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Abstract

In this work we analyze the sample complexity of classification by differentially private algorithms.
Differential privacy is a strong and well-studied notion of privacy introduced by Dwork et al. (2006)
that ensures that the output of an algorithm leaks little information about the data point provided
by any of the participating individuals. Sample complexity of private PAC and agnostic learning
was studied in a number of prior works starting with (Kasiviswanathan et al., 2011) but a number
of basic questions still remain open (Beimel et al., 2010; Chaudhuri and Hsu, 2011; Beimel et al.,
2013a,b).

Our main contribution is an equivalence between the sample complexity of differentially-
private learning of a concept class C' (or SCDP((C')) and the randomized one-way communication
complexity of the evaluation problem for concepts from C'. Using this equivalence we prove the
following bounds:

e SCDP(C) = Q(LDim(C)), where LDim(C) is the Littlestone’s dimension characterizing the number
of mistakes in the online-mistake-bound learning model (Littlestone, 1987). This result implies that
SCDP(C) is different from the VC-dimension of C, resolving one of the main open questions from
prior work.

e For any t, there exists a class C such that LDim(C) = 2 but SCDP(C') > t.

e For any ¢, there exists a class C such that the sample complexity of (pure) a-differentially private PAC
learning is 2(¢/ ) but the sample complexity of the relaxed («, 3)-differentially private PAC learning
is O(log(1//)/«). This resolves an open problem from (Beimel et al., 2013b).

We also obtain simpler proofs for a number of known related results. Our equivalence builds on a
characterization of sample complexity by Beimel et al. (2013a) and our bounds rely on a number
of known results from communication complexity.

1. Introduction

In learning tasks, the training data often consists of information collected from individuals. This data
can be highly sensitive, for example in the case of medical or financial information, and therefore
privacy-preserving data analysis is becoming an increasingly important area of study in machine
learning, data mining and statistics (Dwork and Smith, 2009; Sarwate and Chaudhuri, 2013; Dwork
and Roth, 2014).
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In this work we consider learning in PAC (Valiant, 1984) and agnostic (Haussler, 1992; Kearns
et al., 1994) learning models by differentially-private algorithms. Differential privacy gives a formal
semantic guarantee of privacy, saying intuitively that no single individual’s data has too large of an
effect on the output of the algorithm, and therefore observing the output of the algorithm does not
leak much information about an individual’s private data (Dwork et al., 2006) (see Section 2 for the
formal definitions). The downside of this desirable guarantee is that for some problems achieving it
has an additional cost: both in terms of the amount of data, or sample complexity, and computation.

The cost of differential privacy in PAC and agnostic learning was first studied by Kasiviswanathan
etal. (2011). They showed that the sample complexity' of differentially privately learning a concept
class C over domain X, denoted by SCDP(C'), is O(log |C|) and left open the natural question of
whether SCDP(C') = O(VC(C)). Note that the gap between these two measures can be as large
as (and no more than) log(|X|).

Subsequently, Beimel et al. (2010) showed that there exists a large concept class, specifically
single points, for which the sample complexity is a constant. They also show that differentially-
private proper learning (the output hypothesis has to be from C') of single points Point; and thresh-
old functions Thry, on the set I, = {0,1,...,2" — 1} requires Q(b) samples. These results demon-
strate that the sample complexity can be lower than O(log(|C|)) and also that lower bounds on
the sample complexity of proper learning do not necessarily apply to non-proper learning that we
consider here. A similar lower bound on proper learning of thresholds on an interval was given by
Chaudhuri and Hsu (2011) in a continuous setting where the sample complexity becomes infinite.
They also showed that the sample complexity can be reduced to essentially VC(C') by either adding
distributional assumptions or by requiring only the privacy of the labels.

The upper bound of Beimel et al. (2010) is based on an observation from (Kasiviswanathan et al.,
2011) that if there exists a class of functions H such that for every f € C and every distribution D
over the domain, there exists h € H such that Pr,.p[f(z) # h(z)] < € then the sample complexity
of differentially-private PAC learning with error 2¢ can be reduced to O(log(|H|)/e). They refer
to such H as an e-representation of C, and define the (deterministic) e-representation dimension
of C, denoted as DRDim.(C), as log(|H|) for the smallest H that e-represents C. We note that
this natural notion can be seen as a distribution-independent version of the usual e-covering of C' in
which the distribution over the domain is fixed (e.g. Benedek and Itai, 1991).

Subsequently, Beimel et al. (2013a) defined a probabilistic relaxation of e-representation defined
as follows. A distribution # over sets of boolean functions on X is said to (g, §)-probabilistically
represent C' if for every f € C' and distribution D over X, with probability 1 — ¢ over the choice
of H & 4, there exists h € H such that Pryp[h(z) # f(z)] < e. The (g, d)-probabilistic

representation dimension PRDim, 5(C) is the minimal max yegupp(x) log |H|, where the mini-

mum is over all # that (e, §)-probabilistically represent C. Rather surprisingly?, Beimel et al.
(2013a) proved that PRDim, 5(C') characterizes the sample complexity of differentially-private
PAC learning. In addition, they show that PRDim can be upper-bounded by the simpler DRDim as
PRDim(C) = O(DRDim(C) + loglog(|X|)), where we omit € and 6 when they are equal to 1/4.

Beimel et al. (2013b) consider PAC learning with a more relaxed («, 3)-differential privacy
where the privacy guarantee holds with probability 1 — 3. They show that Thr; can be PAC learned

1. For now we ignore the dependence on other parameters and consider them to be small constants.

2. While many other sample complexity bounds in learning theory rely on covering numbers their lower bound does
not involve the standard step of constructing a large packing implied by covering. It is unclear to us if a packing
implies a covering of the same size in this distribution-independent setting (as it does in the case of metric covering).
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using O(16"°2"®) . log(1/8)) samples (o is a constant as before). Their algorithm is proper so
this separates the sample complexity of (pure) differentially-private proper PAC learning from the
relaxed version. This work leaves open the question of whether such a separation can be proved for
non-proper PAC learning.

1.1. Our results

In this paper we resolve the open problems described above. In the process we also establish a
new relation between SCDP and Littlestone’s dimension, a well-studied measure of complexity of
online learning (Littlestone, 1987) (see Section 2.4 for the definition). The main ingredient of our
work is a characterization of DRDim and PRDim in terms of randomized one-way communication
complexity of associated evaluation problems (Kremer et al., 1999). In such a problem Alice is
given as input a function f € C' and Bob is given an input z € X. Alice sends a single message to
Bob, and Bob’s goal is to compute f(x). The question is how many bits Alice must communicate
to Bob in order for Bob to be able to compute f(x) correctly, with probability at least 2/3 over the
randomness used by Alice and Bob.

In the standard or “private-coin” version of this model, Alice and Bob each have their own
source of random coins. The minimal number of bits needed to solve the problem for all f € C
and x € X is denoted by R7(C'). In the stronger “public coin” version of the model, Alice and
Bob share the access to the same source of random coins. The minimal number of bits needed to
evaluate C' (with probability at least 2/3) in this setting is denoted by R™P"?(C). See Section 2.3
for formal definitions.

We show that these communication problems are equivalent to deterministic and probabilistic
representation dimensions of C' and, in particular, SCDP(C) = §(R™PU?(C)) (for clarity we omit
the accuracy and confidence parameters, see Theorem 7 and Theorem 8 for details).

Theorem 1 DRDim(C) = O(R7(C)) and PRDim(C) = O(R™PU6(C)).

The evaluation of threshold functions on a (discretized) interval I, corresponds to the well-
studied “greater than” function in communication complexity denoted as GT. GT(x,y) = 1 if and
only if z > y, where 2,y € {0,1}" are viewed as binary representations of integers. It is known
that R™PUP(GT,) = Q(b) (Miltersen et al., 1998). By combining this lower bound with Theorem
1 we obtain a class whose VC dimension is 1 yet it requires at least {2(b) samples to PAC learn
differentially-privately.

This equivalence also shows that some of the known results in (Beimel et al., 2010, 2013a)
are implied by well-known results from communication complexity, sometimes also giving simpler
proofs. For example (1) the constant upper bound on the sample complexity of single points fol-
lows from the communication complexity of the equality function and (2) the bound PRDim(C') =
O(DRDim(C) 4 1loglog(] X)) follows from the classical result of Newman (1991) on the relation-
ship between the public and private coin models. See Section 3.1 for more details and additional
examples.

Our second contribution is a relationship of SCDP(C) (via the equivalences with R™P4P(C))
to Littlestone’s (1987) dimension of C. Specifically, we prove

Theorem 2

1. R7PUB(C) = Q(LDIim(C)).
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2. For any t, there exists a class C such that LDim(C) = 2 but R™P"(C) > t.

The first result follows from a natural reduction to the augmented index problem, which is well-
studied in communication complexity (Bar-Yossef et al., 2004). While new in our context, the
relationship of Littlestone’s dimension to quantum communication complexity was shown by Zhang
(2011). Together with numerous known bounds on LDim (e.g. Littlestone, 1987; Maass and
Turén, 1994), our result immediately yields a number of new lower bounds on SCDP. In particular,
results of Maass and Turdn (1994) imply that linear threshold functions over Igl require Q(d? - b)
samples to learn differentially privately. This implies that differentially private learners need to pay
an additional dimension d factor as well as a bit complexity of point representation b factor over
non-private learners. To the best of our knowledge such strong separation was not known before for
problems defined over i.i.d. samples from a distribution (as opposed to worst case inputs). Note that
this lower bound is also almost tight since log [HS{| = O(d?(log d + b)) (e.g. Muroga, 1971).

In the second result of Thm. 2 we use the class Line,, of lines in ZIQJ (a plane over a finite field
Zy). A lower bound on the one-way quantum communication complexity of this class was first
given by Aaronson (2004) using his trace distance based method.

Finally, we consider PAC learning with («, /3)-differential privacy. Our lower bound of Q(b) on
SCDP of thresholds together with the upper bound of O(16'°8"®) . log(1/4)) from (Beimel et al.,
2013b) immediately imply a separation between the sample complexities of pure and approximate
differential privacy. We show a stronger separation for the concept class Line),:

Theorem 3 The sample complexity of (o, B)-differentially-privately learning Liney, is O(é log(1/5)).

Our upper bound is also substantially simpler. See Section 5 for details.
Some of the proofs and related discussions are omitted in this version due to space constraints.
The reader is referred to the full version for a more detailed presentation (Feldman and Xiao, 2014).

1.2. Related work

There is now an extensive amount of literature on differential privacy in machine learning and
related areas which we cannot hope to cover here. The reader is referred to the excellent surveys in
(Sarwate and Chaudhuri, 2013; Dwork and Roth, 2014).

Blum et al. (2005) showed that algorithms that can be implemented in the statistical query
(SQ) framework of Kearns (1998) can also be easily converted to differentially-private algorithms.
This result implies polynomial upper bounds on the sample (and computational) complexity of all
learning problems that can be solved using statistical queries (which includes the vast majority of
problems known to be solvable efficiently). Formal treatment of differentially-private PAC and
agnostic learning was initiated in the seminal work of Kasiviswanathan et al. (2011). Aside from
the results we already mentioned, they separated SQ learning from differentially private learning.
Further, they showed that SQ learning is (up to polynomial factors) equivalent to local differential
privacy a more stringent model in which each data point is privatized before reaching the learning
algorithm.

The results of this paper are for the distribution-independent learning, where the learner does
not know the distribution over the domain. Another commonly-considered setting is distribution-
specific learning in which the learner only needs to succeed with respect to a single fixed distri-
bution D known to the learner. Differentially-private learning in this setting and its relaxation in
which the learner only knows a distribution close to D were studied by Chaudhuri and Hsu (2011).
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DRDim, (C) restricted to a fixed distribution D is denoted by DRDim? (C) and equals to the
logarithm of the smallest e-cover of C' with respect to the disagreement metric given by D (also
referred to as the metric entropy). The standard duality between packing and covering numbers
also implies that PRDimg s(C) > DRDIm?(C) — log(125), and therefore these notions are es-
sentially identical. It also2 follows from the prior work (Kasiviswanathan et al., 2011; Chaudhuri
and Hsu, 2011), that DRDimED(C') characterizes the complexity of differentially-private PAC and
agnostic learning up to the dependence on the error parameter ¢ in the same way as it does for
(non-private) learning (Benedek and Itai, 1991). Namely, Q(DRDimZ (C)/a) samples are nec-
essary to learn a-differentially-privately with error & and O(DRDim?/z(C) /(eav)) samples suffice
for a-differentially private PAC learning (and even if only weaker label differentially-privacy is
desired (Chaudhuri and Hsu, 2011)). This implies that in this setting there are no dimension or bit-
complexity costs incurred by differentially-private learners. Chaudhuri and Hsu (2011) also show
that doubling dimension at an appropriate scale can be used to give upper and lower bounds on sam-
ple complexity of distribution-specific private PAC learning that match up to logarithmic factors.
In a related problem of sanitization of queries from the concept class C' the input is a database
D of points in X and the goal is to output differentially-privately a “synthetic” database D such that

for every f € C, ﬁ Y wep f(T) — ﬁ wch f(x)‘ < e. This problem was first considered by

Blum et al. (2013) who showed an upper bound of O(VC(C') - log(| X|) on the size of the database
sufficient for this problem and also showed a lower bound of 2(b) on the number of samples required
for solving this problem when X = Ij, for C' = Thry. It is easy to see that from the point of view of
sample complexity this problem is at least as hard as (differentially-private) proper agnostic learning
of C (e.g. Guptaet al., 2011). Therefore lower bounds on proper learning such as those in (Beimel
et al., 2010) and (Chaudhuri and Hsu, 2011) apply to this problem and can be much larger than
SCDP that we study. That said, to the best of our knowledge, the lower bound for linear threshold
functions that we give was not known even for this harder problem. Aside from sample complexity
this problem is also computationally intractable for many interesting classes C' (see (Ullman, 2013)
and references therein for recent progress).

Sample complexity of more general problems in statistics was investigated in several works
starting with Dwork and Lei (2009) (measured alternatively via convergence rates of statistical
estimators) (Smith, 2011; Chaudhuri and Hsu, 2012; Duchi et al., 2013a,b). A recent work of Duchi
et al. (2013a) shows a number of d-dimensional problems where differentially-private algorithms
must incur an additional factor d/a? cost in sample complexity. However their lower bounds apply
only to a substantially more stringent local and non-interactive model of differential privacy.

Differentially-private communication protocols were studied by McGregor et al. (2010) who
showed that differential-privacy can be exploited to obtain a low-communication protocol and vice
versa. Conceptually this is similar to the equivalence we establish but our contribution is mostly
orthogonal to (McGregor et al., 2010) since the main step in our work is going from a learning
setting to a communication-protocol.

2. Preliminaries

We defer some standard definitions and preliminaries to Section A.
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2.1. Differentially Private Learning

Two sample sets S = {(2i, £;) }icpn), " = {(2}, £;) }icpn) are said to be neighboring if there exists
i € [n] such that (x;,¢;) # (x;, £;), and for all j # i it holds that (z;, ;) = (z7,¢}). For a;, B > 0,
an algorithm A is («, B)-differentially private if for all neighboring S, 5" € (X x {0,1})" and for
all T' C Range(A):

Pr[A(S) € T] < e*Pr[A(S) € T| + 3,

where the probability is over the randomness of A (Dwork et al., 2006). When A is («,0)-
differentially private we say that it satisfies pure differential privacy, which we also write as a-
differential privacy.

Intuitively, each sample (z;, ¢;) used by a learning algorithm is the record of one individual, and
the privacy definition guarantees that by changing one record the output distribution of the learner
does not change by much. We remark that, in contrast to the accuracy of learning requirement, the
differential privacy requirement holds in the worst case for all neighboring sets of examples S, S’,
not just those sampled i.i.d. from some distribution. We refer the reader to the literature for a further
justification of this notion of privacy (Dwork et al., 2006; Dwork, 2006).

The sample complexity SCDP,, . 5(C') is the minimal n such that it is information-theoretically
possible to (e, d)-accurately and a-differentially-privately PAC learn C' with n examples. SCDP
without subscripts refers to SCDP

N

11
474>
2.2. Representation Dimension

Definition 4 (Beimel et al., 2010) The deterministic representation dimension of C, denoted as
DRDim,(C) equals log(|H|) for the smallest H that e-represents C. We also let DRDim(C') =
DRDim1 (C).

4

Definition 5 (Beimel et al., 2013a) The (¢, §)-probabilistic representation dimension PRDim, 5(C')
equals the minimal value of maX g cgupp(2) 10g | H|, where the minimum is over all H that (¢,0)-
probabilistically represent C. We also let PRDim(C') = PRDim1 1(C).
4’4
Beimel et al. (2013a) proved the following characterization of SCDP by PRDim.

Theorem 6 (Kasiviswanathan et al., 2011; Beimel et al., 2013a)
1 ) 1 1
SCDP,.5(C) =0 (ozs (log(l/s) . (PRDlmi,i(C) + log log 55) + log 6))
1
SCDP, . 5(C) = Q| —PRDi C
&5(C) (ag imy /4,14 ( ))

For agnostic learning we have that sample complexity is at most

1 1 1 1
(0] <(a6 + 52> <log(1/s) . <PRDimé1wll(C’) + log log 56) + log 6)) .
This form of upper bounds combines accuracy and confidence boosting from (Beimel et al., 2013a)
to first obtain (e, §)-probabilistic representation and then the use of exponential mechanism as in
(Kasiviswanathan et al., 2011). The results in (Kasiviswanathan et al., 2011) also show the extension

of this bound to agnostic learning. Note that the characterization for PAC learning is tight up to
logarithmic factors.
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2.3. Communication Complexity

Let X and Y be some sets. A private-coin one-way protocol 7(x, y) from Alice who holds x € X
to Bob who holds y € Y is given by Alice’s randomized algorithm producing a communication o
and Bob’s randomized algorithm which outputs a boolean value. We describe Alice’s algorithm by a
function 7 4 (x; r 4 ) of the input x and random bits and Bob’s algorithm 75 (o, y; ) by a function of
input y, communication ¢ and random bits. (These algorithms need not be efficient.) The (random-
ized) output of the protocol on input (z,y) is the value of 7(z,y;74,75) = mp(Ta(x;74),y;7B)
on a randomly and uniformly chosen r4 and r5. The cost of the protocol CC(r) is given by the
maximum |o| over all z € X,y € Y and all possible random coins.

A public-coin one-way protocol 7(z,y) is given by a randomized Alice’s algorithm described
by a function 74 (z; 1) and a randomized Bob’s algorithm described by a function 75 (o, z;7). The
(randomized) output of the protocol on input (z, y) is the value of 7(xz, y;7) = 7g(ma(2;7),9;7)
on a randomly and uniformly chosen 7. The cost of the protocol CC(r) is defined as in the private-
coin case.

Let II77 (g) denote the class of all private-coin one-way protocols 7 computing g with error ¢,
namely private-coin one-way protocols 7 satisfying forallz € X,y € Y

TEEB[W('T? Y;ra, TB) = Q(ZE, y)] >1-c
Define H?’p”b(g) similarly as the class of all public-coin one-way protocols 7 computing g and
RZ*(g) = minyer— (g CC(r) and RZP*(g).

A deterministic one-way protocol 7 and its cost are defined as above but without dependence
on random bits. We will also require distributional notions of complexity, where there is a fixed
input distribution from which z, y are drawn. We define II_7 (g; i) to be all deterministic one-way
protocols 7 such that

Pr[r(z,y) = g(x,y)] > 1—e¢
(zy)p
Define D7 (g; ) = mingeq- (4;) CC(7). A standard averaging argument shows that the quantity
D7 (g; v) remains unchanged even if we took the minimum over randomized (either public or pri-
vate coin) protocols computing g with error < € (i.e. since there must exist a fixing of the private
coins that achieves as good error as the average error).
Yao’s minimax principle (Yao, 1977) tells that for all functions g:

R-"PUP(g) = max D" (g; 1) 2.1
n

2.4. Littlestone’s Dimension

Let C be a concept class over domain X. A mistake tree T' over X and C'is a binary tree in which
each internal node v is labelled by a point x,, € X, each leaf ¢ is labelled by a concept ¢, € C' and
for every node v and leaf ¢: if £ is in the right subtree of v then cy(x,) = 1, otherwise c;(x,) = 0.
We remark that a mistake tree over X and C' does not necessarily include all concepts from C'
in its leaves. Such a tree is complete if all its leaves are at the same depth. Littlestone’s (1987)
dimension LDim(C) is defined as the depth of the deepest complete mistake tree 7" over X and
C. Littlestone’s dimension precisely characterizes the smallest number of mistakes that a learning
algorithm for C' will make (in the worst case) in the online mistake-bound learning model. It is also



FELDMAN XIAO

known to characterize the number of (general) equivalence queries required to learn C' in Angluin’s
(1988) exact model of learning (Littlestone, 1987).

3. Equivalence between representation dimension and communication complexity

We relate communication complexity to private learning by considering the communication problem
associated with evaluating a function f from a concept class C' on an input x € X. Formally, for a
Boolean concept class C over domain X, define Evalc : C'x X — {0, 1} to be the function defined

as Evalg(f,x) = f(x).
Our main result is the following two bounds.

Theorem 7 Forany e € [0,1/2] and § € [0,1], and any concept class C, it holds that:
e PRDim. 5(C) < R_;™"(Evalc).
e PRDim, 5(C) > R_;?**(Evalc)

Proof (<): let m be the public-coin one-way protocol that achieves the optimal communication
complexity c. For each choice of the public random coins r, let [, denote the set of functions
he(x) = wp(o, x;r) over all possible o. Thus, each H, has size at most 2¢. Let the distribution H
be to choose uniformly random r and then output H,..

We show that this family (g, §)-probabilistically represents C'. We know from the fact that 7
computes Evalc with error €4 that it must hold for all f € C and x € X that:

Prrp(ma(fir),air) # f(2)] < &6

T

In particular, it must hold for any distribution D over X that:

Pr(rp(ra(f;r),z;r) # f(x)] < &b

D,r

Therefore, it must hold that
Pr | Pr(rp(ma(fir),wir) # f(@)] > e <6

Note that 75(m(f;7),%;7) = hr, () () € H, and therefore, with probability > 1 — ¢ over the

choice of H, & H, there exists h € H, such that Prplh(x) # f(x)] <e.

(>): let H be the distribution over sets of boolean functions that achieves PRDim, 5(C'). We will
show that for each distribution p over inputs (f, z), we can construct a (¢ + d)-correct protocol for
Evalc over p that has communication bounded by PRDim, ;5(C'). Namely, we will prove that

max D7 5(g; ) < PRDim, 5(C) 3.1
1

By Yao’s minimax principle (Equation (2.1)) (Yao, 1977) this implies that

R_"°(g) < PRDim, 4(C)

Fix p. This induces a marginal distribution F over functions f € C and for every f € C a
distribution Dy which is 1 conditioned on the function being f (note that 4 is equivalent to drawing
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f from F and then x from D). The protocol 7 is defined as follows: use public coins to sample

H & H. Alice knows f and so knows the distribution D. Alice sends the index of A € H such
that Prp, [h(z) # f(z)] < € if such h exists or an arbitrary » € H otherwise. Bob returns h(z).
The error of this protocol can be analyzed as follows. Fix f and let Gy denote the event that

H & 3{ contains & such that Prp sh(x) # f(x)] < e. Observe that Gy is independent of Dy
so that even conditioned on Gy 2 remains distributed according to Dy. Also, since H (e, 9)-
probabilistically represents C, we know that for every f, Pr.[G¢] > 1 — 0. Therefore we can
then deduce that:

Pr [n(fair) = f@)] = Pr [x(fair) = f@)AG+ Pr[x(fair) = f(x) A-Cy]
> Pr [Gf] Prn(fair) = f(2) | G
rnf&F - TPf

>1-60)1-¢e)>1-6—c¢

Thus 7 computes C' with error at most e+ and it has communication bounded by PRDim, 5(C). B

We also establish an analogous equivalence for DRDim and private-coin protocols.
Theorem 8 Forany e € [0,1/2), it holds that:
e DRDim.(C) < R(:;Q(EV&HC)

e DRDim.(C) > R (Evale)

The proof of this theorem is similar to that of Thm. 7 and appears in the full version (Feldman
and Xiao, 2014).

3.1. Applications

Our equivalence theorems allow us to import many results from communication complexity into the
context of private PAC learning, both proving new facts and simplifying proofs of previously known
results in the process.

Separating SCDP and VC dimension. Define Thry as the family of functions ¢, : I, — {0, 1}
for x € I, where t;(y) = 1 if and only if y > 2. The lower bound follows from an observa-
tion that Evalty,, is equivalent to the “greater-than” function GTy(z,y) = 1 if and only if z > v,
where x,y € {0, l}b are viewed as binary representations of integers in I,. Note Evalthy, (t2,7) =
1 — GTy(x,y) and therefore these functions are the same up to the negation. GTj, is a well stud-
ied function in communication complexity and it is known that R?/E,)p”b(GTb) = Q(b) (Miltersen
et al., 1998). By combining this lower bound with Theorem 7 we obtain that VC(Thr,) = 1 yet
PRDim(Thry) = Q(b). From Theorem 6 it follows that SCDP(Thr,) = Q(b).

We note that it is known that VC dimension corresponds to the maximal distributional one-way
communication complexity over all product input distributions. Hence this separation is analogous
to separation of distributional one-way complexity over product distributions and the maximal dis-
tributional complexity over all distributions achieved using the greater-than function (Kremer et al.,
1999).

We also give more such separations using lower bounds on PRDim based on Littlestone’s di-
mension. These are discussed in Section 4.
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Probabilistic vs. deterministic representation dimension. It was shown by Newman (1991)
that public and private coin complexity are the same up to additive logarithmic terms. In our setting
(and with a specific choice of error bounds to simplify presentation), Newman’s theorem says that

R;j3(Evalo) < R7™®(Evale) + O(loglog(/C|| X)) (3.2)

We know by Sauer’s lemma that log |C| < O(VC(C) - log | X|), therefore we deduce that:
Ryj3(Evale) < Rl_;ép“b(Evalc) + O(loglog VC(C') + loglog | X )

By our equivalence theorems, this implies that
DRDim, /3(C) < PRDimj /3 /3(C) + O(loglog VC(C) + loglog | X|)

A (slightly weaker) version of this was first proved in (Beimel et al., 2013a), whose proof is similar
in spirit to the proof of Newman’s theorem. We also remark that the fact that DRDim, /3(Point;,) =
Q(log b) while PRDim; /3(Point;) = O(1) (Beimel et al., 2010, 2013a) corresponds to the fact that
the private-coin complexity of the equality function is £2(log b), while the public-coin complexity is
O(1). Here Point is the family of point functions, i.e. functions that are zero everywhere except
on a single point.

Simpler learning algorithms. Using our equivalence theorems, we can “import” results from
communication complexity to give simple private PAC learners. For example, the well-known con-
stant communication equality protocol using hashing can be converted to a probabilistic representa-
tion using Theorem 7, which can then be used to learn point functions. While the resulting learner
resembles the constant sample complexity learner for point functions described in (Beimel et al.,
2010), we believe that this view provides useful intuition.

Furthermore, in some cases, this connection even leads to efficient private PAC learning al-
gorithms. Namely, if there is a communication protocol for Evals where both Alice’s and Bob’s
algorithms are polynomial-time, and in addition the resulting probabilistic representation is of poly-
nomial size, then one can run the exponential mechanism efficiently to differentially privately learn
C. For example, this is the case with point functions, where the probabilistic representation has
constant size.

Another way in which our equivalence theorems simplify the study of private PAC learning
is by giving an alternative way to reduce error, notably without explicitly using sequential boost-
ing as was done in (Beimel et al., 2013a). Given a private PAC learner with constant error, say
(e,0) = (1/8,1/8), one can first convert the learner to a communication protocol with error 1/4,
use O(log ﬁ) simple independent repetitions to reduce the error to €’d’, and then convert the pro-
tocol back into a (&', §')-probabilistic representation.’

4. Lower Bounds via Littlestone’s Dimension

In this section, we show that Littlestone’s dimension lower bounds the sample complexity of differentially-
private learning. Let C' be a concept class over X of LDim d. Our proof is based on a re-
duction from the communication complexity of Evalc to the communication complexity of Aug-
mented Index problem on d bits. Auglndex is the promise problem where Alice gets a string

3. The “magic” here happens when we convert between the communication complexity and probabilistic representation
using min-max type arguments. This is the same tool that can be used to prove (computationally inefficient) boosting
theorems.
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r1,...,09 € {0,1}% and Bob gets i € [d] and z1,...,2;_1, and Augindex(z, (4, 7[-1)) = T
where z(;_y = (z1,...,2;—1). A variant of this problem in which the length of the prefix is not
necessarily ¢ but some additional parameter m was first explicitly defined by Bar-Yossef et al. (2004)
who proved that it has randomized one-way communication complexity of (d — m). The version
defined above is from (Ba et al., 2010) where it is also shown that a lower bound for Auglndex
follows from an earlier work of (Miltersen et al., 1998). We use the following lower bound for
Auglndex.

Lemma 9 R_7(Auglindex) > (1 — H(e))d, where H(e) = elog(1/e) + (1 — e)log(1/(1 —¢)) is
the binary entropy function.

A proof of this lower bound can be easily derived by adapting the proof in (Bar-Yossef et al., 2004)
and we include it in the full version (Feldman and Xiao, 2014).
We now show that if LDim(C') = d then one can reduce Auglndex on d bit inputs to Evalc.

Lemma 10 Let C be a concept class over X and d = LDim(C'). There exist two mappings
me : {0,1}¢ — C and my : Uieia {0, 1} — X such that for every x and i € [d], the value of
mc () on point mx (z(;_y)) is equal to Auglndex(x, (i, z;_1))) = ;.

Proof By the definition of LDim there exists a complete mistake tree 7" over X and C' of depth
d. For z € {0,1} consider a path from the root of the tree such that at step j € [d] we go to left
subtree if z; = 0 and right subtree if z; = 1. Such path will end in a leaf which we denote by
£, and the concept that labels it by c,. Let Uz;_,, denote the internal node at depth ¢ on this path
(with vy being the root) and let z;, ,, denote the point in X that labels v, , . Note that 2, , is
uniquely determined by z; ). We define the mapping m¢ as m¢(z) = ¢, forall z € {0, 1}¢ and
the mapping mx as mx(y) = z, forall y € Uie[d]{o, 1}*. To prove that the mappings correctly
reduce Auglndex to Evalc it suffices to note that by definition of a mistake tree over X and C, ¢, is
in the subtree of v, 1] and the value of ¢, on Zay ) is determined by whether ¢, is in the right (1)
or left (0) subtree of Va;_y)- By the definition of £, this is exactly z;. |

An immediate corollary of Lem. 10 and 9 is the following lower bound.
Corollary 11 Let C be a concept class over X and d = LDim(C'). R (Eval¢) > (1 — H(e))d.

A stronger form of this lower bound was proved by Zhang (2011) who showed that the power of
Partition Tree lower bound technique for one-way guantum communication complexity of Nayak
(1999) can be expressed in terms of LDim of the concept class associated with the communication
problem.

4.1. Applications

We can now use numerous known lower bounds for Littlestone’s dimension of C' to obtain lower
bounds on sample complexity of private PAC learning. Here we list several examples of known
results where LDim(C') is (asymptotically) larger than the VC dimension of C.

1. LDim(Thry) = b (Littlestone, 1987). VC(Thr) = 1.

11
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2. Let BOX? denote the class of all axis-parallel rectangles over [2°]¢, namely all concepts
rs¢ for s,t € [2°]? defined as 754(z) = 1if and only if for all i € [d], s; < z; < t;.
LDim(BOX{) > b - d (Littlestone, 1987). VC(BOXY) = d + 1.

3. Let HS{ denote class of all linear threshold functions over [2°]%. LDim(HS{) = b-d(d—1)/2.
This lower bound is stated in (Maass and Turan, 1994). We are not aware of a published

proof and therefore a proof based on counting arguments in (Muroga, 1971) appears in the
full version (Feldman and Xiao, 2014). VC(HS{) = d + 1.

4. Let BALLgl denote class of all balls over [2°]%, that is all functions obtained by restricting a
Euclidean ball in R? to [2°]%. Then LDim(BALLY) = Q(b - d?) (Maass and Turan, 1994).
VC(BALLY) = d + 1.

4.2. Separation from PRDim

While it is natural to ask whether PRDim is equal to LDim, in fact the communication complexity
literature (Zhang, 2011) already contains the following counter-example separating PRDim and
LDim. Define:

Line, = {f : Z5 — {0,1} : 3a,b € Z s.t. f(x,y) = liff ax + b =y}

It is easy to see that LDim(Line,) = 2. It was also shown (Aaronson, 2004) that the quantum
one-way communication complexity of Evaliine, is ©(logp). This already implies a separation
between LDim and PRDim using Theorem 7 and the fact that quantum one-way communication
lower-bounds randomized public-coin communication.

We give a new and simpler proof of Aaronson’s result for randomized public-coin communica-
tion in the full version (Feldman and Xiao, 2014).

5. Separating pure and («, 3)-differential privacy

We prove that it is possible to learn Line, with («, 5)-differential privacy and (e, §) accuracy us-
ing O(Eia log % log %) samples. This gives further evidence that it is possible to obtain much bet-
ter sample complexity with («, 3)-differential privacy than pure differential privacy. Our separa-
tion is somewhat stronger than that implied by our lower bound for Thr;, and the upper bound of
0(16""(®)) in (Beimel et al., 2013b) since for Line, we are able to match the non-private sample
complexity (when the privacy and accuracy parameters are constant*), even though, as mentioned
in the previous section, randomized one-way communication complexity and therefore the SCDP
of Line, is asymptotically ©(logp). We note that our learner is not proper since in addition to lines
it may output point functions and the all zero function.

Theorem 12 For any prime p, any ,0, o, 3 € (0,1/2), one can (g, §)-accurately learn Line,, with
(«, B)-differential privacy using O(i log % log %) samples.

We sketch the idea here and defer the full proof to Section B. The key observation is that for
Line,, any two positively labeled points uniquely define the hidden concept. By sampling enough
points, intuitively we will fall into one of three cases:

4. Formally a bound for constant 3 is uninformative since weak 1/ dependence is achievable by naive subsampling.
In our case the dependence on 1/ is logarithmic and we can ignore this issue.

12
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1. We see two positively labeled points and can recover the hidden concept.

2. We see only one positively labeled point, in which case we can safely output just a point
function that is positive on this point.

3. We see no positively labeled points, in which case we can safely output the all zero function.

We define a “basic learner” that takes O(1) samples and outputs a concept according to the above
rule.

If indeed we are in one of the above cases, we can then use the “propose-test-release” paradigm
(Dwork and Lei, 2009) to release the hidden concept: we run the learner many times and hope
that in almost every execution it will output the exact same hypothesis. If this is the case we can
release this unique hypothesis as follows: compute the number of samples that must be modified in
order to change the majority hypothesis, add noise to make this number differentially private, and
if it exceeds some appropriate threshold output the hypothesis, otherwise output the constant zero
hypothesis.

There is a technical detail to overcome: it may be the case that the input distribution does not
fall into any of the above cases, but lands “between” two of them, in which case the basic learner
will oscillate between, say, outputting a line or outputting a point function. To handle this case, we
randomize the number of samples we feed to the basic learner, and show that with high probability
we pick a number such that we land firmly in one of the three good cases.

Finally, randomizing the number of samples leads to constant sample complexity but the depen-
dence on confidence ¢ ends up being bad. We boost the confidence by running the poor-sample-
complexity learner many times and sampling a single output using the exponential mechanism of
McSherry and Talwar (2007).
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Appendix A. Additional preliminaries
A.1. Learning models

Definition 13  An algorithm A PAC learns a concept class C from n examples if for every ¢ >
0,0 >0, f € C and distribution D over X, A given access to S = {(v;, ;) }ic|n) where each x; is
drawn randomly from D and {; = f(x;), outputs, with probability at least 1 — & over the choice of
S and the randomness of A, a hypothesis h such that Pr,.p[f(z) # h(z)] < e.

Agnostic learning: The agnostic learning model was introduced by Haussler (1992) and Kearns
et al. (1994) in order to model situations in which the assumption that examples are labeled by
some f € C' does not hold. In its least restricted version the examples are generated from some
unknown distribution P over X x {0, 1}. The goal of an agnostic learning algorithm for a concept
class C' is to produce a hypothesis whose error on examples generated from P is close to the best
possible by a concept from C'. For a Boolean function / and a distribution P over X x {0, 1} let
A(P,h) = Pr(, o~plh(x) # {]. Define A(P,C) = infpec{A(P, h)}. Kearns et al. (1994) define
agnostic learning as follows.

Definition 14 An algorithm A agnostically learns a concept class C' if for every ¢ > 0,6 > 0,
distribution P over X x {0,1}, A given access to S = {(;, ;) }ic|n) where each (x;,¢;) is drawn
randomly from P, outputs, with probability at least 1 — § over the choice of S and the randomness
of A, a hypothesis h such that A(P,h) < A(P,C) + ¢.

In both PAC and agnostic learning model an algorithm that outputs a hypothesis in C' is referred to

as proper.

Appendix B. Separation between PRDim and impure differential privacy

We restate the learner satisfying impure differential privacy.

Theorem 15 (Restatement of Theorem 12) For any prime p, any €,6,«, 3 € (0,1/2), one can
(e, 0)-accurately learn Line, with (o, B)-differential privacy using O(i log % log %) samples.

We prove this theorem in two steps: first we construct a learner with poor dependence on ¢ and
then amplify using the exponential mechanism to obtain a learner with good dependence on .

B.1. A learner with poor dependence on ¢

Lemma 16 For any prime p, any ,6,«, 3 € (0,1/2), it suffices to take 0(526/5 . élog %)
samples in order to (g, 0)-learn Line, with («, 8)-differential privacy.
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Proof At a high level, we run the basic (non-private) learner based on VC-dimension O(i log %)
times. We use the fact that Line, is stable in that after a constant number of samples, with high
probability there is a unique hypothesis that classifies the samples correctly. (This is simply because
any two distinct points on a line define the line.) Therefore, in each of the executions of the non-
private learner, we are likely to recover the same hypothesis. We can then release this hypothesis
(a, B)-privately using the “Propose-Test-Release” framework.

The main challenge in implementing this intuition is to eliminate corner cases, where with
roughly probability 1/2 the sample set may contain two distinct positively labeled points and with
probability 1/2 only a single positively labeled point, as this would lead to unstable outputs. We do
this by randomizing the number of samples we take.

Let t be a number of samples, to be chosen later. Given ¢ samples (z1,y1),. .., (%, y:), our
basic learner will do the following:

1. See if there exist two distinct samples (x;, ;) # (x;,y;) that are both classified positively. If
s0, output the unique line defined by these points.

2. Otherwise, see if there exists any sample (x;, ;) classified positively. Output the point func-
tion that outputs 1 on (z;, y;) and zero elsewhere.

3. Otherwise, output the constant 0 hypothesis.

Our overall learner uses the basic learner as follows: first sample an integer k uniformly from
the interval [log(In(3/2)/¢),log(In(3/2)/¢) + 6/6] and set t = 2F. Set £ = max{%ln% +
13,72In 3}. Set n = tL.

1. Take n samples and cut them into £ subsamples of size ¢, and run the basic learner on each of
these.

2. Let the returned hypotheses be hy, ..., hy. Define freq(hq, ..., hy) = argmax;, [{h; = h |
i € [£]}], i.e. the most frequently occurring hypothesis, breaking ties using lexicographical
order. We define h = freq(hq, ..., hy). Compute c to be the smallest number of h; that must
be changed in order to change the most frequently occuring hypothesis, i.e.

c=min{c|3hY,..., hy, freq(hl, ..., hy) # h,c= |{i | h; # hi}|}

3. fc+ A(l/a) > é In % + 1 then output h, otherwise output the constant 0 hypothesis.

Here, A(1/c) denotes the Laplace distribution, whose density function at point z equals e,
It is easy to check that adding A(1/«) to a sum of Boolean values renders that sum «-differentially
private (Dwork et al., 2000).

We analyze the overall learner. Observe that once ¢ is fixed, the basic learner is deterministic
algorithm.

Privacy: we prove that the overall learner is («, 3)-differentially private. Consider any two neigh-
boring inputs z, z’ € (Z2)". There are two cases:

e The most frequent hypothesis / returned by running the basic learner on the ¢ subsamples of
x, 7' is the same. In this case, there are two possible outputs of the mechanism, either / or the
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0 hypothesis. Due to the fact that we decide between them using a count with Laplace noise
and the count has sensitivity 1, the probability assigned to either output changes by at most a
multiplicative e~ factor between x, 2.

e The most frequent hypotheses are different. In this case ¢ = 1 for both z, 2’. The probability
of not outputting 0 in either case is given by

Pr{A(1/a) > ém zi] _5

Otherwise, in both cases they output 0.
Accuracy: we now show that the overall learner (e, §)-PAC learns. We claim that:

Claim 17 Fix any hidden line f and any input distribution D. With probability 1 — /2 over the
choice of t, there is a unique hypothesis with error < ¢ that the basic learner will output with
probability at least 2/3 when given t independent samples from D.

Let us first assume this claim is true. Then it is easy to show that the overall learner (e, §)-learns:
suppose we are in the 1 — §/2 probability case where there is a unique hypothesis with error < &
output by the basic learner. Then, by Chernoff, since ¢ > 72 ln% it holds that with probability
1—4§/4 atleast 7/12 fraction of the basic learner outputs will be this unique hypothesis. This means
that the number of samples that must be modified to change the most frequent hypothesis is ¢ > %.
Therefore since ¢ > % In % 413, in this case the probability that the overall learner does not output
this unique hypothesis is bounded by:

Prlc+ A(=) < éln%—i—l} <PrlA(2) < —1In 4] =$
d.

1 1
(03 (634
Thus the overall probability of not returning an e-good hypothesis is at most

Proof of Claim 17 Fix a concept f defined by a line given by (a, b) € Zg and any input distribu-
tion D over Z.

Define the following events None;, One;, Two; parameterized by an integer ¢ > 0 and defined
over the probability space of drawing (x1,¥1), - - -, (z¢, y:) independently from D:

e None; is the event that all of the (z;, y;) are not on the line (a, b).

e One; is the event that there exists some (x;, y;) on the line (a, ), and furthermore for every
other (x;,y;) on the line (a, b) is in fact equal to (x;, ;).

e Twoy is the event that there exists distinct (z;,y;) # (x;,y;) that are both on the line (a, b).

Next we will show that with probability 1 — /2 over the choice of ¢, one of these three events has
probability at least 2/3, and then we show that this suffices to imply the claim.

Let 1 = Pr plf(z,y) = 1], let ¢oy = Prnopl(@’,y) = (z,9)], and let ¢ =
MaX(y )ef-1(1) do,y- We can characterize the probabilities of None;, One;, Two; in terms of r, ¢, ¢
as follows:

Pr[None;] = (1 —r)*

PriOne] = 3. ((A-r+asy) —(1=7))
(zy)ef~1(1)
Pr[Two;] = 1 — Pr[None;] — Pr[One]
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The characterizations for None;, Two; are obvious. The characterization of One; is exactly the
probability over all (z,y) € f~1(1) that all samples are either labeled 0 or equal (z, %), excluding
the event that they are all labeled 0.

From the above and by considering the (x, y) maximizing ¢, ,, we have the following bounds:

Pr[None;] > 1 —rt 2.1
PriOne] > (1—r+q)f —(1—-7)'>1—(r—qt —e ™ (2.2)
Pr[Two,] > (1 — e "/2)(1 — e~ (—9)4/2) (2.3)

The first two follow directly from the fact that for all x € R it holds that 1 — z < e* and also
for all z € [0,1] and y > 1 it holds that (1 — z)¥ > 1 — zy. Equation (2.3) follows from the
following argument. Two; contains the sub-event where there is at least one positive example in the
first t /2 samples and a different positive example in the second ¢/2 samples. The probability of this
sub-event is lower-bounded by (1 — (1 —r)!/2)(1 — (1 —7+¢)¥/?) > (1 — e "/2)(1 — e~ (r=D1/2),

t is good with high probability. Let us say that ¢ is good for None; if t < % We say t is good for
One; if t € [IHTG, 6(T£q)]. We say t is good for Two, if t > 27,1%6. (It is possible that some of these
events may be empty, but this does not affect our argument.) Using Equation (2.1), Equation (2.2)
and Equation (2.3), it is clear that if ¢ is good for some event, then the probability of that event is at
least 2/3.

Let us say ¢ is good if it is good for any one of None;, One;, Two;. t is good means the following

when viewed on the logarithmic scale:

logt € |0, log% —log3] U [log% + logIn 6, log ﬁ —log6] U [log r%q + log(21n6), c0)
But this means that ¢ is bad on the logarithmic scale is equivalent to:
logt € (log % —log 3, log% +logln6) U (log ﬁ —log 6, log T—iq +log(21n6)) (2.4)

Thus, for any r, there are at most 3 integer values of log ¢ that are bad. But recall that t = 2¥ where
k is uniformly chosen from {log(In(3/2)/¢),...,log(In(3/2)/e) 4+ 6/d}. Therefore the probability
that £ = log t is one of the bad values defined in Equation (2.4) is at most /2.

When t is good, basic learner outputs unique accurate hypothesis. To conclude, we argue that
when ¢ is good then the basic learner will output a unique hypothesis with error < ¢ with probability
> 2/3. This is obvious when ¢ is good for Twoy, since whenever the basic learner sees two points
on the line, it recovers the exact line. It is also easy to see that when ¢ is good for None;, the basic
learner outputs the 0 hypothesis with probability 2/3, and this has error at most ¢ since

2/3 < Pr[None)] < (1 —7) <e ™ =7 <In(3/2)/t<e

It remains to argue that the basic learner outputs a unique hypothesis with error at most € when ¢
is good for One;. Observe that we have actually set the parameters so that when ¢ is good for Oney,
it holds that:

Pr[One; A unique positive point is (Zmax, Ymax)] > 2/3 (2.5)

where (Zmax, Ymax) = argmax, ,ye f-1(1) da.y- Therefore, for such ¢, the basic learner will output
the point function that is positive on exactly (Zmax, Ymax) With probability at least 2/3.
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To show that this point function has error at most ¢, it suffices to prove that

Prif(z,y) = 1A (2,y) # (Tmax, Ymax)] =7 — ¢ < €
From Equation (2.5), we deduce that:
2/3<(1—r4q)f—1-r)i<e D= r_g<InB3/2)/t<e

This concludes the proof. |

Improving dependence on 6: We now improve the exponential dependence on 1/4 in Lemma 16
to prove Theorem 12. We will use the algorithm of Lemma 16 with 6 = 1/2 and accuracy /2 k =
O(log(1/9)) times independently in order to construct a set H of k hypotheses. We then draws a
fresh sample S of O(log(1/9)/(ecx)) examples and select one of the hypotheses based on their error
on S using the exponential mechanism of (McSherry and Talwar, 2007). This mechanism chooses
a hypothesis from H with probability proportional to e~®*"s(")/2 where errg(h) is errg(h) =
{(xz,€) € S| h(z) # £}|. Simple analysis (e.g. Kasiviswanathan et al., 2011; Beimel et al.,
2013a) then shows that the selection mechanism is «a-differentially private and outputs a hypothesis
that has error of at most € on D with probability at least 1 — . Note that each of the k copies
of the low-confidence algorithm and the exponential mechanism are run on disjoint sample sets
and therefore there is no privacy loss from such composition. Hence the resulting algorithm is
also («a, §)-differentially private. We include formal details in the full version (Feldman and Xiao,
2014).
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