in Sec. 2, Yao’s minimax principle
once again reduces our problem to one of finding a stochastic loss sequence L1, . . . , LT that forces
all deterministic algorithms to incur a regret of Ω̃(T 2/3). The main idea is to repeat the construction
presented in Sec. 2 by simulating a switching cost using the min combining function.

We start with a stochastic process that is defined by a parent function ρ, similar to the sequence
W1:T defined in Sec. 2 (although we require a different parent function than the one defined there).
Again, we draw a Bernoulli χ that determines the better of the two possible actions, we choose a
gap parameter ε, and we define the sequence of functions Z1:T , as in Eq. (5). This sequence has the
important property that, in the bandit feedback model, it reveals information on the value of χ only
when the player switches actions.

Next, we identify triplets of rounds, (t− 1, t, t+ 1), where |Wt−1 −Wt| ≤ τ (τ is a tolerance
parameter, chosen so that τ � ε) and some other technical properties hold. Then, we simulate a
switching cost on round t by adding a pair of spikes to the loss values of the two actions, one on

7
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rounds t− 1 and one on round t. We choose a spike size η (such that η � τ ), we draw an unbiased
Bernoulli Λt, and we set

Lt−1(x) = clip
(
Zt−1(x) + η11x 6=Λt

)
and Lt(x) = clip

(
Zt(x) + η11x=Λt

)
,

where clip() is defined in Eq. (6). In words, with probability 1
2 we add a spike of size η to the loss

of action 0 on round t − 1 and to the loss of action 1 on round t, and with probability 1
2 we do the

opposite.
Finally, we define the loss on round t using the min combining function

Ft(x1:t) = min
(
Lt−1(xt−1), Lt(xt)

)
. (11)

We can now demonstrate how the added spikes simulate a switching cost on the order of η.
Say that the player switches actions on round t, namely, Xt 6= Xt−1. Since Λt is an independent
unbiased Bernoulli, it holds thatXt = Λt with probability 1

2 . IfXt = Λt, then the player encounters
both of the spikes: Lt(Xt) = Zt(Xt)+η andLt−1(Xt−1) = Zt−1(Xt−1)+η. Recall that |Zt−1(0)−
Zt−1(1)| ≤ ε and |Zt−1(x)− Zt(x)| ≤ τ , so

Ft(X1:t) ∈
[
Zt(0) + η − (ε+ τ), Zt(0) + η + (ε+ τ)

]
. (12)

On the other hand, if the player does not switch actions on round t, his loss then satisfies

Ft(X1:t) ∈
[
Zt(0)− (ε+ τ), Zt(0) + (ε+ τ)

]
. (13)

Comparing the intervals in Eq. (12) and Eq. (13), and recalling that η � (ε+ τ), we conclude that,
with probability 1

2 , the switch caused the player’s loss to increase by η. This is the general scheme
by which we simulate a switching cost using the min combining function.

There are a several delicate issues that were overlooked in the simplistic proof sketch, and we
deal with then below.

3.1. The Stochastic Loss Sequence

We formally describe the stochastic loss sequence used to prove our lower bound. In Sec. 2, we
required a deterministic parent function ρ with depth d(ρ) and width w(ρ) that scale logarithmically
with T . To lower-bound the minimax regret against the min adversary, we need a random parent
function for which d(ρ) and w(ρ) are both logarithmic with high probability, and such that ρ(t) =
t − 1 with probability at least 1

2 for all t. The following lemma proves that such a random parent
function exists. The proof is deferred to Appendix A.

Lemma 2 For any time horizon T , there exists a random function ρ : [T ] 7→ {0} ∪ [T ] with
ρ(t) < t for all t ∈ [T ] such that

• ∀ t P
(
ρ(t) = t− 1 | ρ(1), . . . , ρ(t− 1)

)
≥ 1

2 ;

• w(ρ) ≤ log T + 1 with probability 1;

• d(ρ) = O(log T ) with probability 1−O(T−1).
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Let ρ be a random parent function, as described above, and use this ρ to define the loss sequence
Z1:T , as outlined in Sec. 2. Namely, draw independent zero-mean Gaussians ξ1:T with variance σ2.
Using ρ and ξ1:T , define the stochastic process W1:T as specified in Eq. (4). Finally, choose the
better arm by drawing an unbiased Bernoulli χ, set a gap parameter ε, and use W1:T , χ, and ε to
define the loss sequence Z1:T , as in Eq. (5).

Next, we augment the loss sequence Z1:T in a way that simulates a switching cost. For all
2 ≤ t ≤ T − 2, let Et be the following event:

Et =
{
|Wt−1 −Wt| ≤ τ and Wt+1 < Wt − τ and Wt+2 < Wt+1 − τ

}
, (14)

where τ is a tolerance parameter defined below. In other words, Et occurs if the stochastic process
W1:T remains rather flat between rounds t− 1 and t, and then drops on rounds t+ 1 and t+ 2. We
simulate a switching cost on round t if and only if Et occurs.

We simulate the switching cost by adding pairs of spikes, one to the loss of each action, one on
round t − 1 and one on round t. Each spike has an orientation: it either penalizes a switch from
action 0 to action 1, or a switch from action 1 to action 0. The orientation of each spike is chosen
randomly, as follows. We draw independent unbiased Bernoullis Λ2:T−1; if a spike is added on
round t, it penalizes a switch from action Xt−1 = 1− Λt to action Xt = Λt. Formally, define

St(x) =

{
η if (Et ∧ x = Λt) ∨ (Et+1 ∧ x 6= Λt+1)

0 otherwise
,

where η is a spike size parameter (defined below). Finally, define Lt(x) = clip
(
Zt(x) + St(x)

)
.

This defines the sequence of oblivious functions. The min adversary uses these functions to define
the loss functions F1:T , as in Eq. (11).

In the rest of the section we prove that the regret of any deterministic player against the loss
sequence F1:T is Ω̃(T 2/3). Formally, we prove the following theorem.

Theorem 3 Let F1:T be the stochastic sequence of loss functions defined above. Then, the expected
regret (as defined in Eq. (1)) of any deterministic player against this sequence is Ω̃(T 2/3).

3.2. Analysis

For simplicity, we allow ourselves to neglect the clipping operator used in the definition of the loss
sequence, an we simply assume that Lt(x) = Zt(x) + St(x). The additional steps required to
reintroduce the clipping operator are irrelevant to the current analysis and can be copied from Dekel
et al. (2013).

Fix a deterministic algorithm and let X1, . . . , XT denote the random sequence of actions it
chooses upon the stochastic loss functions F1:T . We define the algorithm’s instantaneous (per-
round) regret as

∀ t Rt = min
(
Lt−1(Xt−1), Lt(Xt)

)
−min

(
Lt−1(χ), Lt(χ)

)
, (15)

and note that our goal is to lower-bound E[R] =
∑T

t=1 E[Rt].
The main technical difficulty of our analysis is getting a handle on the player’s ability to identify

the occurrence of Et. If the player could confidently identify Et on round t − 1, he could avoid
switching on round t. If the player could identify Et on round t or t+ 1, he could safely switch on

9
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round t + 1 or t + 2, as Et cannot co-occur with either Et+1 or Et+2. To this end, we define the
following sequence of random variables,

∀ t R̃t = min
(
Lt−1(Xt−1), Lt(Xt−1)

)
−min

(
Lt−1(χ), Lt(χ)

)
. (16)

The variable R̃t is similar to Rt, except that Lt is evaluated on the previous action Xt−1 rather than
the current actionXt. We think of R̃t as the instantaneous regret of a player that decides beforehand
(before observing the value of Lt−1(Xt−1)) not to switch on round t. It turns out that R̃t is much
easier to analyze, since the player’s decision to switch becomes independent of the occurrence of
Et. Specifically, we use R̃t to decompose the expected regret as

E[Rt] = E[Rt − R̃t] + E[R̃t] .

We begin the analysis by clarifying the requirement that the event Et only occurs if Wt+1 ≤
Wt−τ . This requirement serves two separate roles: first, it preventsEt andEt+1 from co-occurring
and thus prevents overlapping spikes; second, this requirement prevents Et−1 from contributing to
the player’s loss on round t. This latter property is used throughout our analysis and is formalized
in the following lemma.

Lemma 4 If Et−1 occurs then R̃t = Zt(Xt−1)− Zt(χ) and Rt − R̃t = Zt(Xt)− Zt(Xt−1).

In particular, the lemma shows that the occurrence of Et−1 cannot make Ft(X1:t) be less than
Ft(χ, . . . , χ). This may not be obvious at first glance: the occurrence of Et−1 contributes a spike
on round t and if that spike is added to χ (the better action), one might imagine that this spike could
contribute to Ft(χ, . . . , χ).

It is convenient to modify the algorithm and fixXs = Xt for all s > t if |Lt(Xt)−Lρ(t)(Xρ(t))| ≥
4σ
√

log T . Note that this event has probability O(T−4) for each t, so the modification has a neg-
ligible effect on the regret. Recall that E[Rt] = E[Rt − R̃t] + E[R̃t]; we first claim that E[R̃t] is
non-negative.

Lemma 5 For any 1 < t < T , let R̃t be as defined in Eq. (16). Then, it holds that E[R̃t | Xt−1 =
χ] = 0 and E[R̃t | Xt−1 6= χ] = ε.

Next, we turn to lower bounding E[Rt − R̃t].

Lemma 6 For any 1 < t < T , let Rt be the player’s instantaneous regret, as defined in Eq. (15),
and let R̃t be as defined in Eq. (16). Then E[Rt − R̃t] = P(Xt 6= Xt−1) · Ω(ητ/σ), provided that
τ = o(η) and that ε = o(ητ/σ).

The proofs of the above lemmas are deferred to Appendix A. We can now prove our main theorem.

Proof of Theorem 3 We prove the theorem by distinguishing between two cases, based on the
expected number of switches performed by the player. More specifically, let M be the number of
switches performed by the player throughout the game.

First, assume that E[M ] ≥ T 2/3/ log2 T . Summing the lower-bounds in Lemma 5 and Lemma 6
over all t gives

E[R] ≥
T∑
t=1

P(Xt 6= Xt−1) · Ω(ητ/σ) = Ω(ητ/σ) · E[M ] .

10
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Setting η = log−2 T , σ = log−1 T , τ = log−5 T , ε = T−1/3/ log T (note that all of the con-
straints on these values specified in Lemma 6 are met) and plugging in our assumption that E[M ] ≥
T 2/3/ log2 T gives the lower bound E[R] = Ω

(
T 2/3/ log6 T

)
.

Next, we assume that E[M ] < T 2/3/ log2 T . For any concrete instance of ρ, define the condi-
tional probability measures

Qρ0(·) = P(· | χ = 0, ρ) and Qρ1(·) = P(· | χ = 1, ρ) .

We can apply Lemma 1 for any concrete instance of ρ and get dFTV(Qρ0, Q
ρ
1) ≤ (ε/σ)

√
w(ρ)E[M | ρ] .

Taking expectation on both sides of the latter inequality, we get

dFTV(Q0, Q1) ≤ E
[
dFTV(Qρ0, Q

ρ
1)
]
≤ ε

σ
E
[√

w(ρ)E[M | ρ]
]
≤ ε

σ

√
E[w(ρ)]E[M ] ,

where the inequality on the left is due to Jensen’s inequality, and the inequality on the right is due
to an application of the Cauchy-Schwartz inequality. Plugging in ε = T−1/3/ log T , σ = log−1 T ,
E[w(ρ)] = Θ(log T ) and E[M ] = O(T 2/3/ log2 T ), we conclude that

dFTV(Q0, Q1) = o(1) . (17)

Again, we decompose E[Rt] = E[R̃t] +E[Rt− R̃t], but this time we use the fact that Lemma 6
implies E[Rt − R̃t] ≥ 0, and we focus on lower-bounding E[R̃t]. We decompose

E[R̃t] = P(Xt=1 = χ) E[R̃t | Xt=1 = χ] + P(Xt=1 6= χ) E[R̃t | Xt=1 6= χ] . (18)

The first summand on the right-hand side above trivially equals zero. Lemma 5 proves that E[R̃t |
Xt=1 6= χ] = ε. We use Eq. (17) to bound

P(Xt−1 6= χ) =
1

2
P(Xt−1 = 0 | χ = 1) +

1

2
P(Xt−1 = 1 | χ = 0)

≥ 1

2
P(Xt−1 = 0 | χ = 1) +

1

2

(
P(Xt−1 = 1 | χ = 1)− o(1)

)
=

1

2
− o(1) .

Plugging everything back into Eq. (18) gives E[R̃t] = Θ(ε). We conclude that

E[R] ≥
T∑
t=1

E[R̃t] = Θ(Tε) .

Recalling that ε = T−1/3/ log T concludes the analysis.

3.3. The Max Adversary

In the previous section, we proved that the minimax regret, with bandit feedback, against the min
adversary is Ω̃(T 2/3). The same can be proved for the max adversary, using an almost identical
proof technique, namely, by using the max combining function to simulate a switching cost. The
construction of the loss process Z1:T remains as defined above. The event Et changes, and requires
|Wt−1 −Wt| ≤ τ and Wt+1 > Wt + η. The spikes also change: we set

St−1(Λt) = 1, St(Λt) = 1, St−1(1− Λt) = 0, St(1− Λt) = 0 .

The formal proof is omitted.

11
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4. Linear Composite Functions are Easy

In this section, we consider composite functions that are linear in the oblivious function `t−m:t.
Namely, the adversary chooses a memory size m ≥ 1 and defines

∀ t ft(x1:t) = am`t−m(xt−m) + · · ·+ a0`t(xt) , (19)

where a0, a1, . . . , am are fixed, bounded, and known coefficients, at least one of which is non-zero
(otherwise the regret is trivially zero). In order to ensure that ft(x1:t) ∈ [0, 1] for all t, we assume
that

∑m
i=0 ai ≤ 1. We can also assume, without loss of generality, that in fact

∑m
i=0 ai = 1, since

scaling all of the loss functions by a constant scales the regret by the same constant. Recall that, for
completeness, we assumed that `t ≡ 0 for t ≤ 0.

Algorithm 1 STRATEGY FOR LINEAR COMPOSITE FUNCTIONS

set d = min{i ≥ 0 : ai 6= 0}
initialize d+ 1 independent instances A0, . . . ,Ad of EXP3.
initialize z0 = z−1 = . . . = z−m+1 = 0
for t = 1 to T do

set j = t mod (d+ 1)
draw xt ∼ Aj , play xt and observe feedback ft(x1:t)
set zt ← 1

ad

(
ft(x1:t)−

∑m
i=d+1 aizt−i

)
feed Aj with feedback zt (for action xt)

end for

We show that an adversary that chooses a linear composite loss induces an easy bandit learning
problem. More specifically, we present a strategy, given in Algorithm 1, that achieves Õ(

√
T ) regret

against any loss function sequence of this type. This strategy uses the EXP3 algorithm (Auer et al.,
2002) as a black box, and relies on the guarantee that EXP3 attains a regret ofO(

√
Tk log T ) against

any oblivious loss sequence, with bandit feedback.

Theorem 7 For any sequence of loss functions f1:T of the form in Eq. (19), the expected regret of
Algorithm 1 satisfies R = O(

√
mTk log k).

The proof of Theorem 7 is deferred to Appendix B.

5. Conclusion

Cesa-Bianchi et al. (2013); Dekel et al. (2013) were the first to show that a finite-horizon online
bandit problem with a finite set of actions can be hard. They achieved this by proving that the
minimax regret of the multi-armed bandit with switching costs has a rate of Θ̃(T 2/3). In this paper,
we defined the class of online learning problems that define their loss values using a composite
loss function, and proved that two non-linear instances of this problem are also hard. Although
we reused some technical components from the analysis in Dekel et al. (2013), the composite loss
function setting is quite distinct from the multi-armed bandit with switching costs, as it does not
explicitly penalize switching. Our result reinforces the idea that the class of hard online learning
problems may be a rich class, which contains many different natural settings. To confirm this, we
must discover additional online learning settings that are provably hard.

We also proved that linear composite functions induce easy bandit learning problems. Charac-
terizing the set of combining functions that induce hard problems remains an open problem.

12
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Appendix A. Technical Proofs

We first prove Lemma 2.

Proof of Lemma 2 We begin with the deterministic parent function used in Sec. 2, denoted here by
ρ̃, and defined as ρ̃(t) = t− gcd(t, 2T ). Additionally, draw independent unbiased Bernoullis B1:T .
We now define the random function ρ. If Bt = 0 then set ρ(t) = t − 1. To define the remaining
values of ρ, rename the ordered sequence (t : Bt = 1) as (U1, U2, . . .) and also set U0 = 0. If
Bt = 1, let k be such that t = Uk and set ρ(t) = Uρ̃(k). This concludes our construction, and we
move on to prove that it satisfies the desired properties.

The probability that ρ(t) = t − 1 is at least 1
2 , since this occurs whenever the unbiased bit Bt

equals zero. Dekel et al. (2013) proves that the width of ρ̃ is bounded by log T + 1, and the width
of ρ never exceeds this bound. Dekel et al. (2013) also proves that the depth of ρ̃ is bounded by
log T + 1. The depth difference d(ρ)− d(ρ̃) is at most maxk(Uk−Uk−1) by construction. A union
bound implies that the probability that this maximum exceeds ` = 2 log T is at most T ·2−` = T−1.
Thus P

(
d(ρ) ≥ 4 log T

)
≤ T−1.

We next provide the proofs of the technical lemmas of Sec. 3. We begin with Lemma 4.

Proof of Lemma 4 Note that the occurrence of Et−1 implies that Wt ≤ Wt−1 − τ and that
Wt+1 ≤Wt− τ , which means that a spike is not added on round t. Therefore, Lt(xt) = Zt(xt) for
any xt and min

(
Lt−1(xt−1), Lt(xt)

)
= Zt(xt) for any xt−1 and xt. The first claim follows from

two applications of this observation: once with xt−1 = xt = Xt−1 and once with xt−1 = xt = χ.
The second claim is obtained by setting xt−1 = Xt−1, xt = Xt.

Proof of Lemma 5 If Xt−1 = χ then R̃t = 0 trivially. Assume henceforth that Xt−1 6= χ. If Et−1

occurs then Lemma 4 guarantees that R̃t = Zt(Xt−1)− Zt(χ), which equals ε by the definition of
Zt. If ¬Et−1 and ¬Et then

R̃t = min
(
Zt−1(Xt−1), Zt(Xt−1)

)
−min

(
Zt−1(χ), Zt(χ)

)
,

which, again, equals ε. If Et occurs then the loss depends on whether Wt−1 ≥ Wt and on the
value of Λt. We can first focus on the case where Wt−1 ≥ Wt. If Λt 6= Xt−1 then the assumption
that η � τ implies that min(Lt−1(χ), Lt(χ)) = Zt−1(χ) and min(Lt−1(Xt−1), Lt(Xt−1)) =
Zt(Xt−1), and therefore

R̃t = Zt(Xt−1)− Zt−1(χ) = ε− |Wt−1 −Wt| , (20)

which could be negative. On the other hand, if Λt = Xt−1, then min(Lt−1(χ), Lt(χ)) = Zt(χ)
and min(Lt−1(Xt−1), Lt(Xt−1)) = Zt−1(Xt−1), and therefore

R̃t = Zt−1(Xt−1)− Zt(χ) = ε+ |Wt−1 −Wt| . (21)

Now note that Λt is an unbiased Bernoulli that is independent of Xt−1 (this argument would have
failed had we directly analyzed Rt instead of R̃t). Therefore, the possibility of having a negative
regret in Eq. (20) is offset by the equally probable possibility of a positive regret in Eq. (21). In
other words,

E
[
R̃t
∣∣Xt−1 6= χ,Wt−1 ≥Wt, Et

]
=

1

2

(
ε− |Wt−1 −Wt|

)
+

1

2

(
ε+ |Wt−1 −Wt|

)
= ε .
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The same calculation applies when Wt−1 < Wt. Overall, we have shown that E[R̃t | Xt−1 6= χ] =
ε.

Proof of Lemma 6 Since Rt and R̃t only differ when Xt 6= Xt−1, we have that

E[Rt − R̃t] = P(Xt 6= Xt−1) E[Rt − R̃t | Xt 6= Xt−1] ,

so it remains to prove that E[Rt−R̃t | Xt 6= Xt−1] = Ω(ητ/σ). We deal with two cases, depending
on the occurrence of Et, and write

E[Rt − R̃t | Xt 6= Xt−1] = P(¬Et | Xt 6= Xt−1) E[Rt − R̃t | Xt 6= Xt−1,¬Et]
+ P(Et | Xt 6= Xt−1) E[Rt − R̃t | Xt 6= Xt−1, Et] . (22)

We begin by lower-bounding the first case, where ¬Et. If Et−1 occurs, then Lemma 4 guaran-
tees that Rt − R̃t = Zt(Xt) − Zt(Xt−1), which is at least −ε. Otherwise, if neither Et−1 or Et
occur, then again Rt − R̃t ≥ −ε. We upper-bound P(¬Et | Xt 6= Xt−1) ≤ 1 and get that

P(¬Et | Xt 6= Xt−1) E[Rt − R̃t | Xt 6= Xt−1,¬Et] ≥ − ε . (23)

Next, we lower-bound the second case, where Et. Lemma 8 below lower-bounds P(Et | Xt 6=
Xt−1) = Ω(τ/σ). Lemma 9 below lower-bounds E[Rt − R̃t | Xt 6= Xt−1, Et] ≥ η/3 − τ for T
sufficiently large. Recalling the assumption that η � τ , we conclude that

P(Et | Xt 6= Xt−1) E[Rt − R̃t | Xt 6= Xt−1, Et] = Ω
(ητ
σ

)
.

Eq. (23) can be neglected since ητ/σ � ε, and this concludes the proof.

Lemma 8 Suppose η, τ ≤ σ/ log T . For all t > 1 it holds that P(Et | Xt 6= Xt−1) = Ω(τ/σ).

Proof By our earlier modification of the algorithm, we assume that

|Ls(Xs)− Lρ(s)(Xρ(s))| ≤ 4σ
√

log T for s ∈ {t− 2, t− 1} (24)

(which occurs with probability at least 1−O(T−4)). Otherwise, the event Xt 6= Xt−1 would never
occur due to our modification of the algorithm and the statement is irrelevant.

In order to prove the lemma, we verify a stronger statement that P(Et | Ft−1) = Ω(τ/σ),
where Ft−1 is the σ-field generated by the player’s observations up to round t − 1 (note that Xt is
Ft−1-measurable). Let f1(`1, . . . , `t−1) be the conditional density of (L1(X1), . . . , Lt−1(Xt−1))
given Et−1, and let f2(`1, . . . , `t−1) be the conditional density of (L1(X1), . . . , Lt−1(Xt−1)) given
Ect−1. We get that

min
f2(`1, . . . , `t−1)P(Ect−1)

f1(`1, . . . , `t−1)P(Et−1)
≥ min

x≤4σ
√

log T

( ex
2/σ2

e(x+η)2/σ2

)2
= 1− o(1) ,

where the the first minimum is over all sequences that are compatible with Eq. (24), and the last
inequality follows from the assumption that η ≤ σ/ log T . Hence, we have

P(Ect−1 | Ft−1) ≥ 1/2 + o(1) . (25)
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Further, we see that

P(Ect−1, ρ(t) = t− 1, ρ(t+ 1) = t, ξt ≥ −τ | Ft−1)

P(Ect−1 | Ft−1)

≥ P(ρ(t) = t− 1, ρ(t+ 1) = t | ρ(1), . . . , ρ(t− 1)) · P(ξt ≥ −τ)

≥ 1− o(1)

8
. (26)

Conditioning on the event Ect−1 ∩ {ρ(t) = t − 1, ρ(t + 1) = t, ξt ≥ −τ}, we note that Et is
independent of Ft−1. Combined with Eq. (25) and Eq. (26), it follows that

P(Et | Ft−1) ≥ 1− o(1)

8
· P(Et | Ect−1, ρ(t) = t− 1, ρ(t+ 1) = t, ξt ≥ −τ)

≥ 1− o(1)

8
· P(|ξt| ≤ τ, ξt+1 < −τ | ξt ≥ −τ)

= Ω(τ/σ) ,

where the last inequality follows from the assumption that τ < σ/ log T .

Lemma 9 For all t > 1 it holds that E[Rt − R̃t | Xt 6= Xt−1, Et] ≥ η/3− τ .

Proof We rewrite E[Rt − R̃t | Xt 6= Xt−1, Et] as

P(Λt = Xt | Xt 6= Xt−1, Et) E[Rt − R̃t | Xt 6= Xt−1, Et,Λt = Xt]

+ P(Λt 6= Xt | Xt 6= Xt−1, Et) E[Rt − R̃t | Xt 6= Xt−1, Et,Λt 6= Xt] .

First consider the case where Λt = Xt, namely, the orientation of the spikes coincides with the
direction of the player’s switch. In this case,

E[Rt − R̃t | Xt 6= Xt−1, Et,Λt = Xt] ≥ η − τ .

If Λt = Xt then the orientation of the spikes does not coincide with the switch direction and

E[Rt − R̃t | Xt 6= Xt−1, Et,Λt 6= Xt] ≥ − τ .

Lemma 10 below implies that

P(Λt = Xt | Xt 6= Xt−1, Et) ≥
1

3
,

which concludes the proof.

Lemma 10 Suppose that η ≤ σ/ log T . For a sufficiently large T it holds that

P(Λt = Xt | Xt 6= Xt−1, Et)

P(Λt 6= Xt | Xt 6= Xt−1, Et)
≥ 1

2
.

16



ONLINE LEARNING WITH COMPOSITE LOSS FUNCTIONS

Proof The ratio on the left can be rewritten, using Bayes’ rule, as

P(Xt 6= Xt−1 | Λt = Xt, Et)

P(Xt 6= Xt−1 | Λt 6= Xt, Et)
.

To see this is at least 1
2 , condition on the history until time t − 2 and note that by our earlier

modification of the algorithm, we may assume that |Lt−1(Xt−1)−Lρ(t−1)(Xρ(t−1))| ≤ 4σ
√

log T .
We let f1(x) be the conditional density of Lt−1(Xt−1)− Lρ(t−1)(Xρ(t−1)) given {Xt = Λt} ∩Et,
and let f2(x) be the conditional density of Lt−1(Xt−1)−Lρ(t−1)(Xρ(t−1)) given {Λt 6= Xt} ∩Et.
Therefore, we see that f1 is the density function for σZ + η, and f2 is the density function for σZ
where Z ∼ N(0, 1). Thus, we have

min
|x|≤4σ

√
log T

f1(x)

f2(x)
= min
|x|≤4σ

√
log T

e−(x−η)2/2σ2

e−x2/2σ2 = 1− o(1) , (27)

where the last inequality follows from the assumption that η ≤ σ/ log T . Now consider two scenar-
ios of the game where the observations are identical up to time t− 2, and then for the two scenarios
we condition on events {Λt = Xt} ∩ Et and {Λt 6= Xt} ∩ Et respectively. Then by Eq. (27) the
observation at time t − 1 is statistically close, and therefore the algorithm will make a decision for
Xt that is statistically close in these two scenarios. Formally, we get that

P(Xt 6= Xt−1 | Λt = Xt, Et)

P(Xt 6= Xt−1 | Λt 6= Xt, Et)
≥ min
|x|≤4σ

√
log T

f1(x)

f2(x)
= 1− o(1) ,

completing the proof of the lemma.

Appendix B. Analysis of Linear Composite Functions

Here we give the proof of Theorem 7.

Proof of Theorem 7 First, observe that zt = `t−d(xt−d) for all t ∈ [T ]. Indeed, for t = 1 this
follows directly from the definition of f1:m (and from the fact that zt = 0 for t ≤ 0), and for t > 1
an inductive argument shows that

zt =
1

ad

(
ft(x1:t)−

m∑
i=d+1

aizt−i

)
=

1

ad

(
ft(x1:t)−

m∑
i=d+1

ai`t−i(xt−i)

)
= `t−d(xt−d) .

Hence, each algorithm Aj actually plays a standard bandit game with the subsampled sequence
of oblivious loss functions `j , `j+(d+1), `j+2(d+1), . . . . Consequently, for each j = 0, 1, . . . , d we
have

∀ x ∈ [k] , E

∑
t∈Sj

`t(xt)

−∑
t∈Sj

`t(x) = O

(√
Tk log k

d

)
, (28)
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where Sj = {t ∈ [T ] : t = j mod (d+ 1)}, and we used the fact that |Sj | = Θ(T/d). Since the
sets S0, . . . , Sd are disjoint and their union equals [T ], by summing Eq. (28) over j = 0, 1, . . . , d
we obtain

∀ x ∈ [k] , E

[
T∑
t=1

`t(xt)

]
−

T∑
t=1

`t(x) = O(
√
dTk log k) = O(

√
mTk log k) . (29)

However, notice that the loss of the player satisfies

T∑
t=1

ft(x1:t) =
T∑
t=1

(
am`t−m(xt−m) + · · ·+ a0`t(xt)

)
≤ am

T∑
t=1

`t(xt) + · · ·+ a0

T∑
t=1

`t(xt)

=
T∑
t=1

`t(xt) ,

where the last equality uses the assumption that
∑m

i=0 ai = 1. A similar calculation shows that for
any fixed x ∈ [k],

T∑
t=1

ft(x, . . . , x) =
T∑
t=1

(
am`t−m(x) + · · ·+ a0`t(x)

)
≥ am

(
T∑
t=1

`t(x)−m

)
+ · · ·+ a0

(
T∑
t=1

`t(x)−m

)

=
T∑
t=1

`t(x)−m .

Putting things together, we obtain that for all x ∈ [k],

T∑
t=1

ft(x1:t)−
T∑
t=1

ft(x, . . . , x) ≤
T∑
t=1

`t(xt)−
T∑
t=1

`t(x) +m .

Finally, taking the expectation of this inequality and combining with Eq. (29) completes the proof.
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