
JMLR: Workshop and Conference Proceedings vol 35:1–24, 2014

Learning Coverage Functions and Private Release of Marginals

Vitaly Feldman VITALY@POST.HARVARD.EDU
IBM Research - Almaden

Pravesh Kothari KOTHARI@CS.UTEXAS.EDU

University of Texas at Austin ∗

Abstract
We study the problem of approximating and learning coverage functions. A function c : 2[n] → R+

is a coverage function, if there exists a universe U with non-negative weights w(u) for each u ∈ U
and subsets A1, A2, . . . , An of U such that c(S) =

∑
u∈∪i∈SAi

w(u). Alternatively, coverage
functions can be described as non-negative linear combinations of monotone disjunctions. They are
a natural subclass of submodular functions and arise in a number of applications.

We give an algorithm that for any γ, δ > 0, given random and uniform examples of an unknown
coverage function c, finds a function h that approximates c within factor 1 + γ on all but δ-fraction
of the points in time poly(n, 1/γ, 1/δ). This is the first fully-polynomial algorithm for learning an
interesting class of functions in the demanding PMAC model of Balcan and Harvey (2012). Our
algorithms are based on several new structural properties of coverage functions. Using the results
in (Feldman and Kothari, 2014), we also show that coverage functions are learnable agnostically
with excess `1-error ε over all product and symmetric distributions in time nlog(1/ε). In contrast, we
show that, without assumptions on the distribution, learning coverage functions is at least as hard
as learning polynomial-size disjoint DNF formulas, a class of functions for which the best known
algorithm runs in time 2Õ(n1/3) (Klivans and Servedio, 2004).

As an application of our learning results, we give simple differentially-private algorithms for
releasing monotone conjunction counting queries with low average error. In particular, for any
k ≤ n, we obtain private release of k-way marginals with average error ᾱ in time nO(log(1/ᾱ)).

1. Introduction

We consider learning and approximation of the class of coverage functions over the Boolean hy-
percube {−1, 1}n. A function c : 2[n] → R+ is a coverage function if there exists a family of sets
A1, A2, . . . , An on a universe U equipped with a weight function w : U → R+ such that for any
S ⊆ [n], c(S) = w(∪i∈SAi), where w(T) =

∑
u∈T w(u) for any T ⊆ U . We view these functions

over {−1, 1}n by associating each subset S ⊆ [n] with vector xS ∈ {−1, 1}n such that xSi = −1 iff
i ∈ S. We define the size (denoted by size(c)) of a coverage function c as the size of a smallest-size
universe U that can be used to define c. As is well-known, coverage functions also have an equivalent
and natural representation as non-negative linear combinations of monotone disjunctions with the
size being the number of disjunctions in the combination.

Coverage functions form a relatively simple but important subclass of the broad class of submodu-
lar functions. Submodular functions have been studied in a number of contexts and play an important
role in combinatorial optimization (Lovász, 1983; Goemans and Williamson, 1995; Fleischer et al.,
2001; Edmonds, 1970; Frank, 1997) with several applications to machine learning (Guestrin et al.,
∗ Part of the work done while the author was at IBM Research - Almaden.

c© 2014 V. Feldman & P. Kothari.

FELDMAN KOTHARI

2005; Krause et al., 2006; Krause and Guestrin, 2011; Iyer and Bilmes, 2013) and in algorithmic
game theory, where they are used to model valuation functions (B. Lehmann and Nisan, 2006;
Dobzinski and Schapira, 2006; Vondrák, 2008). Coverage functions themselves figure in several
applications such as facility location (Cornuejols et al., 1977), private data release of conjunctions
(Gupta et al., 2011) and algorithmic game theory where they are used to model the utilities of agents
in welfare maximization and design of combinatorial auctions (Dughmi and Vondrák, 2011).

In this paper, we investigate the learnability of coverage functions from random examples. The
study of learnability from random examples of the larger classes of functions such as submodular
and fractionally-subadditive functions has been initiated by Balcan and Harvey (2012) who were
motivated by applications in algorithmic game theory. They introduced the PMAC model of learning
in which, given random and independent examples of an unknown function, the learner is required to
output a hypothesis that is multiplicatively close (which is the standard notion of approximation in the
optimization setting) to the unknown target on at least 1− δ fraction of the points. This setting is also
considered in (Balcan et al., 2012; Badanidiyuru et al., 2012). Learning of submodular functions with
less demanding (and more common in machine learning) additive guarantees was first considered
by Gupta et al. (2011), who were motivated by problems in private data release. In this setting the
goal of the learner is equivalent to producing a hypothesis that ε-approximates the target function
in `1 or `2 distance. That is for functions f, g, Ex∼D[|f(x) − g(x)|] or

√
Ex∼D[(f(x)− g(x))2]

where D is the underlying distribution on the domain (with the uniform distribution being the most
common). The same notion of error and restriction to the uniform distribution are also used in several
subsequent works on learning of submodular functions (Cheraghchi et al., 2012; Raskhodnikova
and Yaroslavtsev, 2012; Feldman et al., 2013; Feldman and Vondrák, 2013). We consider both these
models in the present work. For a more detailed survey of submodular function learning the reader is
referred to (Balcan and Harvey, 2012).

1.1. Our Results

We describe the summary of our results below. More detailed presentation and several additional
results appear in the full version of this work contained in (Feldman and Kothari, 2013) and (Feldman
and Kothari, 2014).

1.1.1. DISTRIBUTION-INDEPENDENT LEARNING

Our main results are for the uniform, product and symmetric distribution learning of coverage
functions. However it is useful to first understand the complexity of learning these functions without
any distributional assumptions (for a formal definition and details of the models of learning see Sec.
2). We prove (see Sec. B) that distribution-independent learning of coverage functions is at least as
hard as PAC learning the class of polynomial-size disjoint DNF formulas over arbitrary distributions
(that is DNF formulas, where each point satisfies at most 1 term). Polynomial-size disjoint DNF
formulas is an expressive class of Boolean functions that includes the class of polynomial-size
decision trees, for example. Moreover, there is no known algorithm for learning polynomial-size
disjoint DNFs that runs faster than the algorithm for learning general DNF formulas, the best known
algorithm for which runs in time 2Õ(n1/3) (Klivans and Servedio, 2004). Let CV denote the class of
coverage functions over {−1, 1}n with range in [0, 1].

2

LEARNING COVERAGE FUNCTIONS AND PRIVATE RELEASE OF MARGINALS

Theorem 1 Let A be an algorithm that learns all coverage functions in CV of size at most s with
`1-error ε in time T (n, s, 1

ε). Then, there exists an algorithm A′ that PAC learns the class of s-term
disjoint-DNF in time T (2n, s, 2s

ε).

This reduction gives a computational impediment to fully-polynomial PAC (and consequently PMAC)
learning of coverage functions of polynomial size or any class that includes coverage functions.
Previously, hardness results for learning various classes of submodular and fractionally-subadditive
functions were information-theoretic (Balcan and Harvey, 2012; Badanidiyuru et al., 2012; Balcan
et al., 2012) or required encodings of cryptographic primitives in the function (Balcan and Harvey,
2012).

1.1.2. PAC AND PMAC LEARNING OVER THE UNIFORM DISTRIBUTION

Learning of submodular functions becomes substantially easier when the distribution is restricted to be
uniform (denoted by U). For example, all submodular functions are learnable with `1-error of ε in time
2O(1/ε4) · poly(n) (Feldman et al., 2013) whereas there is a constant α and a distribution D such that
no polynomial-time algorithm can achieve `1-error of α when learning submodular functions relative
to D (Balcan and Harvey, 2012). At the same time achieving fully-polynomial time is often hard
even under this strong assumption on the distribution. For example, polynomial-size disjoint DNF or
monotone DNF/CNF are not known to be learnable efficiently in this setting and the best algorithms
run in nO(log (n/ε)) time. But, as we show below, when restricted to the uniform distribution, coverage
functions are easier than disjoint DNF and are PAC learnable efficiently. Further, they are learnable in
fully-polynomial time even with the stronger multiplicative approximation guarantees of the PMAC
learning model (Balcan and Harvey, 2012). We first state the PAC learning result which is easier to
prove and serves as a step toward the PMAC algorithm.

Theorem 2 There exists an algorithm which, given ε > 0 and access to random uniform examples
of any coverage function c ∈ CV , with probability at least 2/3, outputs a hypothesis h such that
EU [|h(x) − c(x)|] ≤ ε. The algorithm runs in Õ(n/ε4 + 1/ε8) time and uses log n · Õ(1/ε4)
examples.

We note that for general submodular functions exponential dependence on 1/ε is necessary information-
theoretically (Feldman et al., 2013). To obtain an algorithm with multiplicative guarantees we show
that for every monotone submodular (and not just coverage) function multiplicative approxima-
tion can be easily reduced to additive approximation. The reduction decomposes {−1, 1}n into
O(log(1/δ)) subcubes where the target function is relatively large with high probability, specifically
the value of f on each subcube is Ω(1/ log(1/δ)) times the maximum value of f on the subcube.
The reduction is based on concentration results for submodular functions (Boucheron et al., 2000;
Vondrák, 2010; Balcan and Harvey, 2012) and the fact that for any non-negative monotone submod-
ular function f , EU [f] ≥ ‖f‖∞/2 (Feige, 2006). This reduction together with Thm. 2 yields our
PMAC learning algorithm for coverage functions.

Theorem 3 There exists an algorithm which, given γ, δ > 0 and access to random uniform examples
of any coverage function c, with probability at least 2/3, outputs a hypothesis h such that PrU [h(x) ≤
c(x) ≤ (1 + γ)h(x)] ≥ 1− δ. The algorithm runs in Õ(n

γ4δ4 + 1
γ8δ8) time and uses log n · Õ(1

γ4δ4)
examples.

3

FELDMAN KOTHARI

This is the first fully-polynomial (that is polynomial in n, 1/ε and 1/δ) algorithm for PMAC learning
a natural subclass of submodular functions even when the distribution is restricted to be uniform.
As a point of comparison, the sketching result of Badanidiyuru et al. (2012) shows that for every
coverage function c and γ > 0, there exists a coverage function of size poly(n, 1/γ) size that
approximates c within factor 1 + γ everywhere. Unfortunately, it is unknown how to compute this
strong approximation even in subexponential time and even with value queries1 and the distribution
is restricted to be uniform. . Our result shows that if one relaxes the approximation to be over 1− δ
fraction of points then in time polynomial in n, 1/γ and 1/δ one can find a (1 + γ)-approximating
function using random examples alone.

The key property that we identify and exploit in designing the PAC algorithm is that the Fourier
coefficients of coverage functions have a form of (anti-)monotonicity property.

Lemma 4 For a coverage function c : {−1, 1}n → [0, 1] and non-empty T ⊆ V , |ĉ(T)| ≥ |ĉ(V)|.

This lemma allows us to find all significant Fourier coefficients of a coverage function efficiently
using a search procedure analogous to that in the Kushilevitz-Mansour algorithm (Kushilevitz and
Mansour, 1993) (but without the need for value queries). An additional useful property we prove is
that any coverage function can be approximated by a function of few variables (referred to as junta).

Theorem 5 For any coverage function c : {−1, 1}n → [0, 1] and ε > 0, there exists a coverage
function c′, that depends only on O(1/ε2) variables and satisfies EU [|c(x)− c′(x)|] ≤ ε.

By identifying the variables of an approximating junta we make the learning algorithm computa-
tionally more efficient and achieve logarithmic dependence of the number of random examples on
n. This, in particular, implies attribute efficiency (Blum and Langley, 1997) of our algorithm. Our
bound on junta size is tight since coverage functions include monotone linear functions which require
a Ω(1/ε2)-junta for ε-approximation (e.g. (Feldman and Vondrák, 2013)). This clearly distinguishes
coverage functions from disjunctions themselves which can always be approximated using a function
of just O(log(1/ε)) variables. We note that in a subsequent work Feldman and Vondrák (2013)
showed approximation by O(log(1/ε)/ε2)-juntas for all submodular functions using a more involved
approach. They also show that this approximation leads to a 2Õ(1/(δγ)2) · poly(n) PMAC learning
algorithm for all submodular functions.

Exploiting the representation of coverage functions as non-negative linear combinations of
monotone disjunctions, we show that we can actually get a PAC learning algorithm that outputs a
hypothesis that is guaranteed to be a coverage function. That is, the algorithm is proper. The running
time of this algorithm is polynomial in n and, in addition, depends polynomially on the size of the
target coverage function. The details appear in the full version (Feldman and Kothari, 2013).

1.1.3. AGNOSTIC LEARNING ON PRODUCT AND SYMMETRIC DISTRIBUTIONS

We then consider learning of coverage functions over general product and symmetric distributions
(that is those whose PDF is symmetric with respect to the n variables). These are natural general-
izations of the uniform distribution studied in a number of prior works. In our case the motivation
comes from the application to differentially-private release of (monotone) k-conjunction counting
queries referred to as k-way marginals in this context. Releasing k-way marginals with average error

1. A value query on a point in a domain returns the value of the target function at the point. For Boolean functions it is
usually referred to as a membership query.

4

LEARNING COVERAGE FUNCTIONS AND PRIVATE RELEASE OF MARGINALS

corresponds to learning of coverage functions over the uniform distribution on points of Hamming
weight k which is a symmetric distribution (we describe the applications in more detail in the next
subsection).

As usual with Fourier transform-based techniques, on general product distributions the running
time of our PAC learning algorithm becomes polynomial in (1/p)O(log(1/ε)), where p is the smallest
bias of a variable in the distribution. It also relies heavily on the independence of variables and
therefore does not apply to general symmetric distributions. Therefore, we use a different approach to
the problem which learns coverage functions by learning disjunctions in the agnostic learning model
(Haussler, 1992; Kearns et al., 1994b). This approach is based on a simple and known observation
that if disjunctions can be approximated in `1 distance by linear combinations of some basis functions
then so are coverage functions. As a result, the learning algorithm for coverage functions also has
agnostic guarantees relative to `1-error.

Theorem 6 There exists an algorithm which for any product or symmetric distribution D on
{−1, 1}n, given ε > 0 and access examples of a function f : {−1, 1}n → [0, 1] on points sam-
pled from D, with probability at least 2/3, outputs a hypothesis h such that ED[|h(x)− f(x)|] ≤
minc∈CV{ED[|c(x)− f(x)|]}+ ε. The algorithm runs in nO(log (1/ε)) time.

For product distributions, this algorithm relies on the fact that disjunctions can be `1-approximated
within ε by degree O(log(1/ε)) polynomials (Blais et al., 2008). A simpler proof for this approxima-
tion appears in (Feldman and Kothari, 2014) where it is also shown that the same result holds for all
symmetric distributions.

1.1.4. APPLICATIONS TO DIFFERENTIALLY PRIVATE DATA RELEASE

We now briefly overview the problem of differentially private data release and state our results.
Formal definitions and details of our applications to privacy appear in Sec. A and a more detailed
background discussion can for example be found in (Thaler et al., 2012). The objective of a private
data release algorithm is to release answers to all counting queries from a given class C with low
error while protecting the privacy of participants in the data set. Specifically, we are given a data
set D which is a subset of a fixed domain X (in our case X = {−1, 1}n). Given a query class C of
Boolean functions on {−1, 1}n, the objective is to output a data structure H that allows answering
counting queries from C on D with low error. A counting query for c ∈ C gives the fraction of
elements in D on which c equals to 1. The algorithm producing H should be differentially private
(Dwork et al., 2006). The efficiency of a private release algorithm for releasing a class of queries C
with error α on a data set D ⊆ X is measured by its running time (in the size of the data set, the
dimension and the error parameter) and the minimum data set size required for achieving certain
error. Informally speaking, a release algorithm is differentially private if adding an element of X to
(or removing an element of X from) D does not affect the probability that any specific H will be
output by the algorithm significantly.

Releasing Boolean conjunction counting queries is likely the single best motivated and most well-
studied problem in private data analysis (Barak et al., 2007; Ullman and Vadhan, 2011; Cheraghchi
et al., 2012; Hardt et al., 2012; Thaler et al., 2012; Bun et al., 2013; Chandrasekaran et al., 2014;
Dwork et al., 2013). It is a part of the official statistics in the form of reported data in the US Census,
Bureau of Labor statistics and the Internal Revenue Service.

5

FELDMAN KOTHARI

Despite the relative simplicity of this class of functions, the best known algorithm for releasing
all k-way marginals with a constant worst-case error runs in polynomial time for data sets of size at
least nΩ(

√
k) (Thaler et al., 2012). Starting with the work of Gupta et al. (2011), researchers have also

considered the private release problem with low average error with respect to some distribution, most
commonly uniform, on the class of queries (Cheraghchi et al., 2012; Hardt et al., 2012; Dwork et al.,
2013). However, in most applications only relatively short marginals are of interest and therefore
the average error relative to the uniform distribution can be completely uninformative in this case.
As can be easily seen (e.g. (Gupta et al., 2011)), the function mapping a monotone conjunction
c to a counting query for c on a data set D can be written in terms of a convex combination of
monotone disjunctions corresponding to points in D which is a coverage function. In this translation
the distribution on conjunctions becomes a distribution over points on which the coverage function is
defined and the `1 error in approximating the coverage function becomes the average error of the
data release. Therefore using standard techniques, we adapt our learning algorithms to this problem.
Thm. 6 gives the following algorithm for release of k-way marginals.

Theorem 7 Let Ck be the class of all monotone conjunctions of length k ∈ [n]. For every ε >
0, there is an ε-differentially private algorithm which for any data set D ⊆ {−1, 1}n of size
nΩ(log (1/ᾱ)) · log (1/δ)/ε, with probability at least 1− δ outputs a data structure H that answers
counting queries for Ck with respect to the uniform distribution on Ck with an average error of at
most ᾱ. The algorithm runs in time nO(log (1/ᾱ)) · log (1/δ)/ε and the size of H is nO(log (1/ᾱ)).

Note that there is no dependence on k in the bounds and it applies to any symmetric distribution.
Without assumptions on the distribution, Dwork et al. (2013) give an algorithm that releases k-way
marginals with average error ᾱ given a data set of size at least Ω̃(ndk/2e/2 · 1/ᾱ2) and runs in
polynomial time in this size. (They also give a method to obtain the stronger worst-case error
guarantees by using private boosting.)

We then adapt our PAC learning algorithms for coverage functions to give two algorithms for
privately releasing monotone conjunction counting queries over the uniform distribution. Our first
algorithm uses Thm. 2 to obtain a differentially private algorithm for releasing monotone conjunction
counting queries in time polynomial in n (the data set dimension) and 1/ᾱ.

Theorem 8 Let C be the class of all monotone conjunctions. For every ε, δ > 0, there exists an
ε-differentially private algorithm which for any data set D ⊆ {−1, 1}n of size Ω̃(n log(1/δ)/(εᾱ6)),
with probability at least 1− δ, outputs a data structure H that answers counting queries for C with
respect to the uniform distribution with an average error of at most ᾱ. The algorithm runs in time
Õ(n2 log(1/δ)/(εᾱ10)) and the size of H is log n · Õ(1/ᾱ4).

The previous best algorithm for this problem runs is time nO(log (1/ᾱ)) (Cheraghchi et al., 2012). In
addition, using a general framework from (Hardt et al., 2012), one can reduce private release of
monotone conjunction counting queries to PAC learning with value queries of linear thresholds of a
polynomial number of conjunctions over a certain class of “smooth” distributions. Hardt et al. (2012)
show how to use their framework together with Jackson’s algorithm for learning majorities of parities
(Jackson, 1997) to privately release parity counting queries. Using a similar argument one can also
obtain a polynomial-time algorithm for privately releasing monotone conjunction counting queries.
Our algorithm is substantially simpler and more efficient than the one obtained via the reduction in
(Hardt et al., 2012).

6

LEARNING COVERAGE FUNCTIONS AND PRIVATE RELEASE OF MARGINALS

1.2. Related Work

Badanidiyuru et al. (2012) study sketching of coverage functions and prove that for any coverage
function there exists a small (polynomial in the dimension and the inverse of the error parameter)
approximate representation that multiplicatively approximates the function on all points. Their
result implies an algorithm for learning coverage functions in the PMAC model (Balcan and Harvey,
2012) that uses a polynomial number of examples but requires exponential time in the dimension
n. Chakrabarty and Huang (2012) study the problem of testing coverage functions (under what
they call the W-distance) and show that the class of coverage functions of polynomial size can be
reconstructed, that is, one can obtain in polynomial time, a representation of an unknown coverage
function c such that size(c) is bounded by some polynomial in n (in general for a coverage function
c, size(c) can be as high as 2n), that computes c correctly at all points, using polynomially many
value queries. Their reconstruction algorithm can be seen as an exact learning algorithm with value
queries for coverage functions of small size.

In a recent (and independent) work, Yang et al. (2013) develop a subroutine for learning sums of
monotone conjunctions that also relies on the monotonicity the Fourier coefficients (as in Lemma 4).
Their application is in a very different context of learning DNF expressions from numerical pairwise
queries, which given two assignments from {−1, 1}n to the variables, expects in reply, the number
of terms of the target DNF satisfied by both assignments.

2. Preliminaries

We use {−1, 1}n to denote the n-dimensional Boolean hypercube with “false” mapped to 1 and
“true” mapped to −1. Let [n] denote the set {1, 2, . . . , n}. For S ⊆ [n], we denote by ORS :
{−1, 1}n → {0, 1}, the monotone Boolean disjunction on variables with indices in S, that is, for
any x ∈ {−1, 1}n, ORS(x) = 0 ⇔ ∀i ∈ S xi = 1. A monotone Boolean disjunction is a simple
example of a coverage function. To see this, consider a universe of size 1, containing a single element
say u, the associated weight, w(u) = 1, and the sets A1, A2, . . . , An such that Ai contains u if and
only if i ∈ S. In the following lemma we describe a natural and folklore characterization of coverage
functions as non-negative linear combination of non-empty monotone disjunctions (e.g. (Gupta et al.,
2011)). For completeness we include the proof in the full version Feldman and Kothari (2013).

Lemma 9 A function c : {−1, 1}n → R+ is a coverage function on some universe U , if and only if
there exist non-negative coefficients αS for every S ⊆ [n], S 6= ∅ such that c(x) =

∑
S⊆[n],S 6=∅ αS ·

ORS(x), and at most |U | of the coefficients αS are non-zero.

For simplicity and without loss of generality we scale coverage functions to the range [0, 1]. Note
that in this case, for c =

∑
S⊆[n],S 6=∅ αS ·ORS we have

∑
S⊆[n],S 6=∅ αS = c((−1, . . . ,−1)) ≤ 1. In

the discussion below we always represent coverage functions as linear combination of monotone
disjunctions with the sum of coefficients upper bounded by 1. For convenience, we also allow the
empty disjunction (or constant 1) in the combination. Note that OR[n] differs from the constant 1
only on one point (1, 1, . . . , 1) and therefore this more general definition is essentially equivalent for
the purposes of our discussion. Note that for every S, the coefficient αS is determined uniquely by
the function since ORS is a monomial when viewed over {0, 1}n with 0 corresponding to “true”.

7

FELDMAN KOTHARI

2.1. Learning Models

In the PAC learning model the learner has access to random examples of an unknown function from
a known class of functions and the goal is to output a hypothesis with low error (Valiant, 1984). The
PAC model was defined for Boolean functions with the probability of disagreement being used to
measure the error. For our real-valued setting we use `1 error which generalizes the disagreement
error.

Definition 10 (PAC learning with `1-error) Let F be a class of real-valued functions on {−1, 1}n
and let D be a distribution on {−1, 1}n. An algorithm A PAC learns F on D, if for every ε > 0 and
any target function f ∈ F , given access to random independent samples from D labeled by f , with
probability at least 2/3, A returns a hypothesis h such that Ex∼D[|f(x)− h(x)|] ≤ ε. A is said to
be proper if h ∈ F .

We also consider learning from random examples with multiplicative guarantees introduced by
Balcan and Harvey (2012) and referred to as PMAC learning. For a class of non-negative functions
F , a PMAC learner with approximation factor α ≥ 1 and error δ > 0 is an algorithm which, with
probability at least 2/3, outputs a hypothesis h that satisfies Prx∼D[h(x) ≤ f(x) ≤ αh(x)] ≥ 1− δ.
We say that h multiplicatively (α, δ)-approximates f over D in this case. We are primarily interested
in the regime when the approximation ratio α is close to 1 and hence use 1 + γ instead.

We now define agnostic learning with `1-error (Haussler, 1992; Kearns et al., 1994b).

Definition 11 Let F be a class of real-valued functions on {−1, 1}n with range in [0, 1] and let D
be any fixed distribution on {−1, 1}n. For any distribution P over {−1, 1}n × [0, 1], let opt(P,F)
be defined as: opt(P,F) = inff∈F E(x,y)∼P [|y − f(x)|]. An algorithm A, is said to agnostically
learn F onD if for every ε > 0 and any distribution P on {−1, 1}n× [0, 1] such that the marginal of
P on {−1, 1}n is D, given access to random independent examples drawn from P , with probability
at least 2

3 , A outputs a hypothesis h such that E(x,y)∼P [|h(x)− y|] ≤ opt(P,F) + ε.

Given a set of t examples {(xi, yi)}i≤t and a set of m functions φ1, φ2, . . . , φm finding coeffi-
cients α1, . . . , αm which minimize

∑
i≤t

∣∣∣∣∣∣
∑
j≤m

αjφj(x
i)− yi

∣∣∣∣∣∣
can be formulated as a linear program. This LP is referred to as Least-Absolute-Error (LAE) LP,
or `1 linear regression (Wikipedia, 2010). Together with standard uniform convergence bounds for
linear functions (Vapnik, 1998), `1 linear regression gives a general technique for agnostic learning
with `1-error.

Theorem 12 Let F be a class of real-valued functions from {−1, 1}n to [−B,B] for some B > 0,
D be distribution on {−1, 1}n and φ1, φ2, . . . , φm : {−1, 1}n → R be a set of functions that can be
evaluated in time polynomial in n. Assume that there exists ∆ such that for each f ∈ F , there exist
reals α1, α2, . . . , αm such that

E
x∼D

∣∣∣∣∣∣
∑
i≤m

αiφi(x)− f(x)

∣∣∣∣∣∣
 ≤ ∆.

8

LEARNING COVERAGE FUNCTIONS AND PRIVATE RELEASE OF MARGINALS

Then there is an algorithm that for every ε > 0 and any distribution P on {−1, 1}n × [0, 1] such
that the marginal of P on {−1, 1}n is D, given access to random samples from P , with probability
at least 2/3, outputs a function h such that E(x,y)∼P [|h(x) − y|] ≤ ∆ + ε. The algorithm uses
O(m ·B2/ε2) examples, runs in time polynomial in n, m, B/ε and returns a linear combination of
φi’s.

2.2. Fourier Analysis on the Boolean Cube

When learning with respect to the uniform distribution we use several standard tools and ideas from
Fourier analysis on the Boolean hypercube. For any functions f, g : {−1, 1}n → R, the inner
product of f and g is defined as 〈f, g〉 = Ex∼U [f(x) · g(x)]. The `1 and `2 norms of f are defined
by ‖f‖1 = Ex∼U [|f(x)|] and ‖f‖22 = Ex∼U [f(x)2], respectively. Unless noted otherwise, in this
context all expectations are with respect to x chosen from the uniform distribution.

For S ⊆ [n], the parity function χS : {−1, 1}n → {−1, 1} is defined as χS(x) =
∏
i∈S xi.

Parities form an orthonormal basis for functions on {−1, 1}n (for the inner product defined above).
Thus, every function f : {−1, 1}n → R can be written as a real linear combination of parities.
The coefficients of the linear combination are referred to as the Fourier coefficients of f . For
f : {−1, 1}n → R and S ⊆ [n], the Fourier coefficient f̂(S) is given by f̂(S) = 〈f, χS〉 =

E[f(x)χS(x)].The Fourier expansion of f is given by f(x) =
∑

S⊆[n] f̂(S)χS(x). For any function

f on {−1, 1}n its spectral `1-norm is defined as ‖f̂‖1 =
∑

S⊆[n] |f̂(S)|.
It is easy to estimate any Fourier coefficient of a function f : {−1, 1}n → [0, 1], given access

to an oracle that outputs the value of f at a uniformly random point in the hypercube. Given any
parameters ε, δ > 0, we choose a set R ⊆ {−1, 1}n of size Θ(log 1

δ/ε
2) drawn uniformly at random

from {−1, 1}n and estimate f̃(S) = 1
|R|
∑

x∈R[f(x) · χS(x)]. Standard Chernoff bounds can then

be used to show that with probability at least 1− δ, |f̂(S)− f̃(S)| ≤ ε. For any ε > 0, a Boolean
function f is said to be ε-concentrated on a set S ⊆ 2[n] of indices, if

E

(f(x)−
∑
S∈S

f̂(S)χS(x)

)2
 =

∑
S/∈S

f̂(S)2 ≤ ε.

The following simple observation (implicit in (Kushilevitz and Mansour, 1993)) can be used
to obtain spectral concentration from bounded spectral `1-norm for any function f . In addition, it
shows that approximating each large Fourier coefficient to a sufficiently small additive error yields a
sparse linear combination of parities that approximates f . For completeness we include a proof in
the full version.

Lemma 13 Let f : {−1, 1}n → R be any function with ‖f‖2 ≤ 1. For any ε ∈ (0, 1], let L = ‖f̂‖1
and T = {T | |f̂(T)| ≥ ε

2L}. Then f is ε/2-concentrated on T and |T| ≤ 2L2

ε . Further, let S ⊇ T
and for each S ∈ S, let f̃(S) be an estimate of f̂(S) such that

1. ∀S ∈ S, |f̃(S)| ≥ ε
3L and

2. ∀S ∈ S, |f̃(S)− f̂(S)| ≤ ε
6L .

Then, E[(f(x)−
∑

S∈S f̃(S) · χS(x))2] ≤ ε and, in particular, ‖f −
∑

S∈S f̃(S) · χS‖1 ≤
√
ε.

9

FELDMAN KOTHARI

3. Learning Coverage Functions on the Uniform Distribution

Here we present our PAC and PMAC learning algorithms for CV over the uniform distribution.
Structural Results: We start by proving several structural lemmas about the Fourier spectrum of

coverage functions. First, we observe that the spectral `1-norm of coverage functions is at most 2.

Lemma 14 For a coverage function c : {−1, 1}n → [0, 1], ‖ĉ‖1 ≤ 2.

Proof From Lem. 9 we have that there exist non-negative coefficients αS for every S ⊆ [n] such
that c(x) =

∑
S⊆[n] αS · ORS(x). By triangle inequality, we have: ‖ĉ‖1 ≤

∑
S⊆[n] αS · ‖ÔRS‖1 ≤

maxS⊆[n] ‖ÔRS‖1 ·
∑

S⊆[n] αS ≤ maxS⊆[n] ‖ÔRS‖1. To complete the proof, we verify that ∀S ⊆
[n], ‖ÔRS‖1 ≤ 2. For this note that ORS(x) = 1 − 1

2|S|
· Πi∈S(1 + xi) = 1 − 1

2|S|

∑
T⊆S χT (x)

and thus ‖ÔRS‖1 ≤ 1 + 1
2|S|

2|S| = 2.

The small spectral `1-norm guarantees that any coverage function has its Fourier spectrum ε2-
concentrated on some set T of indices of size O(1

ε2
) (Lem. 13). This means that given an efficient

algorithm to find a set S of indices such that S is of size O(1
ε2

) and S ⊇ T we obtain a way to
PAC learn coverage functions to `1-error of ε. In general, given only random examples labeled by a
function f that is concentrated on a small set T of indices, it is not known how to efficiently find
a small set S ⊇ T, without additional information about T (such as all indices in T being of small
cardinality). However, for coverage functions, we can utilize a simple monotonicity property of their
Fourier coefficients to efficiently retrieve such a set S and obtain a PAC learning algorithm with
running time that depends only polynomially on 1/ε.

Lemma 15 (Lem. 4 restated) Let c : {−1, 1}n → [0, 1] be a coverage function. For any non empty
T ⊆ V ⊆ [n], |ĉ(V)| ≤ |ĉ(T)| ≤ 1

2|T |
.

Proof From Lem. 9 we have that there exist constants αS ≥ 0 for every S ⊆ [n] such that∑
S⊆[n] αS ≤ 1 and c(x) =

∑
S⊆[n] αSORS(x) for every x ∈ {−1, 1}n. The Fourier transform of c

can now be obtained simply by observing, as before in Lem. 14 that ORS(x) = 1− 1
2|S|

∑
T⊆S χT (x).

Thus for every T 6= ∅, ĉ(T) = −
∑

S⊇T αS · (
1

2|S|
). Notice that since all the coefficients αS are non-

negative, ĉ(T) and ĉ(V) are non-positive and |ĉ(T)| =
∑

S⊇T αS · (
1

2|S|
) ≥

∑
S⊇V αS · (

1
2|S|

) =

|ĉ(V)| . For an upper bound on the magnitude |ĉ(T)|, we have: |ĉ(T)| =
∑

S⊇T αS ·
1

2|S|
≤∑

S⊇T αS ·
1

2|T |
≤ (
∑

S⊆[n] αS) · 1
2|T |
≤ 1

2|T |
.

We will now use Lemmas 14 and 15 to show that for any coverage function c, there exists another
coverage function c′ that depends on just O(1/ε2) variables and `1-approximates it within ε. Using
Lem. 14, we also obtain spectral concentration for c. We start with some notation: for any x ∈
{−1, 1}n and a subset J ⊆ [n] of variables, let xJ ∈ {−1, 1}J denote the projection of x on J .
Given y ∈ {−1, 1}J and z ∈ {−1, 1}J̄ , let x = y ◦ z denote the string in {−1, 1}n such that xJ = y
and xJ̄ = z (where J̄ denotes the set [n] \ J). We will need the following simple lemma that
expresses the Fourier coefficients of the function fI which is obtained by averaging a function f over
all variables outside of I (a proof can be found for example in (Kushilevitz and Mansour, 1993)).

Lemma 16 For f : {−1, 1}n → [0, 1] and I ⊆ [n], let fI(x) = Ey∼{−1,1}Ī [f(xI ◦ y)]. Then,

f̂I(S) = f̂(S) for every S ⊆ I and f̂I(T) = 0 for every T * I .

10

LEARNING COVERAGE FUNCTIONS AND PRIVATE RELEASE OF MARGINALS

We now show that coverage functions can be approximated by functions of few variables.

Theorem 17 (Thm. 5 restated) Let c : {−1, 1}n → [0, 1] be a coverage function and ε > 0. Let
I = {i ∈ [n] | |ĉ({i})| ≥ ε2

2 }. Let cI be defined as cI(x) = Ey∼{−1,1}Ī [c(xI ◦ y)]. Then cI
is a coverage function that depends only on variables in I , |I| ≤ 4/ε2, size(cI) ≤ size(c) and
‖c− cI‖1 ≤ ε. Further, let T = {T ⊆ [n] | |ĉ(T)| ≥ ε2

2 }. Then T ⊆ 2I and c is ε2-concentrated on
T.

Proof Since c is a coverage function, it can be written as a non-negative weighted sum of monotone
disjunctions. Thus, for every v ∈ {−1, 1}Ī the function, cv : {−1, 1}n → [0, 1] defined as
cv(z ◦ y) = c(z ◦ v) for every y ∈ {−1, 1}Ī is also a non-negative linear combination of monotone
disjunctions, that is a coverage function. By definition, for every z ∈ {−1, 1}I and y ∈ {−1, 1}Ī ,
cI(z ◦y) = 1

2n−|I|

∑
v∈{−1,1}Ī c(z ◦v) = 1

2n−|I|

∑
v∈{−1,1}Ī cv(z ◦y). In other words, cI is a convex

combination of cv’s and therefore is a coverage function itself. Note that for every S ⊆ I if the
coefficient of ORS in cI is non-zero then there must exist S′ ⊆ Ī for which the coefficient of ORS∪S′
in c is non-zero. This implies that size(cI) ≤ size(c). We will now establish that cI approximates c.
Using Lem. 16, ĉ(S) = ĉI(S) for every S ⊆ I . Thus, ‖c− cI‖22 =

∑
T*I ĉ(T)2. We first observe

that T ⊆ 2I . To see this, consider any T * I . Then, ∃i 6∈ I such that i ∈ T and therefore, by
Lem. 15, |ĉ(T)| ≤ |ĉ({i})| < ε2/2. Thus |ĉ(T)| ≤ ε2/2. By Lem. 13, c is ε2-concentrated on T and
using Jensen’s inequality, ‖c− cI‖21 ≤ ‖c− cI‖22 =

∑
T*I ĉ(T)2 ≤

∑
T 6∈T ĉ(T)2 ≤ ε2.

PAC Learning: We now describe our PAC learning algorithm for coverage functions. This algorithm
is used for our application to private query release and also as a subroutine for our PMAC learning
algorithm. Given the structural results above the algorithm itself is quite simple. Using random
examples of the target coverage function, we compute all the singleton Fourier coefficients and
isolate the set Ĩ of coordinates corresponding to large (estimated) singleton coefficients and includes
I = {i ∈ [n] | |ĉ({i})| ≥ ε2

4 }. Thm. 17 guarantees that the target coverage function is concentrated
on the large Fourier coefficients, the indices of which are subsets of Ĩ . We then find a collection
S ⊆ 2Ĩ of indices that contains all T ⊆ Ĩ such that |ĉ(T)| ≥ ε2/4. This can be done efficiently
since by Lem. 15, |ĉ(T)| ≥ ε2/4 only if |ĉ(V)| ≥ ε2/4 for all V ⊆ T , V 6= ∅. We can only
estimate Fourier coefficients up to some additive error with high probability and therefore we keep
all coefficients in the set S whose estimated magnitude is at least ε2/6. Once we have a set S, on
which the target function is ε2-concentrated, we use Lem. 13 to get our hypothesis. Further details
and formal analysis of the PAC learning algorithm for CV are given in App. C.
PMAC Learning: We now describe our PMAC learning algorithm that is based on a reduction
from multiplicative to additive approximation. First we note that if we knew that the values of the
target coverage function c are lower bounded by some m > 0 then we could obtain multiplicative
(1 + γ, δ)-approximation using a hypothesis h with `1 error of γδm/2. To see this note that, by
Markov’s inequality, E[|h(x)− c(x)|] ≤ γδm/2 implies that Pr[|h(x)− c(x)| > γm/2] ≤ δ. Let
h′(x) = max{m,h(x)− γm/2}. Then

1− δ ≤ Pr[|h(x)− c(x)| ≤ γm/2] = Pr[h(x)− γm/2 ≤ c(x) ≤ h(x) + γm/2]

≤ Pr[h′(x) ≤ c(x) ≤ h′(x) + γm] ≤ Pr[h′(x) ≤ c(x) ≤ (1 + γ)h′(x)] (1)

Now, we might not have such a lower bound on the value of c. To make this idea work for all
coverage functions, we show that any monotone submodular function can be decomposed into

11

FELDMAN KOTHARI

regions where it is relatively large (compared to the maximum in that region) with high probability.
The decomposition is based on the following lemma: given a monotone submodular function f
with maximum value M , either Pr[f(x) ≥M/4] ≥ 1− δ/2 or there is an index i ∈ [n] such that
f(x) ≥ M

16 ln (2/δ) for every x satisfying xi = −1. In the first case we can obtain multiplicative
approximation from additive approximation using a slight refinement of our observation above (since
the lower bound on f only holds with probability 1− δ/2). In the second case we can reduce the
problem to additive approximation on the half of the domain where xi = −1. For the other half we
use the same argument recursively. After dlog (2/δ))e levels of recursion at most δ/2 fraction of the
points will remain where we have no approximation. Those are included in the probability of error.
We will need the following concentration inequality for 1-Lipschitz (with respect to the Hamming
distance) submodular functions (Boucheron et al., 2000; Vondrák, 2010; Balcan and Harvey, 2012).

Theorem 18 (Vondrák, 2010) For a non-negative, monotone, 1-Lipschitz submodular function f
and 0 ≤ β < 1, PrU [f(x) ≤ (1− β)EU [f(x)]] ≤ e−β2 E[f]/2.

Another property of non-negative monotone submodular functions that we need is that their expecta-
tion is at least half the maximum value (Feige, 2006). For the special case of coverage functions this
lemma follows simply from the fact that the expectation of any disjunction is at least 1/2.

Lemma 19 (Feige, 2006) For f , a non-negative monotone submodular function, EU [f] ≥ ‖f‖∞/2.

We now prove our lemma that lower bounds the relative value of a monotone submodular function.

Lemma 20 Let f be a non-negative monotone submodular function and M = ‖f‖∞. Then for
every δ > 0, either PrU [f(x) ≤M/4] ≤ δ or there exists an i ∈ [n] such that f(x) ≥ M

16 ln (1/δ) for
every x such that xi = −1.

Proof Let ei ∈ {−1, 1}n equal the bit string that has −1 in its ith coordinate and 1 everywhere
else. For any x ∈ {−1, 1}n let x ⊕ y denote the string z such that zj = xj · yj for every j ∈ [n].
Suppose that for every i ∈ [n], exists x such that xi = −1 and f(x) ≤ M

16 ln (1/δ) . By monotonicity

of f that implies that for every i ∈ [n], f(ei) ≤ M
16 ln (1/δ) . Since f is a submodular function, for any

x and i such that xi = 1, we have: f(x⊕ ei)− f(x) ≤ f(1n ⊕ ei)− f(1n) ≤ f(ei) ≤ M
16 ln (1/δ) .

This implies that f is M
16 ln (1/δ) -Lipschitz. Then, f ′ = f/ M

16 ln (1/δ) is a 1-Lipschitz, non-negative
submodular function. Also, by Lem. 19, E[f] ≥M/2 and E[f ′] ≥ 8 ln (1/δ). Now, using Thm. 18,
we obtain: Pr[f(x) ≤M/4] ≤ Pr[f ′(x) ≤ 1

2 E[f ′]] ≤ e−
1
8 E[f ′] ≤ e− ln (1/δ) = δ.

Further details and formal analysis of the PMAC learning algorithm are given in App. C.2.

4. Agnostic Learning on Product and Symmetric Distributions

In this section, we give optimal algorithms for agnostically learning coverage functions on arbitrary
product and symmetric distributions. Our learning result is based on a simple observation (a special
case of which is implicit in (Cheraghchi et al., 2012)) that an `1-approximation on a distribution
D for all monotone disjunctions by linear combination of functions from a fixed set of functions
yields a similar approximation for CV on D. Such approximation directly gives an agnostic learning
algorithm via `1-regression (Thm. 12).

12

LEARNING COVERAGE FUNCTIONS AND PRIVATE RELEASE OF MARGINALS

A natural and commonly used set of basis functions is the set of all monomials on {−1, 1}n
of some bounded degree. It is easy to see that on product distributions with constant bias, disjunc-
tions longer than some constant multiple of log(1/ε) are ε-close to constant 1. Therefore degree
O(log(1/ε)) suffices for `1 approximation on such distributions. This simple argument does not
work for general product distributions. However it was shown by Blais et al. (2008) that the same
degree (up to a constant factor) still suffices in this case. Their argument is based on the analysis
of noise sensitivity under product distributions and implies additional interesting results. A simpler
proof of this fact also appears in (Feldman and Kothari, 2014), who also show that the same holds if
the distribution is uniform over points of Hamming weight k, for any fixed k ∈ {0, . . . , n}.

Lemma 21 (Feldman and Kothari, 2014) For 0 ≤ k ≤ n, let Πk denote the uniform distribution
over points of Hamming weight k. For every disjunction f and ε > 0, there exists a polynomial p of
degree at most O(log (1/ε)) such that Ex∼Πk [|f(x)− p(x)] ≤ ε.

This result implies a basis for approximating disjunctions over arbitrary symmetric distributions.
All we need is to partition the domain {−1, 1}n into ∪0≤k≤nSk layers and use a (different) poly-
nomial for each layer. Formally, the basis now contains functions of the form IND(k) · χ, where
IND is the indicator function of being in layer of Hamming weight k and χ is a monomial of degree
O(log(1/ε)). These results together with the `1 regression in Thm. 12 prove Thm. 6.

We now remark that any algorithm that agnostically learns the class of coverage functions on n
inputs on the uniform distribution on {0, 1}n in time no(log (1

ε
)) would yield a faster algorithm for the

notoriously hard problem of learning sparse parities with noise. The reduction only uses the fact that
coverage functions include all monotone disjunctions and follows from the results in (Kalai et al.,
2008; Feldman, 2012) (see (Feldman and Kothari, 2014) for details).

5. Conclusions

In this work we described algorithms that provably learn coverage functions efficiently in PAC
and PMAC learning models when the distribution is restricted to be uniform. While the uniform
distribution assumption is a subject of intensive research in computational learning theory, it is
unlikely to ever hold in practical applications. That said, our algorithms make sense and can be used
even when the distribution of examples is not uniform (or product) possibly with some tweaks to
the parameters. In fact, our algorithms include some of the standard ingredients used in practical
machine learning such identification of relevant variables and polynomial regression. Therefore it
would be interesting to evaluate the algorithms on real-world data.

Our work also leaves many natural questions about structure and learnability of coverage and
related classes of functions (such as submodular, OXS and XOS) open. For example: (1) can
coverage functions of unbounded size be PAC/PMAC learned properly and efficiently over the
uniform distribution? (2) can OXS functions be PAC/PMAC learned efficiently over the uniform
distribution? (3) which other natural distributions can coverage functions be learned on efficiently?

Acknowledgements

We are grateful to Jan Vondrak for helpful advice and numerous discussions about this work. We
also thank Or Sheffet for bringing to our attention the problem of achieving low average error in
differentially private query release for short conjunction queries.

13

FELDMAN KOTHARI

References

D. J. Lehmann B. Lehmann and N. Nisan. Combinatorial auctions with decreasing marginal utilities.
Games and Economic Behavior, 55:1884–1899, 2006.

A. Badanidiyuru, S. Dobzinski, H. Fu, R. Kleinberg, N. Nisan, and T. Roughgarden. Sketching
valuation functions. In SODA, pages 1025–1035, 2012.

M.F. Balcan and N. Harvey. Submodular functions: Learnability, structure, and optimization. CoRR,
abs/1008.2159, 2012. Earlier version in proceedings of STOC 2011.

M.F. Balcan, Florin Constantin, Satoru Iwata, and Lei Wang. Learning valuation functions. Journal
of Machine Learning Research - COLT Proceedings, 23:4.1–4.24, 2012.

B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy, and
consistency too: a holistic solution to contingency table release. In PODS, pages 273–282, 2007.

E. Blais, R. O’Donnell, and K. Wimmer. Polynomial regression under arbitrary product distributions.
In COLT, pages 193–204, 2008.

A. Blum and P. Langley. Selection of relevant features and examples in machine learning. Artificial
Intelligence, 97(1-2):245–271, 1997.

A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: the sulq framework. In PODS,
pages 128–138, 2005.

S. Boucheron, G. Lugosi, and P. Massart. A sharp concentration inequality with applications. Random
Struct. Algorithms, 16(3):277–292, 2000.

M. Bun, J. Ullman, and S. P. Vadhan. Fingerprinting codes and the price of approximate differential
privacy. CoRR, abs/1311.3158, 2013.

D. Chakrabarty and Z. Huang. Testing coverage functions. In ICALP (1), pages 170–181, 2012.

K. Chandrasekaran, J. Thaler, J. Ullman, and A. Wan. Faster private release of marginals on small
databases. ITCS, 2014.

M. Cheraghchi, A. Klivans, P. Kothari, and H. Lee. Submodular functions are noise stable. In SODA,
pages 1586–1592, 2012.

G. Cornuejols, M. Fisher, and G. Nemhauser. Location of Bank Accounts to Optimize Float: An
Analytic Study of Exact and Approximate Algorithms. Management Science, 23(8):789–810,
1977.

S. Dobzinski and M. Schapira. An improved approximation algorithm for combinatorial auctions
with submodular bidders. In SODA, pages 1064–1073, 2006.

S. Dughmi and J. Vondrák. Limitations of randomized mechanisms for combinatorial auctions. In
FOCS, pages 502–511, 2011.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data
analysis. In TCC, pages 265–284, 2006.

14

LEARNING COVERAGE FUNCTIONS AND PRIVATE RELEASE OF MARGINALS

C. Dwork, A. Nikolov, and K. Talwar. Efficient algorithms for privately releasing marginals via
convex relaxations. CoRR, abs/1308.1385, 2013.

J. Edmonds. Matroids, submodular functions and certain polyhedra. Combinatorial Structures and
Their Applications, pages 69–87, 1970.

U. Feige. On maximizing welfare when utility functions are subadditive. In ACM STOC, pages
41–50, 2006.

V. Feldman. A complete characterization of statistical query learning with applications to evolvability.
Journal of Computer System Sciences, 78(5):1444–1459, 2012.

V. Feldman and P. Kothari. Learning coverage functions and private release of marginals. arXiv,
CoRR, abs/1304.2079, 2013.

V. Feldman and P. Kothari. Agnostic learning of disjunctions on symmetric distributions. arXiv,
CoRR, abs/1405.6791, 2014.

V. Feldman and J. Vondrák. Optimal bounds on approximation of submodular and xos functions by
juntas. In FOCS, pages 227–236, 2013.

V. Feldman, P. Kothari, and J. Vondrák. Representation, approximation and learning of submodular
functions using low-rank decision trees. In COLT, pages 30:711–740, 2013.

L. Fleischer, S. Fujishige, and S. Iwata. A combinatorial, strongly polynomial-time algorithm for
minimizing submodular functions. JACM, 48(4):761–777, 2001.

A. Frank. Matroids and submodular functions. Annotated Biblographies in Combinatorial Optimiza-
tion, pages 65–80, 1997.

M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut and satisfia-
bility problems using semidefinite programming. J. ACM, 42(6):1115–1145, 1995.

C. Guestrin, A. Krause, and A. Singh. Near-optimal sensor placements in gaussian processes. In
ICML, pages 265–272, 2005.

A. Gupta, M. Hardt, A. Roth, and J. Ullman. Privately releasing conjunctions and the statistical
query barrier. In STOC. ACM, 2011.

M. Hardt, G. Rothblum, and R. Servedio. Private data release via learning thresholds. In SODA,
pages 168–187, 2012.

D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning
applications. Information and Computation, 100(1):78–150, 1992. ISSN 0890-5401.

R. K. Iyer and J. A. Bilmes. Submodular optimization with submodular cover and submodular
knapsack constraints. In NIPS, pages 2436–2444, 2013.

J. Jackson. An efficient membership-query algorithm for learning DNF with respect to the uniform
distribution. Journal of Computer and System Sciences, 55:414–440, 1997.

15

FELDMAN KOTHARI

A. Kalai, A. Klivans, Y. Mansour, and R. Servedio. Agnostically learning halfspaces. SIAM J.
Comput., 37(6):1777–1805, 2008.

M. Kearns, M. Li, and L. Valiant. Learning boolean formulas. J. ACM, 41(6):1298–1328, November
1994a.

M. Kearns, R. Schapire, and L. Sellie. Toward efficient agnostic learning. Machine Learning, 17
(2-3):115–141, 1994b.

A. Klivans and R. Servedio. Learning dnf in time 2õ(n1/3). J. Comput. Syst. Sci., 68(2):303–318,
2004.

A. Krause and C. Guestrin. Submodularity and its applications in optimized information gathering.
ACM TIST, 2(4):32, 2011.

A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal sensor placements: maximizing
information while minimizing communication cost. In IPSN, pages 2–10, 2006.

E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum. SIAM Journal
on Computing, 22(6):1331–1348, 1993.

L. Lovász. Submodular functions and convexity. Mathematical Programmming: The State of the Art,
pages 235–257, 1983.

S. Raskhodnikova and G. Yaroslavtsev. Learning pseudo-boolean k-dnf and submodular functions.
SODA, 2012.

J. Thaler, J. Ullman, and S. Vadhan. Faster algorithms for privately releasing marginals. In ICALP
(1), pages 810–821, 2012.

J. Ullman and S. Vadhan. Pcps and the hardness of generating private synthetic data. In TCC, pages
400–416, 2011.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

V. Vapnik. Statistical Learning Theory. Wiley-Interscience, New York, 1998.

J. Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model.
In STOC, pages 67–74, 2008.

Jan Vondrák. A note on concentration of submodular functions. CoRR, abs/1005.2791, 2010.

Wikipedia. Least absolute deviations, 2010. URL http://en.wikipedia.org/wiki/
Least_absolute_deviations.

L. Yang, A. Blum, and J. Carbonell. Learnability of DNF with representation-specific queries. ITCS,
2013.

16

http://en.wikipedia.org/wiki/Least_absolute_deviations
http://en.wikipedia.org/wiki/Least_absolute_deviations

LEARNING COVERAGE FUNCTIONS AND PRIVATE RELEASE OF MARGINALS

Appendix A. Privately Releasing Monotone Conjunction Counting Queries

In this section we use our learning algorithms to derive privacy-preserving algorithms for releasing
monotone conjunction (equivalently, disjunction) counting queries. We begin with the necessary
formal definitions.

A.1. Preliminaries

Differential Privacy: We use the standard formal notion of privacy, referred to as differential
privacy, proposed by Dwork et al. (2006). For some domain X , we will call D ⊆ X a data set. data
sets D,D′ ⊂ X are adjacent if one can be obtained from the other by adding a single element. In
this paper, we will focus on Boolean data sets, thus, X ⊆ {−1, 1}n for n ∈ N. We now define a
differentially private algorithm. In the following, A is an algorithm that takes as input a data set D
and outputs an element of some set R.

Definition 22 (Differential privacy (Dwork et al., 2006)) An (randomized) algorithm A : 2X →
R is ε-differentially private if for all r ∈ R and every pair of adjacent data sets D,D′, we have
Pr[A(D) = r] ≤ eεPr[A(D′) = r].

Private Counting Query Release: We are interested in algorithms that answer predicate count-
ing queries on Boolean data sets. A predicate counting query finds the fraction of elements in a
given data set that satisfy the predicate. More generally, given a query c : {−1, 1}n → [0, 1], a
counting query corresponding to c on a data set D ⊆ {−1, 1}n of size m := |D|, expects in reply
qc(D) = 1/m

∑
r∈D c(r). In our applications, we will only insist on answering the counting queries

approximately, that is, for some τ > 0, an approximate counting query in the setting above expects
a value v that satisfies |v − 1/m

∑
r∈D c(r)| ≤ τ . We refer to τ as the tolerance of the counting

query. A class of queries C mapping {−1, 1}n into [0, 1], thus induces a counting query function
CQD : C → [0, 1] given by CQD(c) = qc(D) for every c ∈ C. For a class C of such functions and
a data set D, the goal of a data release algorithm is to output a summary H : C → [0, 1] that provides
(approximate) answers to queries in C. A private data release algorithm additionally requires that
H be produced in a differentially private way with respect to the participants in the data set. One
very useful way of publishing a summary is to output a synthetic data set D̂ ⊆ {−1, 1}n such that
for any query c ∈ C, qc(D̂) is a good approximation for qc(D). Synthetic data sets are an attractive
method for publishing private summaries as they can be directly used in software applications that
are designed to run on Boolean data sets in addition to being easily understood by humans.

For a class C of queries mapping {−1, 1}n into [0, 1], and a distribution Π on C, an algorithm
A (α, β)-answers queries from C over a data set D on the distribution Π, if for H = A(D),
Prf∼Π[|CQD(f)−H(f)| ≤ α] ≥ 1− β. For convenience we will only measure the average error
ᾱ and require that Ef∼Π[|CQD(f)−H(f)|] ≤ ᾱ. Clearly, one can obtain an (α, β)-query release
algorithm from an ᾱ-average error query release algorithm by setting ᾱ = α · β.

The key observation for obtaining conjunction query release algorithms from learning algorithms
for coverage functions is that for any data set D and the query class of monotone conjunctions,
1−CQD is a coverage function. Namely, for any S ⊆ [n], let ANDS be the monotone conjunction
∧i∈Sxi which equals 1 iff each xi = −1 for i ∈ S and for x ∈ {−1, 1}n let Sx ⊆ [n] be the set such
that xi = −1 iff i ∈ Sx. Then cD(x)

.
= 1 −CQD(ANDSx) is a coverage function. We include a

simple proof of this fact for completeness.

17

FELDMAN KOTHARI

Lemma 23 For a data set D, let cD : {−1, 1}n → [0, 1] be defined as cD(x) = 1−CQD(ANDSx).
Then cD is a coverage function.

Proof Let x ∈ {−1, 1}n. By definition,

cD(x) = 1−CQD(ANDSx) = 1− 1

|D|
∑
z∈D

ANDSx(z) =
1

|D|
∑
z∈D

(1− ANDSx(z)).

Note that
1− ANDSx(z) = 1−

∧
xi=−1

[zi = −1] =
∨
zi=1

[xi = −1] = ORS−z(x).

Then,

cD(x) =
∑
z∈D

1

|D|
· ORS−z(x).

Lem. 23 implies that for the class of monotone conjunctions C, the set of functions {1 −
CQD|D ⊆ {−1, 1}n} is a subset of CV . Additive error approximation for cD = 1 − CQD is
equivalent to additive error approximation of CQD. Therefore to obtain a private release algorithm
with average error ᾱ relative to a distribution Π over monotone conjunctions, it is sufficient to produce
a hypothesis h that satisfies, Ex∼Π[|cD(x) − h(x)|] ≤ ᾱ, where we view Π also as a distribution
over vectors corresponding to conjunctions (with x corresponding to ANDSx). Note that the average
error is exactly the `1-error in approximation of CQD over distribution Π. A monotone conjunction
query of length k corresponds to a point in {−1, 1} that has exactly k (−1)s.

To convert our learning algorithms to differentially-private release algorithms we rely on the
following proposition that Gupta et al. (2011) prove using technique from (Blum et al., 2005).

Proposition 24 (Gupta et al., 2011) Let A denote an algorithm that uses q counting queries of
tolerance τ in its computation. Then for every ε, δ > 0, with probability 1− δ, A can be simulated
in an ε-differentially private way provided that the size of data set |D| ≥ q(log q+ log(1/δ))/(ε · τ).
Simulation of each query of A takes time O(|D|).

A.2. Releasing k-way Marginals with Low Average Error

We now describe a differentially private algorithm for releasing monotone conjunction counting
queries of length k with low average error. The result is based on a simple implementation of the `1
linear regression algorithm using tolerant counting query access to the data set D. Let Ck be the class
of all monotone conjunctions of length k ∈ [n] and let Πk denote the uniform distribution over Ck.

Theorem 25 For every ε > 0, there is an ε-differentially private algorithm which for any data
set D ⊆ {−1, 1}n of size nΩ(log (1/ᾱ)) · log 1/δ/ε, with probability at least 1− δ publishes a data
structure H that answers counting queries for Ck with an average error of at most ᾱ relative to Πk.
The algorithm runs in time nO(log (1/ᾱ)) · log (1/δ)/ε and the size of H is nO(log (1/ᾱ)).

Proof
In the light of the discussion above, we show how to implement the algorithm described in

Thm. 6 to learn {cD | D ⊆ {−1, 1}n} with tolerant value query access to the data set D. We will

18

LEARNING COVERAGE FUNCTIONS AND PRIVATE RELEASE OF MARGINALS

simulate the algorithm described in Thm. 6 over distribution Πk and with excess `1-error of ᾱ/2.
The algorithm uses `1 linear regression to find a linear combination of t = nO(log (1/ᾱ)) monomials
that best fits random examples (xi, yi).

We can simulate random examples of cD by drawing x from Πk and making the counting query
on the conjunction ANDSx . Since we can only use τ -tolerant queries, we are guaranteed that the
value we obtain, denote it by c̃D(x), satisfies |cD(x)− c̃D(x)| ≤ τ . This additional error in values has
average value of at most τ and hence can cause `1 linear regression to find a solution whose average
absolute error is up to 2τ worse than the average absolute error of the optimal solution. This means
that we are guaranteed that the returned polynomial H satisfies E[|cD(x) −H(x)|] ≤ 2τ + ᾱ/2.
We set τ = ᾱ/4 and obtain that the error is at most ᾱ. This implementation makes nO(log (1/ᾱ))

(ᾱ/4)-tolerant counting queries to the data set D and uses nO(log (1/ᾱ)) time to output H . Applying
Proposition 24, we obtain that there exists a ε-differentially private algorithm to compute an H as
above with the claimed bounds on the size of D and running time.

A.3. Releasing All Marginals with Low Average Error

Next, we show that we can implement the algorithm from Thm. 28 using tolerant counting query
access to the data setD and thereby obtain a private data release algorithm for monotone conjunctions
with low average error relative to the uniform distribution. Notice that since we only promise low-
average error over all monotone conjunction counting queries, for some k’s the average error on
conjunctions of length k can be very large.

Theorem 26 (Thm. 8 restated) Let C be the class of all monotone conjunctions. For every ε, δ > 0,
there exists an ε-differentially private algorithm which for any data set D ⊆ {−1, 1}n of size
Ω̃(n log(1/δ)/(εᾱ6)), with probability at least 1 − δ, publishes a data structure H that answers
counting queries for C with respect to the uniform distribution with average error of at most ᾱ. The
algorithm runs in time Õ(n2 log(1/δ)/(εᾱ10)) and the size of H is log n · Õ(1/ᾱ4).

Proof In the algorithm from Thm. 28 the random examples of the target coverage function c are
used only to estimate Fourier coefficients of c within tolerance θ/2. Thus to implement the algorithm
from Thm. 28, it is sufficient to show that for any index set T ⊆ [n], we can compute ĉD(T) within
θ/2 using tolerant counting query access to D.

Consider any set T ⊆ [n] and recall that for any x ∈ {−1, 1}n, Sx = {i | xi = −1}. From the
proof of Lemma 23, we have: cD = 1/|D|

∑
z∈D ORS−z . Then, we have

ĉD(T) = E
x∼Un

[cD(x) · χT (x)] = E
x∼Un

[
1

|D|
∑
z∈D

ORS−z(x) · χT (x)

]

=
1

|D| E
x∼Un

[ORS−z(x) · χT (x)] =
1

|D|
∑
z∈D

ÔRS−z(T). (2)

Define FT (z) = (1 + ÔRS−z(T))/2. Now FT is a function with range [0, 1] and from equation
(2) above, we observe that ĉD(T) can be estimated with tolerance θ/2 by making a counting query for
FT on D with tolerance θ/4. We now note that `1-error of hypothesis h over the uniform distribution

19

FELDMAN KOTHARI

on {−1, 1}n is the same as the average error ᾱ of answering counting queries using h over the
uniform distribution on monotone disjunctions. Therefore θ/4 = (ᾱ)2/24. The number of queries
made by the algorithm is exactly equal to the number of Fourier coefficients estimated by it which is
O(n+ 1/ᾱ4). The output of the PAC learning algorithm is a linear combination of O(1/ᾱ2) parities
over a subset of O(1/ᾱ2) variables and hence requires log n · Õ(1/ᾱ4) space. Note that given correct
estimates of Fourier coefficients, the PAC learning algorithm is always successful. By applying
Proposition 24, we can obtain an ε-differentially private execution of the PAC learning algorithm that
succeeds with probability at least 1− δ provided that the data set size is

Ω

(
(n+ ᾱ4) log(n+ ᾱ4) + log(1/δ)

εᾱ2

)
= Ω̃(n log(1/δ)/(εᾱ6)).

The running time is dominated by the estimation of Fourier coefficients and hence is O(n+ 1/ᾱ4) =
O(n/ᾱ4) times the size of the data set.

In the full version of this work we also show that our proper PAC learning algorithm for coverage
functions can be used to obtain an algorithm for synthetic data set release for answering monotone
conjunction counting queries.

Appendix B. Distribution-Independent Learning

B.1. Reduction from Learning Disjoint DNFs

In this section we show that distribution-independent learning of coverage functions is at least as
hard as distribution-independent learning of disjoint DNF formulas.

Theorem 27 (Thm. 1 restated) Let A be an algorithm that distribution-independently PAC learns
the class of all size-s coverage functions from {−1, 1}n to [0, 1] in time T (n, s, 1

ε). Then, there exists
an algorithm A′ that PAC learns of s-term disjoint DNFs in time T (2n, s, 2s

ε).

Proof Let d = ∨i≤sTi be a disjoint DNF with s terms. Disjointness of terms implies that d(x) =∑
i≤s Ti(x) for every x ∈ {−1, 1}n. By using de Morgan’s law, we have: d = s−

∑
i≤sDi where

each Di is a disjunction on the negated literals in Ti. We will now use a standard reduction (Kearns
et al., 1994a) through a one-to-one map m : {−1, 1}n → {−1, 1}2n and show that there exists a sum
of monotone disjunctions d′ on {−1, 1}2n such that for every x ∈ {−1, 1}n, d′(m(x)) = s− d(x).
The mapping m maps x ∈ {−1, 1}n to y ∈ {−1, 1}2n such that for each i ∈ [n], y2i−1 = xi and
y2i = −xi. To define d′, we modify each disjunction Dj in the representation of d to obtain a
monotone disjunction D′j and set d′ =

∑
j≤sD

′
j . For each xi that appears in Dj we include y2i−1 in

D′j and for each ¬xi in Dj we include y2i. Thus D′j is a monotone disjunction on y1, . . . , y2n. It is
easy to verify that d(x) = s− d′(m(x)) for every x ∈ {−1, 1}n. Now d′/s = 1− d/s is a convex
combination of monotone disjunctions, that is, a coverage function.

We now describe the reduction itself. As usual, we can assume that the number of terms
in the target disjoint DNF, is known to the algorithm. This assumption can be removed via the
standard “guess-and-double” trick. Given random examples drawn from a distributionD on {−1, 1}n
and labeled by a disjoint DNF d and ε > 0, A′ converts each such example (x, y) to example
(m(x), 1− y

s). On the modified examples, A′ runs the algorithm A with error parameter ε/(2s) and

20

LEARNING COVERAGE FUNCTIONS AND PRIVATE RELEASE OF MARGINALS

obtains a hypothesis h′. Finally, A returns the hypothesis h(x) = “s(1− h′(m(x))) ≥ 1/2” (that is
h(x) = 1 if s(1− h′(m(x))) ≥ 1/2 and h(x) = 0 otherwise).

To establish the correctness of A′ we show that Prx∼D[d(x) 6= h(x)] ≤ ε. By the definition of
h(x) we have that h(x) 6= d(x) only if |d(x)− s(1− h′(m(x)))| ≥ 1/2. Thus, by the correctness
of A, we have

Pr
x∼D

[d(x) 6= h(x)] ≤ 2 E
x∼D

[|(d(x)− (s− sh′(m(x)))|] = 2s · E
x∼D

[|h′(m(x))− (1− d(x)

s
)|] ≤ ε.

Finally, the running time of our simulation is dominated by the running time of A.

Appendix C. Details of the PAC and PMAC Learning Algorithms

C.1. PAC Learning

Theorem 28 (Thm. 2 restated) There exists an algorithm that PAC learns CV in Õ(n/ε4 + 1/ε8)
time and using log n · Õ(1/ε4) examples.

Proof Let c be the target coverage function and let T = {T ⊆ [n] | |ĉ(T)| ≥ ε2

4 }. By Lem. 13, it is
sufficient to find a set S ⊇ T and estimates c̃(S) for each S ∈ S such that:

1. ∀S ∈ S |c̃(S)| ≥ ε2

6 and

2. ∀S ∈ S, |c̃(S)− ĉ(S)| ≤ ε2

12 .

Let θ = ε2/6. In the first stage our algorithm finds a set Ĩ of variables that contains I = {i ∈ [n] |
|ĉ({i})| ≥ ε2

4 }. We do this by estimating all the singleton Fourier coefficients, {ĉ({i}) | i ∈ [n]}
within θ/2 with (overall) probability at least 5/6 (as before we denote the estimate of ĉ(S) by
c̃(S)). We set Ĩ = {i ∈ [n] | c̃({i})| ≥ θ}. If all the estimates are within θ/2 of the corresponding
coefficients then for every i ∈ I , c̃({i}) ≥ ε2/4 − θ/2 = ε2/6 = θ. Therefore i ∈ Ĩ and hence
I ⊆ Ĩ .

In the second phase, the algorithm finds a set S ⊆ 2Ĩ such that the set of all large Fourier
coefficients T is included in S. This is done iteratively starting with S = {∅}. In every iteration, for
every set T that was added in the previous iteration and every i ∈ Ĩ \ T , it estimates ĉ(T ∪ {i})
within θ/2 (the success probability for estimates in this whole phase will be 5/6). If |c̃(T ∪{i})| ≥ θ
then T ∪ {i} is added to S. This iterative process runs until no sets are added in an iteration. At the
end of the last iteration, the algorithm returns

∑
S∈S c̃(S)χS as the hypothesis.

We first prove the correctness of the algorithm assuming that all the estimates are successful. Let
T ∈ T be such that |ĉ(T)| ≥ ε2/4. Then, by Thm. 17, T ⊆ I ⊆ Ĩ . In addition, by Lem. 15, for
all V ⊆ T , V 6= ∅, |ĉ(V)| ≥ ε2/4. This means that for all V ⊆ T , V 6= ∅ an estimate of |ĉ(V)|
within θ/2 will be at least θ. By induction on t this implies that in iteration t, all subsets of T of size
t will be added to S and T will be added in iteration |T |. Hence the algorithm outputs a set S such
that T ⊆ S. By definition, ∀S ∈ S, |c̃(S)| ≥ θ = ε2

6 and ∀S ∈ S, |c̃(S) − ĉ(S)| ≤ θ/2 = ε2

12 . By
Lem. 13, ‖c−

∑
S∈S c̃(S)χS‖1 ≤ ε.

We now analyze the running time and sample complexity of the algorithm. We make the following
observations regarding the algorithm.

21

FELDMAN KOTHARI

• By Chernoff bounds, O(log (n)/θ2) = O(log (n)/ε4) examples suffice to estimate all single-
ton coefficients within θ/2 with probability at least 5/6. To estimate a singleton coefficients of
c, the algorithm needs to look at only one coordinate and the label of a random example. Thus
all the singleton coefficients can be estimated in time O(n log (n)/ε4).

• For every S such that ĉ(S) was estimated within θ/2 and |c̃(S)| ≥ θ, we have that |ĉ(S)| ≥
θ/2 = ε2/12. This implies that |Ĩ| ≤ 2/(θ/2) = 24/ε2. This also implies that |S| ≤ 4/θ =
24/ε2.

• By Lem. 15, for any T ⊆ [n], |ĉ(T)| ≤ 1
2|T |

. Thus, if |ĉ(T)| ≥ θ/2 then |T | ≤ log (2/θ). This
means that the number of iterations in the second phase is bounded by log (2/θ) and for all
S ∈ S, |S| ≤ log (2/θ).

• In the second phase, the algorithm only estimates coefficients for subsets in

S′ = {S ∪ {i} | |c̃(S)| ≥ θ and i ∈ Ĩ}.

Let T′ = {T ∪ {i} | |ĉ(T)| ≥ θ/2 and i ∈ Ĩ}. By Chernoff bounds, a random sample of
size O(log |T′|/θ2) = Õ(1/ε4) can be used to ensure that, with probability at least 5/6, the
estimates of all coefficients on subsets in T′ are within θ/2. When the estimates are successful
we also know that S′ ⊆ T′ and therefore all coefficients estimated by the algorithm in the
second phase are also within θ/2 of true values with probability ≥ 5/6. Overall in the second
phase the algorithm estimates |S′| ≤ |S| · |Ĩ| = O(1/ε4) coefficients. To estimate any single of
those coefficients, the algorithm needs to examine only log (2/θ) = O(log (1/ε)) coordinates
and the label of an example. Thus, the estimation of each Fourier coefficient takes Õ(1/ε4)
time and Õ(1/ε8) time is sufficient to estimate all the coefficients.

Thus, in total the algorithm runs in Õ(n/ε4 + 1/ε8) time, uses log n · Õ(1/ε4) random examples and
succeeds with probability at least 2/3.

C.2. PMAC Learning Coverage Functions

Recall that for any set J ⊆ [n] of variables and x ∈ {−1, 1}n, xJ ∈ {−1, 1}J is defined as the
substring of x that contains the bits in coordinates indexed by J . We are now ready to describe our
reduction that gives a PMAC algorithm for coverage functions.

Theorem 29 (Thm. 3 restated) There exists an algorithm A which, given γ, δ > 0 and access
to random uniform examples of any coverage function c, with probability at least 2/3, outputs a
hypothesis h such that PrU [h(x) ≤ c(x) ≤ (1+γ)h(x)] ≥ 1−δ. Further,A runs in Õ(n

γ4δ4 + 1
γ8δ8)

time and uses log n · Õ(1
γ4δ4) examples.

Proof Algorithm A consists of a call to A′(0), where A′(k) is a recursive procedure described
below.
Procedure A′(k) on examples labeled by c : {−1, 1}n → R+:

1. If k > log (3/δ), then, A′(k) returns the hypothesis h ≡ 0 and halts.

22

LEARNING COVERAGE FUNCTIONS AND PRIVATE RELEASE OF MARGINALS

2. Otherwise, A′(k) computes a 3-approximation to the maximum M of the target function c
(with confidence at least 1− η for η to be defined later). As we show later this can be done
by drawing a sufficient number of random examples labeled by c and choosing M̃ to be the
maximum label. Thus, M3 ≤ M̃ ≤ M . If M̃ = 0, return h ≡ 0. Otherwise, set c′ = c

3M̃
(note that, with probability at least 1− η, c′(x) ∈ [0, 1] for every x).

3. Estimate p = Pr[c(x) ≤ M̃/4] within an additive error of δ
9 by p̃ with confidence at least

1− η. Then, p− δ
9 ≤ p̃ ≤ p+ δ

9 .

4. If p̃ < 2δ/9: run Algorithm from Thm. 28 on random examples labeled by c′ with accuracy
ε1 = 1

12
γ
2
δ
3 and confidence 1−η (note that Algorithm from Thm. 28 only gives 2/3 confidence

but the confidence can be boosted to 1 − η using O(log(1/η)) repetitions with standard
hypothesis testing). Let h′ be the hypothesis output by the algorithm. Return hypothesis
h = max{M̃/4, 3M̃(h′ − γ/24)}.

5. If p̃ ≥ 2δ/9,

(a) Find j ∈ [n] such that c(x) ≥ M̃/(16 ln (9/δ)) for every x such that xj = −1 with
confidence at least 1− η. This can be done by drawing a sufficient number of random
examples and checking the labels. If such j does not exist we output h ≡ 0. Otherwise,
define cj,− : {−1, 1}[n]\j → R+ to be the restriction of c to {−1, 1}[n]\j where xj = −1
and c′j,− = cj,−/(3M̃). Run the algorithm from Thm. 28 on examples labeled by c′j,−
with accuracy ε′ = γ

2 ·
δ
3 ·

1
48 ln (9/δ) and confidence 1 − η. Let h′− be the hypothesis

returned by the algorithm. Set h− = max{M̃/4, 3M̃(h′− −
γ

96 ln (9/δ))}.

(b) Let cj,+ : {−1, 1}[n]\j → R+ to be the restriction of c to {−1, 1}[n]\j where xj = +1.
Run A′(k + 1) on examples labeled by cj,+ and let h+ be the hypothesis returned by the
algorithm.

(c) Return hypothesis h : {−1, 1}n → R+ defined by h(x) =
{
h−(x[n]\j) if xj=−1

h+(x[n]\j) if xj=1

The algorithm can simulate random examples labeled by c′j,− (or cj,+) by drawing random examples
labeled by c, selecting (x, `) such that xj = −1 (or xj = 1) and removing the j-th coordinate.
Since k ≤ log (3/δ) bits will need to be fixed the expected number of random examples required to
simulate one example from any function in the run of A(k) is at most 3/δ.

We now prove the correctness of the algorithm assuming that all random estimations and runs
of the PAC learning algorithm are successful. To see that one can estimate the maximum M of a
coverage function c within a multiplicative factor of 3, recall that by Lem. 19, E[c] ≥M/2. Thus,
for a randomly and uniformly chosen x ∈ {−1, 1}n, with probability at least 1/4, c(x) ≥ M/3.
This means that log(2/η) random examples will suffice to get confidence 1− η.

We now observe that if the condition in step 4 holds then h (1 + γ, 2δ/3)-multiplicatively
approximates c. To see this, first note that in this case, p = Pr[c(x) ≤ M̃/4] ≤ p̃ + δ/9 ≤ δ/3.
Then, Pr[c′(x) ≤ (M̃/4)/(3M̃)] ≤ δ/3. By Thm. 28, E[|c′(x) − h′(x)|] ≤ 1

12
γ
2 ·

δ
3 . Then, by

Markov’s inequality,

Pr[h′(x)− γ/24 > c′(x) or c′(x) > h′(x) + γ/24] ≤ δ/3.

23

FELDMAN KOTHARI

Let h′′(x) = max{1/12, h′(x)− γ/24}. By the same argument as in eq. (1), we get that

Pr[c′(x) ≥ 1/12 and (h′′(x) > c′(x) or c′(x) > (1 + γ)h′′(x))] ≤ δ/3.

Therefore,
Pr[h′′(x) ≤ c′(x) ≤ (1 + γ)h′′(x)] ≥ 1− 2δ/3

or, equivalently,
Pr[h(x) ≤ c(x) ≤ (1 + γ)h(x)] ≥ 1− 2δ/3.

If the condition in step 4 does not hold, then p ≥ 2δ/9 − δ/9 = δ/9. Thus, Pr[c(x) ≤
M/4] ≥ Pr[c(x) ≤ M̃/4] ≥ δ/9, which by Lem. 20 yields that there exists j ∈ [n] such that
c(x) ≥M/(16 ln (9/δ)). Now, by drawing O(log(n/η)/δ) examples and choosing j such that for
all examples where xj = −1, c(x) ≥M/(16 ln (9/δ)) we can ensure that, with probability at least
1− η,

Pr
y∈{−1,1}[n]\j

[cj,−(y) ≤M/(16 ln (9/δ))] ≤ δ/3.

Now, by the same analysis as in step 4, we obtain that h− satisfies Pr[h− ≤ cj,− ≤ (1 + γ)h−] ≥
1− 2δ/3.

Now, observe that the set of points in the domain {−1, 1}n can be partitioned into two disjoint
sets.

1. The set G such that for every z ∈ G, A has fixed the value of the hypothesis given by h(z)
based on some hypothesis returned by the PAC learning algorithm (Thm. 28) or h(z) ≡ 0
when M̃ = 0.

2. The set Ḡ where the recursion has reached depth k > log (3/δ) and step 1 sets h(x) ≡ 0 on
every point in Ḡ.

By the construction, the points in G can be divided into disjoint sub-cubes such that in each of
them, the conditional probability that the hypothesis we output does not satisfy the multiplicative
guarantee is at most 2δ/3. Therefore, the hypothesis h does not satisfy the multiplicative guarantee
on at most 2δ/3 fraction of the points in G. It is easy to see that Ḡ has probability mass at most
δ/3. This is because A = A(0) and thus, when k > log (3/δ), the dimension of the subcube that
A′(k) is invoked on, is at most n− log (3/δ). Thus, the total probability mass of points where the
multiplicative approximation does not hold is at most δ.

We now bound the running time and sample complexity of the algorithm. First note that for
some η = O(1/ log (1/δ)) all the random estimations and runs of the PAC learning algorithm will
be successful with probability at least 2/3 (by union bound).

From Thm. 28, any run of the PAC learning algorithm in some recursive call to A′ requires at
most log n · log (1

η) ·Õ(1
γ4·δ4) examples from their respective target functions. Each such example can

be simulated using Θ(1/δ) examples labeled by c. Thus, in total, in all recursive calls, log n·Õ(1
γ4·δ5)

examples will suffice.
Each run of the PAC learning algorithm requires Õ(n

γ4δ4 + 1
γ8δ8) time. The rest of the compu-

tations in any one recursive call to A′ can be performed in time linear in the number of examples.
Thus, total time required for an execution of A is bounded by Õ(n

γ4δ4 + 1
γ8δ8).

24

	Introduction
	Our Results
	Distribution-independent learning
	PAC and PMAC learning over the uniform distribution
	Agnostic Learning on Product and Symmetric Distributions
	Applications to Differentially Private Data Release

	Related Work

	Preliminaries
	Learning Models
	Fourier Analysis on the Boolean Cube

	Learning Coverage Functions on the Uniform Distribution
	Agnostic Learning on Product and Symmetric Distributions
	Conclusions
	Privately Releasing Monotone Conjunction Counting Queries
	Preliminaries
	Releasing k-way Marginals with Low Average Error
	Releasing All Marginals with Low Average Error

	Distribution-Independent Learning
	Reduction from Learning Disjoint DNFs

	Details of the PAC and PMAC Learning Algorithms
	PAC Learning
	PMAC Learning Coverage Functions

