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Abstract
We study online aggregation of the predictions of experts, and first show new second-order regret
bounds in the standard setting, which are obtained via a version of the Prod algorithm (and also
a version of the polynomially weighted average algorithm) with multiple learning rates. These
bounds are in terms of excess losses, the differences between the instantaneous losses suffered by
the algorithm and the ones of a given expert. We then demonstrate the interest of these bounds in
the context of experts that report their confidences as a number in the interval [0, 1] using a generic
reduction to the standard setting. We conclude by two other applications in the standard setting,
which improve the known bounds in case of small excess losses and show a bounded regret against
i.i.d. sequences of losses.

1. Introduction

In the (simplest) setting of prediction with expert advice, a learner has to make online sequen-
tial predictions over a series of rounds, with the help of K experts (Freund and Schapire, 1997;
Littlestone and Warmuth, 1994; Vovk, 1998; Cesa-Bianchi and Lugosi, 2006). In each round
t = 1, . . . , T , the learner makes a prediction by choosing a vector pt = (p1,t, . . . , pK,t) of non-
negative weights that sum to one. Then every expert k incurs a loss `k,t ∈ [a, b] and the learner’s
loss is ̂̀t = p>t `t =

∑K
k=1 pk,t`k,t, where `t = (`1,t, . . . , `K,t). The goal of the learner is to

control his cumulative loss, which he can do by controlling his regret Rk,T against each expert k,
where Rk,T =

∑
t6T

(̂̀
t − `k,t

)
. In the worst case, the best bound on the standard regret Rk,T

that can be guaranteed is of order O
(√
T lnK

)
; see, e.g., Cesa-Bianchi and Lugosi (2006), but this

can be improved. For example, when losses take values in [0, 1], Rk,T = O
(√

Lk,T lnK
)
, with

Lk,T =
∑T

t=1 `k,t, is also possible, which is better when the losses are small—hence the name
improvement for small losses for this type of bounds (Cesa-Bianchi and Lugosi, 2006).

Second-order bounds Cesa-Bianchi et al. (2007) raised the question of whether it was possible
to improve even further by proving second-order (variance-like) bounds on the regret. They could
establish two types of bound, each with its own advantages. The first is of the form

Rk,t 6
lnK

η
+ η

T∑
t=1

`2k,t (1)
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for all experts k, where η 6 1/2 is a parameter of the algorithm. If one could optimize η with
hindsight knowledge of the losses, this would lead to the desired bound

((((
((((

((((
(((

Rk,T = O

(√
lnK

∑T
t=1 `

2
k,t

)
, (2)

but, unfortunately, no method is known that actually achieves (2) for all experts k simultaneously
without such hindsight knowledge. As explained by Cesa-Bianchi et al. (2007) and Hazan and Kale
(2010), the technical difficulty is that the optimal η would depend on

∑
t `

2
k?T ,t

, where

k?T ∈ argmin
k=1,...,K


T∑
t=1

`k,t +

√√√√lnK
T∑
t=1

`2k,t

 .

But, because k?T can vary with T , the sequence of the
∑
`2k?t ,t

is not monotonic and, as a conse-
quence, standard tuning methods (like for example the doubling trick) cannot be applied directly
on this sequence (only on the least non-decreasing sequence larger than it, which is then the key
quantity in the regret bound though it is difficult to interpret).

This is why this issue — when hindsight bounds seem too good to be obtained in a sequential
fashion — is sometimes referred to as the problem of impossible tuning. Improved bounds with
respect to (1) have been obtained by Hazan and Kale (2010) and Chiang et al. (2012) but they suffer
from the same impossible tuning issue.

The second type of bound distinguished by Cesa-Bianchi et al. (2007) is of the form

Rk,T = O

(√
lnK

∑T
t=1vt

)
, (3)

uniformly over all experts k, where vt =
∑

k6K pk,t
(̂̀
t − `k,t

)2 is the variance of the losses at
instance t under distribution pt. It can be achieved by a variant of the exponentially weighted
average forecaster using the appropriate tuning of a time-varying learning rate ηt (Cesa-Bianchi
et al., 2007; de Rooij et al., 2013). The bound (3) was shown in the mentioned references to have
several interesting consequences (see Section 5). Its main drawback comes from its uniformity: it
does not reflect that it is harder to compete with some experts than with other ones.

Excess losses Instead of uniform regret bounds like (3), we aim to get expert-dependent regret
bounds. We see this result as a steppingstone to solving the open problem of impossible tuning
stated in (2).

The key quantities in our analysis turn out to be the instantaneous excess losses `k,t − ̂̀t, and
we provide in Sections 2 and 3 a new second-order bound of the form

Rk,T = O

(√
lnK

∑T
t=1(

̂̀
t − `k,t)2

)
, (4)

which holds for all experts k simultaneously. To achieve this bound, we develop a variant of the Prod
algorithm of Cesa-Bianchi et al. (2007) with two innovations: first we extend the analysis for Prod
to multiple learning rates ηk (one for each expert) in the spirit of a variant of the Hedge algorithm
with multiple learning rates proposed by Blum and Mansour (2007). Standard tuning techniques
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for the learning rates would then still lead to an additional O(
√
K lnT ) multiplicative factor, so,

secondly, we develop new techniques that bring this factor down to O(ln lnT ), which we consider
to be essentially a constant. Duchi et al. (2011) also studied learning with multiple learning rates in
a somewhat different context, namely, general online convex optimization; but the obtained regret
bound is uniform over the experts.

The interest of the bound (4) is demonstrated in Sections 4 and 5, as well as in the recent paper
by Wintenberger (2014). Section 4 considers the setting of prediction with experts that report their
confidences as a number in the interval [0, 1], which was first studied by Blum and Mansour (2007).
Our general bound (4) leads to the first bound on the confidence regret that scales optimally with
the confidences of each expert. Section 5 returns to the standard setting described at the beginning
of this paper: we show an improvement for small excess losses, which supersedes the basic im-
provement for small losses described at the beginning of the introduction. Also, we prove that in
the special case of independent, identically distributed losses, our bound leads to a constant regret.
Finally, Wintenberger (2014) shows that bounds of the form (4) entail regret bounds on the cumula-
tive predictive risks of the associated strategy without any assumption on the underlying stochastic
process (in particular, without the usual dependency assumptions).

2. A new regret bound in the standard setting

We extend the Prod algorithm of Cesa-Bianchi et al. (2007) to work with multiple learning rates.

Algorithm 1 Prod with multiple learning rates (ML-Prod)

Parameters: a vector η = (η1, . . . , ηK) of positive learning rates
Initialization: a vector w0 = (w1,0, . . . , wK,0) of nonnegative weights that sum to 1

For each round t = 1, 2, . . .
1. form the mixture pt defined component-wise by pk,t = ηkwk,t−1

/
η>wt−1

2. observe the loss vector `t and incur loss ̂̀t = p>t `t
3. for each expert k perform the update wk,t = wk,t−1

(
1 + ηk

(̂̀
t − `k,t

))

Theorem 1 For all sequences of loss vectors `t ∈ [0, 1]K , the cumulative loss of Algorithm 1 run
with learning rates ηk 6 1/2 is bounded by

T∑
t=1

̂̀
t 6 min

16k6K

{
T∑
t=1

`k,t +
1

ηk
ln

1

wk,0
+ ηk

T∑
t=1

(̂̀
t − `k,t

)2}
.

If we could optimize the bound of the theorem with respect to ηk, we would obtain the desired
result:

T∑
t=1

̂̀
t 6 min

16k6K


T∑
t=1

`k,t + 2

√√√√ T∑
t=1

Vk,t ln
1

wk,0

 (5)

where Vk,t =
(̂̀
t − `k,t

)2. The question is therefore how to get the optimized bound (5) in a fully
sequential way. Working in regimes (resorting to some doubling trick) seems suboptimal, since K
quantities

∑
t Vk,t need to be controlled simultaneously and new regimes will start as soon as one of
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these quantities is larger than some dyadic threshold. This would lead to an additional O(
√
K lnT )

multiplicative factor in the bound. We propose in Section 3 a finer scheme, based on time-varying
learning rates ηk,t, which only costs a multiplicative O(ln lnT ) factor in the regret bounds. Though
the analysis of a single time-varying parameter is rather standard since the paper by Auer et al.
(2002), the analysis of multiple such parameters is challenging and does not follow from a routine
calculation. That the “impossible tuning” issue does not arise here was quite surprising to us.

Empirical variance of the excess losses A consequence of (5) is the following bound, which is
in terms of the empirical variance of the excess losses `k,t − ̂̀t:

T∑
t=1

̂̀
t 6 min

16k6K


T∑
t=1

`k,t + 4 ln
1

wk,0
+ 2

√√√√ T∑
t=1

(̂̀
t − `k,t −

Rk,T
T

)2

ln
1

wk,0

 . (6)

Proposition 2 Suppose losses take values in [0, 1]. If (5) holds, then (6) holds.

Proof A bias-variance decomposition indicates that, for each k,

T∑
t=1

Vk,t =
T∑
t=1

(̂̀
t − `k,t

)2
=

T∑
t=1

(̂̀
t − `k,t −Rk,T /T

)2
+ T

(
Rk,T /T

)2
. (7)

It is sufficient to prove the result when the minimum is restricted to k such that Rk,T > 0. For such
k, (5) implies that R2

k,T 6 4T ln(1/wk,0). Substituting this into the rightmost term of (7), the result
into (5), and using that

√
x+ y 6

√
x+
√
y for x, y > 0 concludes the proof.

Proof [of Theorem 1] The proof follows from a simple adaptation of Lemma 2 in Cesa-Bianchi
et al. (2007) and takes some inspiration from Section 6 of Blum and Mansour (2007).

For t > 0, we denote by rt ∈ [−1, 1]K the instantaneous regret vector defined component-wise
by rk,t = ̂̀

t − `k,t and we define Wt =
∑K

k=1wk,t. We bound lnWT from above and from below.
On the one hand, using the inequality ln(1 + x) > x− x2 for all x > −1/2 (stated as Lemma 1

in Cesa-Bianchi et al., 2007), we have, for all experts k, that

lnWT > lnwk,T = lnwk,0 +
T∑
t=1

ln
(
1 + ηkrk,t

)
> lnwk,0 + ηk

T∑
t=1

rk,t − η2k
T∑
t=1

r2k,t .

The last inequality holds because, by assumption, ηk 6 1/2 and hence ηk
(̂̀
t − `k,t

)
6 1/2 as well.

We now show by induction that, on the other hand, WT = W0 = 1 and thus that lnWT = 0.
By definition of the weight update (step 3 of the algorithm), Wt equals

K∑
k=1

wk,t =

K∑
k=1

wk,t−1

(
1 + ηkrk,t

)
= Wt−1 +

( K∑
k=1

ηkwk,t−1︸ ︷︷ ︸
=η>wt−1

)̂̀
t −

K∑
k=1

ηkwk,t−1︸ ︷︷ ︸
=η>wt−1 pk,t

`k,t .

Substituting the definition of pt (step 1 of the algorithm), as indicated in the line above, the last two
sums are seen to cancel out, leading to Wt = Wt−1. Combining the lower bound on lnWT with its
value 0 and rearranging concludes the proof.
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3. Algorithms and bound for parameters varying over time

To achieve the optimized bound (5), the learning parameters ηk must be tuned using advance knowl-
edge of the sums

∑T
t=1

(̂̀
t − `k,t

)2. In this section we show how to remove this requirement, at the
cost of a logarithmic factor ln lnT only (unlike what would be obtained by working in regimes as
mentioned above). We do so by having the learning rates ηk,t for each expert vary with time.

3.1. Multiplicative updates (adaptive version of ML-Prod)

We generalize Algorithm 1 and Theorem 1 to Algorithm 2 and Theorem 3.

Theorem 3 For all sequences of loss vectors `t ∈ [0, 1]K , for all rules prescribing sequences of
learning rates ηk,t 6 1/2 that, for each k, are nonincreasing in t, the cumulative loss

∑
t6T

̂̀
t of

Algorithm 2 is bounded by

min
16k6K

{
T∑
t=1

`k,t +
1

ηk,0
ln

1

wk,0
+

T∑
t=1

ηk,t−1
(̂̀
t − `k,t

)2
+

1

ηk,T
ln

(
1 +

1

e

K∑
k′=1

T∑
t=1

(
ηk′,t−1
ηk′,t

− 1

))}
.

Algorithm 2 Prod with multiple adaptive learning rates (Adapt-ML-Prod)

Parameter: a rule to sequentially pick positive learning rates
Initialization: a vector w0 = (w1,0, . . . , wK,0) of nonnegative weights that sum to 1

For each round t = 1, 2, . . .
0. pick the learning rates ηk,t−1 > 0 according to the rule
1. form the mixture pt defined component-wise by pk,t = ηk,t−1wk,t−1

/
η>t−1wt−1

2. observe the loss vector `t and incur loss ̂̀t = p>t `t
3. for each expert k perform the update

wk,t =

(
wk,t−1

(
1 + ηk,t−1

(̂̀
t − `k,t

))) ηk,t
ηk,t−1

Corollary 4 With uniform initial weights w0 = (1/K, . . . , 1/K) and learning rates, for t > 1,

ηk,t−1 = min

{
1

2
,

√
lnK

1 +
∑t−1

s=1

(̂̀
s − `k,s

)2
}
,

the cumulative loss of Algorithm 2 is bounded by

min
16k6K

{
T∑
t=1

`k,t +
CK,T√

lnK

√√√√1 +

T∑
t=1

(̂̀
t − `k,t

)2
+ 2CK,T

}
,

where CK,T = 3 lnK + ln

(
1 +

K

2e

(
1 + ln(T + 1)

))
= O(lnK + ln lnT ).
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This optimized corollary is the adaptive version of (5). Its proof is postponed to Section A.3
of the additional material (and shows that meaningful bounds can be achieved as well with non-
uniform initial weights). Here we only give the main ideas in the proof of Theorem 3. The complete
argument is given in Section A.2 of the additional material. We point out that the proof technique
is not a routine adaptation of well-known tuning tricks such as, for example, the ones of Auer et al.
(2002).
Proof [sketch for Theorem 3] We follow the path of the proof of Theorem 1 and bound lnWT

from below and from above. The lower bound is easy to establish as it only relies on individual non-
increasing sequences of rates, (ηk,t)t>0 for a fixed k: the weight update (step 3 of the algorithm)
was indeed tailored for it to go through. More precisely, by induction and still with the inequality
ln(1 + x) > x− x2 for x > −1/2, we get that

lnWT > lnwk,T >
ηk,T
ηk,0

lnwk,0 + ηk,T

T∑
t=1

(
rk,t − ηk,t−1r2k,t

)
.

The difficulties arise in proving an upper bound. We proceed by induction again and aim at upper
boundingWt byWt−1 plus some small term. The core difficulty is that the powers ηk,t/ηk,t−1 in the
weight update are different for each k. In the literature, time-varying parameters could previously be
handled using Jensen’s inequality for the function x 7→ xαt with a parameter αt = ηt/ηt−1 > 1 that
was the same for all experts: this is, for instance, the core of the argument in the main proof of Auer
et al. (2002) as noticed by Györfi and Ottucsák (2007) in their re-worked version of the proof. This
needs to be adapted here as we have αk,t = ηk,t−1/ηk,t, which depends on k. We quantify the cost
for the αk,t not to be all equal to a single power αt, say 1: we have αk,t > 1 but the gap to 1 should
not be too large. This is why we may apply the inequality x 6 xαk,t + (αk,t − 1)/e, valid for all
x > 0 and αk,t > 1. We can then prove that

Wt 6Wt−1 +
1

e

K∑
k=1

(
ηk,t−1
ηk,t

− 1

)
,

where the second term on the right-hand side is precisely the price to pay for having different time-
varying learning rates — and this price is measured by how much they vary.

3.2. Polynomial potentials

As illustrated in Cesa-Bianchi and Lugosi (2003), polynomial potentials are also useful to minimize
the regret. We present here an algorithm based on them (with order p = 2 in the terminology of the
indicated reference). Its bound has the same poor dependency on the number of experts K and on
T as achieved by working in regimes (see the discussion in Section 2), but its analysis is simpler
and more elegant than that of Algorithm 2 (see Section A.4 in the appendix; the analysis resembles
the proof of Blackwell’s approachability theorem). The right dependencies might be achieved by
considering polynomial functions of arbitrary orders p as in Cesa-Bianchi and Lugosi (2003) but we
were unable to provide an analysis for these values.

Theorem 5 For all sequences of loss vectors `t ∈ [0, 1]K , the cumulative loss of Algorithm 3 run
with learning rates

ηk,t−1 =
1

1 +
∑t−1

s=1

(̂̀
s − `k,s

)2
6
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Algorithm 3 Polynomially weighted averages with multiple learning rates (ML-Poly)

Parameter: a rule to sequentially pick positive learning rates ηt =
(
η1,t, . . . , ηK,t

)
Initialization: the vector of regrets with each expertR0 = (0, . . . , 0)

For each round t = 1, 2, . . .
0. pick the learning rates ηk,t−1 according to the rule
1. form the mixture pt defined component-wise by pk,t = ηk,t−1 (Rk,t−1)+ / η>t−1 (Rt−1)+

where x+ denotes the vector of the nonnegative parts of the components of x
2. observe the loss vector `t and incur loss ̂̀t = p>t `t
3. for each expert k update the regret: Rk,t = Rk,t−1 + ̂̀t − `k,t

is bounded by
T∑
t=1

̂̀
t 6 min

16k6K

{
T∑
t=1

`k,t +

√√√√K
(
1 + ln(1 + T )

)(
1 +

T∑
t=1

(̂̀
t − `k,t

)2)}
.

4. First application: bounds with experts that report their confidences

We justify in this section why the second-order bounds exhibited in the previous sections are par-
ticularly adapted to the setting of prediction with experts that report their confidences, which was
first considered by Blum and Mansour (2007). It differs from the standard setting in that, at the start
of every round t, each expert k expresses their confidence as a number Ik,t ∈ [0, 1].1 In particular,
confidence Ik,t = 0 expresses that expert k is inactive (or sleeping) in round t. The learner now has
to assign nonnegative weights pt, which sum up to 1, to the set At = {k : Ik,t > 0} of so-called
active experts and suffers loss ̂̀t =

∑
k∈At pk,t`k,t. (It is assumed that, for any round t, there is at

least one active expert k with Ik,t > 0, so that At is never empty.)
The main difference in prediction with confidences comes from the definition of the regret. The

confidence regret with respect to expert k takes the numbers Ik,t into account and is defined as
Rc
k,T =

∑T
t=1 Ik,t

(̂̀
t − `k,t

)
.

When Ik,t is always 1, prediction with confidences reduces to regular prediction with expert
advice, and when the confidences Ik,t only take on the values 0 and 1, it reduces to prediction with
sleeping (or specialized) experts as introduced by Blum (1997) and Freund et al. (1997).

Because the confidence regret scales linearly with Ik,t, one would like to obtain bounds on the
confidence regret that scale linearly as well. When confidences do not depend on k, this is achieved,
e.g., by the bound (3). However, for confidences that do depend on k, the best available bound
(Blum and Mansour, 2007, Theorem 16) is

Rc
k,T =

T∑
t=1

Ik,t
(̂̀
t − `k,t

)
= O

√∑
t6T

Ik,t`k,t

 . (8)

(We rederive this bound in Gaillard et al., 2014, Section 5.2.) If, in this bound, all confidences
Ik,t are scaled down by a factor λk ∈ [0, 1], then we would like the bound to also scale down by
λk, but instead it scales only by

√
λk. In the remainder of this section we will show how our new

1. Technically, Blum and Mansour (2007) decouple the confidences Ik,t, which they refer to as “time selection func-
tions”, from the experts, but as we explain in Gaillard et al. (2014, Section 5.2), the two settings are equivalent.
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second-order bound (4) solves this issue via a generic reduction of the setting of prediction with
confidences to the standard setting from Sections 1 and 2.

Remark 6 We consider the case of linear losses. The extension of our results to convex losses is
immediate via the so-called gradient trick. The latter also applies in the setting of experts that
report their confidences. The details were essentially provided by Devaine et al. (2013) (we recall
them in Gaillard et al., 2014, Section B.1).

Generic reduction to the standard setting There exists a generic reduction from the setting of
sleeping experts to the standard setting of prediction with expert advice (Adamskiy et al., 2012;
Koolen et al., 2013). This reduction generalizes easily to the setting of experts that report their
confidences, as we will now explain.

Given any algorithm designed for the standard setting, we run it on modified losses ˜̀k,s, which
will be defined shortly. At round t > 1, the algorithm takes as inputs the past modified losses ˜̀k,s,
where s 6 t − 1, and outputs a weight vector p̃t on {1, . . . ,K}. This vector is then used to form
another weight vector pt, which has strictly positive weights only on At:

pk,t =
Ik,t p̃k,t∑K

k′=1 Ik′,t p̃k′,t
for all k. (9)

This vector pt is to be used with the experts that report their confidences. Then, the losses `k,t are
observed and the modified losses are computed as follows: for all k,

˜̀
k,t = Ik,t`k,t + (1− Ik,t)̂̀t where ̂̀

t =
∑
k∈At

pk,t`k,t .

Proposition 7 The induced confidence regret on the original losses `k,t equals the standard regret
of the algorithm on the modified losses ˜̀k,t. In particular,

Ik,t
(̂̀
t − `k,t

)
=

K∑
i=1

p̃i,t ˜̀i,t − ˜̀k,t for all rounds t and experts k.

Proof First we show that the loss in the standard setting (on the losses ˜̀k,t) is equal to the loss in
the confidence regret setting (on the original losses `k,t):

K∑
k=1

p̃k,t ˜̀k,t =
K∑
k=1

p̃k,t

(
Ik,t`k,t + (1− Ik,t)̂̀t) =

K∑
k=1

p̃k,tIk,t`k,t + ̂̀t −( K∑
k=1

p̃k,tIk,t

) ̂̀
t

=

(
K∑
k′=1

p̃k′,t Ik′,t

)
K∑
k=1

pk,t`k,t + ̂̀t −( K∑
k=1

p̃k,tIk,t

) ̂̀
t = ̂̀

t.

The proposition now follows by subtracting ˜̀k,t on both sides of the equality.

Corollary 8 An algorithm with a standard regret bound of the form

Rk,T 6 Ξ1

√
(lnK)

∑
t6T

(̂̀
t − `k,t

)2
+ Ξ2 for all k, (10)
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leads, via the generic reduction described above (and for losses `k,t ∈ [0, 1]), to an algorithm with
a confidence regret bound of the form

Rc
k,T 6 Ξ1

√
(lnK)

∑
t6T

I2k,t
(̂̀
t − `k,t

)2
+ Ξ2 6 Ξ1

√
(lnK)

∑
t6T

I2k,t + Ξ2 for all k. (11)

We note that the second upper-bound,
√∑

I2k,t, can be extracted from the proof of Theorem 11
in Chernov and Vovk (2010)—but not the first one, which, combined with the techniques of Sec-
tion 5.1, yields a bound on the confidence regret for small (excess) losses.

Comparison to the instantiation of other regret bounds We now discuss why (11) improves
on the literature. Consider first the improved bound for small losses from the introduction, which
takes the form Ξ3

√∑
t `k,t + Ξ4. This improvement does not survive the generic reduction, as the

resulting confidence regret bound is

Ξ3

√√√√ T∑
t=1

˜̀
k,t + Ξ4 = Ξ3

√√√√√√
T∑
t=1

Ik,t`k,t +

T∑
t=1

(1− Ik,t)̂̀t︸ ︷︷ ︸
undesirable

+ Ξ4,

which is no better than plain Ξ′3
√
T + Ξ′4 bounds.

Alternatively, bounds (3) of Cesa-Bianchi et al. (2007) and de Rooij et al. (2013) are of the form

Ξ5

√√√√ T∑
t=1

K∑
k=1

pk,t
(
`k,t − ̂̀t)2 + Ξ6,

uniformly over all experts k. These lead to a confidence regret bound against expert k of the form

Ξ5

√√√√ T∑
t=1

K∑
k=1

pk,t I
2
k,t

(̂̀
t − `k,t

)2
+ Ξ6 6 Ξ5

√√√√ T∑
t=1

K∑
k=1

pk,t I
2
k,t + Ξ6,

which depends not just on the confidences of this expert k, but also on the confidences of the other
experts. It therefore does not scale proportionally to the confidences of the expert k at hand.

We note that even bounds of the form (2), if they existed, would not be suitable either. They
would indeed lead to

Rck,T = O


√√√√ T∑

t=1

(
Ik,t`k,t + (1− Ik,t)̂̀t)2

 ,

which also does not scale linearly with the confidences of expert k.

5. Other applications: bounds in the standard setting

We now leave the setting of prediction with confidences, and detail other applications of our new
second-order bound (4). First, in Section 5.1, we show that, like (1) and (3), our new bound implies

9
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an improvement over the standard bound O
(√∑

t `k,t lnK
)
, which is itself already better than the

worst-case bound if the losses of the reference expert are small. The key feature in our improvement
is that excess losses `k,t− ̂̀t can be considered instead of plain losses `k,t. Then, in Section 5.2, we
look at the non-adversarial setting in which losses are i.i.d., and show that our new bound implies
constant regret of order O

(
lnK

)
.

5.1. Improvement for small excess losses

It is known (Cesa-Bianchi et al., 2007; de Rooij et al., 2013) that (3) implies a bound of the form

Rk∗,T = O

(√
lnK

Lk∗,T (T − Lk∗,T )

T

)
, (12)

where k∗ ∈ argmink Lk,T is the expert with smallest cumulative loss. This bound symmetrizes the
standard bound for small losses described in the introduction, because it is small also if Lk∗,T is
close to T , which is useful when losses are defined in terms of gains (Cesa-Bianchi et al., 2007).

However, if one is ready to lose symmetry, another way of improving the standard bound for
small losses is to express it in terms of excess losses:√√√√lnK

∑
t : `k,t>̂̀

t

(
`k,t − ̂̀t) 6

√
lnK

∑
t6T

`k,t ,

where the inequality holds for nonnegative losses. As we show next, bounds of the form (4) indeed
entail bounds of this form.

Theorem 9 If the regret of an algorithm satisfies (10) for all sequences of loss vectors `t ∈ [0, 1]K ,
then it also satisfies

Rk,T 6 2 Ξ1

√√√√lnK
∑

t : `k,t>̂̀
t

(
`k,t − ̂̀t)+

(
Ξ2 + 2 Ξ1

√
Ξ2 lnK + 4 Ξ2

1 lnK
)
. (13)

In general, losses take values in the range [a, b]. To apply our methods, they therefore need
to be translated by −a and scaled by 1/(b − a) to fit the canonical range [0, 1]. In the standard
improvement for small losses, these operations remain visible in the regret bound, which becomes
Rk,T = O

(√
(b− a)(Lk,T − Ta) lnK

)
in general. In particular, if a < 0, then no significant

improvement over the worst-case bound O
(√
T lnK

)
is realized. By contrast, our original second-

order bound (10) and its corollary (13) both have the nice feature that translations do not affect the
bound because (`k,t − a) − (̂̀t − a) = `k,t − ̂̀t, so that our new improvement for small losses
remains meaningful even for a < 0.
Proof We define the positive and the negative part of the regret with respect to an expert k by,
respectively,

R+
k,T =

T∑
t=1

(̂̀
t − `k,t

)
1
`k,t6̂̀

t
and R−k,T =

T∑
t=1

(̀
k,t − ̂̀t)1`k,t>̂̀

t
.

10
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The proof will rely on rephrasing the bound (10) in terms of R+
k,T and R−k,T only. On the one hand,

Rk,T = R+
k,T −R

−
k,T , while, on the other hand,√∑
t6T

(̂̀
t − `k,t

)2
6

√∑
t6T

∣∣∣̂̀t − `k,t∣∣∣ =
√
R+
k,T +R−k,T 6 2

√
R+
k,T , (14)

where we used `k,t ∈ [0, 1] for the first inequality and where we assumed, with no loss of generality,
thatR+

k,T > R−k,T . Indeed, if this was not the case, the regret would be negative and the bound would
be true. Therefore for all experts k, substituting these (in)equalities in the initial inequality (10), we
are left with the quadratic inequality

R+
k,T −R

−
k,T 6 2Ξ1

√
R+
k,T lnK + Ξ2 . (15)

Solving for R+
k,T using Lemma 10 below (whose proof can be found in Section A.1) yields√
R+
k,T 6

√
R−k,T + Ξ2 + 2Ξ1

√
lnK 6

√
R−k,T +

√
Ξ2 + 2Ξ1

√
lnK ,

which leads to the stated bound after re-substitution into (15).

Lemma 10 Let a, c > 0. If x > 0 satisfies x2 6 a+ cx, then x 6
√
a+ c.

5.2. Stochastic (i.i.d.) losses

Van Erven et al. (2011) provide a specific parameter-free algorithm that guarantees worst-case regret
bounded by O

(√
Lk?,T lnK

)
, but at the same time is able to adapt to the non-adversarial setting

with independent, identically distributed (i.i.d.) loss vectors, for which its regret is bounded by
O(K). Theorem 9 already indicated that any algorithm satisfying a regret bound of the form (10)
also achieves a worst-case bound that is at least as good as O

(√
Lk?,T lnK

)
. Here we consider

i.i.d. losses that satisfy the same assumption as the one imposed by Van Erven et al.:

Assumption 1 The loss vectors `t ∈ [0, 1]K are independent random variables such that there
exists an action k? and some α ∈ (0, 1] for which the expected differences in loss satisfy

∀t > 1, min
k 6=k?

E
[
`k,t − `k?,t

]
> α .

As shown by the following theorem, any algorithm that satisfies our new second-order bound (with
a constant Ξ1 factor and a Ξ2 factor of order lnK) is guaranteed to achieve constant regret of order
O(lnK) under Assumption 1.

Theorem 11 If a strategy achieves a regret bound of the form (10) and the loss vectors satisfy
Assumption 1, then the expected regret for that strategy is bounded by a constant: for all T ,

E[Rk?,T ] 6 CK
def
= (Ξ2

1 lnK)/α+ Ξ1

√
(Ξ2 lnK)/α+ Ξ2 ;

while for any T and any δ ∈ (0, 1), its regret is bounded with probability at least 1− δ by

Rk?,T 6 CK +
6 Ξ1

α

√√√√(ln
1

δ
+ ln

(
1 +

1

2e
ln
(
1 + CK/4

)))
lnK .

11
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By the law of large numbers, the cumulative loss of any action k 6= k? will exceed the cumula-
tive loss of k? by a linear term in the order of αT , so that, for all sufficiently large T , the fact that
Rk?,T is bounded by a constant implies that the algorithm will have negative regret with respect to
all other k.

Because we want to avoid using any special properties of the algorithm except for the fact that
it satisfies (10), our proof of Theorem 11 requires a Bernstein-Freedman-type martingale concen-
tration result (Freedman, 1975) rather than basic applications of Hoeffding’s inequality, which are
sufficient in the proof of Van Erven et al. (2011). However, this type of concentration inequalities is
typically stated in terms of a deterministic bound M on the cumulative conditional variance

∑
Vt.

To bound the deviations by the (random) quantity
√∑

Vt instead of the deterministic
√
M , peeling

techniques can be applied as in Cesa-Bianchi et al. (2005, Corollary 16); this leads to an additional√
lnT factor (in case of an additive peeling) or

√
ln lnT (in case of a geometric peeling). Here, we

replace these non-constant factors by a term of order ln lnE
[∑

Vt
]
, which will be seen to be less

than a constant in our case.

Theorem 12 Let (Xt)t>1 be a martingale difference sequence with respect to some filtration F0 ⊆
F1 ⊆ F2 ⊆ . . . and let Vt = E

[
X2
t

∣∣Ft−1] for t > 1. We assume that Xt 6 1 a.s., for all t > 1.
Then, for any δ ∈ (0, 1) and any T > 1, with probability at least 1− δ,

T∑
t=1

Xt 6 3

√√√√(1 +
T∑
t=1

Vt

)
ln
γ

δ
+ ln

γ

δ
, where γ = 1 +

1

2e

(
1 + ln

(
1 + E

[
T∑
t=1

Vt

]))
.

Theorem 12 and its proof (see Gaillard et al., 2014, Section A.5 for the latter) may be of in-
dependent interest, because our derivation uses new techniques that we originally developed for
time-varying learning rates in the proof of Theorem 3. Instead of studying supermartingales of the
form exp

(
λ
∑
Xt − (e − 2)λ2

∑
Vt
)

for some constant value of λ, as is typical, we are able to
consider (predictable) random variables Λt, which in some sense play the role of the time-varying
learning parameter ηt of the (ML-)Prod algorithm.
Proof [of Theorem 11] We recall the notation rk,t = ̂̀

t − `k,t for the instantaneous regret. We
start from F0, the trivial σ–algebra {∅,Ω} (consisting of the empty set and the whole underlying
probability space), and define by induction the following martingale difference sequence: for all
t > 1,

Yt = −rk?,t + E
[
rk?,t

∣∣Ft−1]
and Ft = σ(Y1, . . . , Yt) is the σ–algebra generated by the random variables Y1, . . . , Yt. We first
bound the expectation of the regret. We note that

E
[
rk?,t

∣∣Ft−1] =
K∑
k=1

pk,tE
[
`k,t − `k?,t

∣∣Ft−1] =
K∑
k=1

pk,tE
[
`k,t − `k?,t

]
> α(1− pk?,t) , (16)

while by convexity of ( · )2, r2k?,t 6
K∑
k=1

pk,t
(
`k,t − `k?,t

)2
6 1− pk?,t , (17)

so that Wt = E
[
Y 2
t

∣∣Ft−1] 6 E
[
r2k?,t

∣∣Ft−1] 6 1− pk?,t . (18)

12
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Therefore, using that expectations of conditional expectations are unconditional expectations,

E[Rk?,T ] > αE[ST ] and E

[
T∑
t=1

r2k?,t

]
6 E[ST ] where ST =

T∑
t=1

(1− pk?,t) . (19)

Substituting these inequalities in (10) using Jensen’s inequality for
√
· , we get

E[ST ] 6
Ξ1

√
lnK

α

√
E[ST ] +

Ξ2

α
.

Solving the quadratic inequality (see Lemma 10) yields E[ST ] 6
(
(Ξ1

√
lnK)/α+

√
Ξ2/α

)2. By

(19) this bounds E
[∑T

t=1 r
2
k?,t

]
, which we substitute into (10), together with Jensen’s inequality, to

prove the claimed bound on the expected regret.

Now, to get the high-probability bound, we apply Theorem 12 to Xt = Yt/2 6 1 a.s. and
Vt = Wt/4 and use the bounds (16) and (18). We find that, with probability at least 1− δ,

αST 6 Rk?,T + 3
√

(4 + ST ) ln(γ/δ) + 2 ln(γ/δ) 6 Rk?,T + 3
√
ST ln(γ/δ) + 8 ln(γ/δ)

where γ 6 1 + (1/2e)
[
1 + ln

(
1 + E[ST ]/4

)]
and where we used

√
ln(γ/δ) > 1. Combining the

bound (10) on the regret with (17) yields Rk?,T 6 Ξ1

√
ST lnK + Ξ2, so that, still with probability

at least 1− δ,

αST 6
(

Ξ1

√
lnK + 3

√
ln(γ/δ)

)√
ST +

(
8 ln(γ/δ) + Ξ2

)
.

Solving for
√
ST with Lemma 10 and using that α 6 1, this implies

√
ST 6

Ξ1

√
lnK + 3

√
ln(γ/δ)

α
+

1√
α

√
8 ln(γ/δ) + Ξ2 6

Ξ1

√
lnK

α
+

√
Ξ2

α
+

6

α

√
ln
γ

δ
.

Substitution into the (deterministic) regret boundRk?,T 6 Ξ1

√
ST lnK+Ξ2 concludes the proof.
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Appendix A.

We gather in this appendix several facts and results whose proofs were omitted from the main body
of the paper.

A.1. Proof of Lemma 10

Solving x2 6 a+ cx for x, we find that

1

2
c− 1

2

√
c2 + 4a 6 x 6

1

2
c+

1

2

√
c2 + 4a .

In particular, focusing on the upper bound, we get 2x 6 c+
√
c2 + 4a 6 c+

√
c2+
√

4a = 2c+2
√
a,

which was to be shown.

A.2. Proof of Theorem 3

The proof will rely on the following simple lemma.

Lemma 13 For all x > 0 and all α > 1, we have x 6 xα + (α− 1)/e.

Proof The inequality is straightforward when x > 1, so we restrict our attention to the case where
x < 1. The function α 7→ xα = eα lnx is convex and thus is above any tangent line. In particular,
considering the value x lnx of the derivative function α 7→ (lnx) eα lnx at α = 1, we get

∀α > 0, xα − x > (x lnx) (α− 1) .

Now, since we only consider α > 1, it suffices to lower bound x lnx for the values of interest for
x, namely, the ones in (0, 1) as indicated at the beginning of the proof. On this interval, the stated
quantity is at least −1/e, which concludes the proof.

We now prove Theorem 3.

Proof [of Theorem 3] As in the proof of Theorem 1, we bound lnWT from below and from above.
For the lower bound, we start with lnWT > lnwk,T . We then show by induction that for all t > 0,

lnwk,t > ηk,t

t∑
s=1

(
rk,s − ηk,s−1r2k,s

)
+
ηk,t
ηk,0

lnwk,0 ,

where rk,s = ̂̀
s − `k,s denotes the instantaneous regret with respect to expert k. The inequality is

trivial for t = 0. If it holds at a given round t, then by the weight update (step 3 of the algorithm),

lnwk,t+1 =
ηk,t+1

ηk,t

(
lnwk,t + ln

(
1 + ηk,trk,t+1

))
>
ηk,t+1

ηk,t

(
ηk,t
ηk,0

lnwk,0 + ηk,t

t∑
s=1

(
rk,s − ηk,s−1r2k,s

))
+
ηk,t+1

ηk,t

(
ηk,trk,t+1 − η2k,tr2k,t+1

)

16
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= ηk,t+1

t+1∑
s=1

(
rk,s − ηk,s−1r2k,s

)
+
ηk,t+1

ηk,0
lnwk,0 ,

where the inequality comes from the induction hypothesis and from the inequality ln(1+x) > x−x2
for all x > −1/2 already used in the proof of Theorem 1.

We now bound from above lnWT , or equivalently, WT itself. We show by induction that for all
t > 0,

Wt 6 1 +
1

e

K∑
k=1

t∑
s=1

(
ηk,s−1
ηk,s

− 1

)
.

The inequality is trivial for t = 0. To show that if the property holds for some t > 0 it also holds
for t+ 1, we prove that

Wt+1 6Wt +
1

e

K∑
k=1

(
ηk,t
ηk,t+1

− 1

)
. (20)

Indeed, since x 6 xα + (α − 1)/e for all x > 0 and α > 1 (see Lemma 13), we have, for each
expert k,

wk,t+1 6
(
wk,t+1

) ηk,t
ηk,t+1 +

1

e

(
ηk,t
ηk,t+1

− 1

)
; (21)

we used here x = wk,t+1 and α = ηk,t/ηk,t+1, which is larger than 1 because of the assumption
that the learning rates are nonincreasing in t for each k. Now, by definition of the weight update
(step 3 of the algorithm),

K∑
k=1

(
wk,t+1

) ηk,t
ηk,t+1 =

K∑
k=1

wk,t
(
1 + ηk,trk,t+1

)
= Wt ,

where the second inequality follows from the same argument as in the last display of the proof of
Theorem 1, by using that ηk,twk,t is proportional to pk,t+1. Summing (21) over k thus yields (20)
as desired.

Finally, combining the upper and lower bounds on lnWT and rearranging leads to the inequality
of Theorem 3.

A.3. Proof of Corollary 4

The following lemma will be useful.

Lemma 14 Let a0 > 0 and a1, . . . , am ∈ [0, 1] be real numbers and let f : (0,+∞) → [0,+∞)
be a nonincreasing function. Then

m∑
i=1

ai f
(
a0 + . . .+ ai−1

)
6 f(a0) +

∫ a0+a1+...+am

a0

f(u) du .
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Proof Abbreviating si = a0 + . . .+ ai for i = 0, . . . ,m, we find that

m∑
i=1

ai f(si−1) =
m∑
i=1

ai f(si) +
m∑
i=1

ai
(
f(si−1)− f(si)

)
6

m∑
i=1

ai f(si) +
m∑
i=1

(
f(si−1)− f(si)

)
6

m∑
i=1

ai f(si) + f(s0),

where the first inequality follows because f(si−1) > f(si) and ai 6 1 for i > 1, while the second
inequality stems from a telescoping argument together with the fact that f(sm) > 0. Using that f
is nonincreasing together with si − si−1 = ai for i > 1, we further have

ai f(si) =

∫ si

si−1

f(si) dy 6
∫ si

si−1

f(y) dy .

Substituting this bound in the above inequality completes the proof.

We will be slightly more general and take

ηk,t = min

1

2
,

√
γk

1 +
∑t

s=1 r
2
k,s


for some constant γk > 0 to be defined by the analysis.

Because of the choice of nonincreasing learning rates, the first inequality of Theorem 3 holds
true, and the regret Rk,t is upper-bounded by

1

ηk,0
ln

1

wk,0
+

1

ηk,T
ln

(
1 +

1

e

K∑
k′=1

T∑
t=1

(
ηk′,t−1
ηk′,t

− 1

)
︸ ︷︷ ︸

first term

)
+

T∑
t=1

ηk,t−1r
2
k,t︸ ︷︷ ︸

second term

. (22)

For the first term in (22), we note that for each k′ and t > 1 one of three possibilities must hold, all
depending on which of the inequalities in ηk′,t 6 ηk′,t−1 6 1/2 are equalities or strict inequalities.
More precisely, either ηk′,t = ηk′,t−1 = 1/2; or√

γk′

1 +
∑t

s=1 r
2
k′,s

= ηk′,t < ηk′,t−1 =
1

2
6

√
γk′

1 +
∑t−1

s=1 r
2
k′,s

;

or ηk′,t 6 ηk′,t−1 < 1/2. In all cases, the ratios ηk′,t−1/ηk′,t − 1 can be bounded as follows:

T∑
t=1

(
ηk′,t−1
ηk′,t

− 1

)
6

T∑
t=1


√√√√1 +

∑t
s=1 r

2
k′,t

1 +
∑t−1

s=1 r
2
k′,t

− 1


=

T∑
t=1

√√√√1 +
r2k′,t

1 +
∑t−1

s=1 r
2
k′,s

− 1

 6
1

2

T∑
t=1

r2k′,t

1 +
∑t−1

s=1 r
2
k′,s

, (23)
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where we used, for the second inequality, that g(1 + z) 6 g(1) + z g′(1) for z > 0 for any concave
function g, in particular the square root. We apply Lemma 14 with f(x) = 1/x to further bound the
sum in (23), which gives

T∑
t=1

r2k′,t

1 +
∑t−1

s=1 r
2
k′,s

6 1 + ln

(
1 +

T∑
t=1

r2k′,t

)
−��

�ln(1) 6 1 + ln(T + 1) . (24)

For the second term in (22), we write

T∑
t=1

ηk,t−1r
2
k,t 6

√
γk

T∑
t=1

r2k,t√
1 +

∑t−1
s=1 r

2
k,s

.

We apply Lemma 14 again, with f(x) = 1/
√
x, and get

T∑
t=1

r2k,t√
1 +

∑t−1
s=1 r

2
k,s

6 1− 2
√

1︸ ︷︷ ︸
60

+2

√√√√(1 +

T∑
t=1

r2k,t

)
. (25)

We may now get back to (22). Substituting the obtained bounds on its first and second terms,
and using ηk,0 > ηk,T , we find it is no greater than

1

ηk,T

(
ln

1

wk,0
+BK,T

)
+ 2

√√√√γk

(
1 +

T∑
t=1

r2k,t

)
, (26)

where BK,T = ln
(

1 + K
2e

(
1 + ln(T + 1)

))
.

Now if
√

1 +
∑T

t=1 r
2
k,t > 2

√
γk then ηk,T < 1/2 and (26) is bounded by√√√√1 +

T∑
t=1

r2k,t

(
2
√
γk +

ln 1
wk,0

+BK,T
√
γk

)
.

Alternatively, if
√

1 +
∑T

t=1 r
2
k,t 6 2

√
γk, then ηk,T = 1/2 and (26) does not exceed

2 ln
1

wk,0
+ 2BK,T + 4γk.

In either case, (26) is smaller than the sum of the latter two bounds, from which the corollary follows
upon taking γk = ln(1/wk,0) = lnK. (Although the derivation also works for non-uniform initial
weights, they cannot provide any significant gain, because BK,T = O(lnK + ln lnT ) already
contains an O(lnK) term.)
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A.4. Proof of Theorem 5

The proof has a geometric flavor—the same as in the proof of the approachability theorem (Black-
well, 1956). With a diagonal matrix D = diag(d1, . . . , dK), with positive on-diagonal elements di,
we associate an inner product and a norm as follows:

∀x,y ∈ RK , 〈x, y〉D = x>Dy and ‖x‖D =
√
x>Dx .

We denote by πD the projection on RK− under the norm ‖ · ‖D. It turns out that this projection is
independent of the considered matrix D satisfying the constraints described above: it equals

∀x ∈ RK , πD(x) = x− x+ ,

where we recall that x+ denotes the vector whose components are the nonnegative parts of the
components of x. This entails that for all x,y ∈ RK

‖(x+ y)+‖2D = ‖x+ y − πD(x+ y)‖2D 6 ‖x+ y − πD(x)‖2D = ‖x+ + y‖2D . (27)

Now, we consider, for each instance t > 1, the diagonal matrix Dt = diag(η1,t, . . . , ηK,t), with
positive elements on the diagonal. As all sequences (ηk,t)t>0 are non-increasing for a fixed k, we
have, for all t > 1, that

∀x ∈ RK , ‖x‖Dt 6 ‖x‖Dt−1
. (28)

This entails that∥∥(Rt)+
∥∥
Dt

6
∥∥(Rt)+

∥∥
Dt−1

=
∥∥(Rt−1 + rt)+

∥∥
Dt−1

6
∥∥(Rt−1)+ + rt

∥∥
Dt−1

, (29)

where we denoted by rt the vector (rk,t)16k6K of the instantaneous regrets and where we ap-
plied (27). Taking squares and developing the squared norm, we get∥∥(Rt)+

∥∥2
Dt

6
∥∥(Rt−1)+

∥∥2
Dt−1

+ ‖rt‖2Dt−1
+ 2 r>t Dt−1 (Rt−1)+ . (30)

But the inner product equals

2 r>t Dt−1 (Rt−1)+ = 2
K∑
k=1

ηk,t−1 (Rk,t−1)+ rk,t = 2η>t−1 (Rt−1)+

K∑
k=1

pk,trk,t︸ ︷︷ ︸
=0

= 0 ,

where the last but one equality follows from step 1 of the algorithm.
Hence (30) entails

∥∥(Rt)+
∥∥2
Dt
−
∥∥(Rt−1)+

∥∥2
Dt−1

6 ‖rt‖2Dt−1
, which, summing over all rounds

t > 1, leads to

∥∥(RT )+
∥∥2
DT
−���

���
∥∥(R0)+

∥∥2
D0

6
T∑
t=1

‖rt‖2Dt−1
=

T∑
t=1

K∑
k=1

ηk,t−1r
2
k,t

=

K∑
k=1

T∑
t=1

r2k,t

1 +
∑t−1

s=1 r
2
k,s

6 K
(
1 + ln(1 + T )

)
, (31)

20



A SECOND-ORDER BOUND WITH EXCESS LOSSES

where the last equality follows from substituting the value of ηk,t−1 and the last inequality was
proved in (24). Finally, (31) implies that, for any expert k = 1, . . . ,K,

ηk,T (Rk,T )2+ 6
∥∥(RT )+

∥∥2
DT

6 K
(
1 + ln(1 + T )

)
,

so that
Rk,T 6

√
K
(
1 + ln(1 + T )

)
η−1k,T .

The proof is concluded by substituting the value of ηk,T .
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