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Abstract

This work examines online linear optimization with full oration and switching costs (SCs) and
focuses on regret bounds that depend on properties of thasdogiences. The SCs considered are
bounded functions of a pair of decisions, and regret is anggaewith the total SC.

We show under general conditions that for any normeds&,x’) = ||x — x’||, regretcannot
be boundedjiven only a bound) on the quadratic variation of losses. With an additionalrzbu
A on the total length of losses, we pro@./@Q + A) regret for Regularized Follow the Leader
(RFTL). Furthermore, a®(1/Q) bound holds for RFTL given a cofk — x’||2. By generalizing
the Shrinking Dartboard algorithm, we also show an expeotgdet bound for the best expert
setting with any SC, given bounds on the total loss of the &gstrt and the quadratic variation of
any expert. As SCs vanish, all our bounds depend purely odrgtia variation.

We apply our results to pricing options in an arbitrage-freeket with proportional transaction
costs. In particular, we upper bound the price of “at the mball options, assuming bounds on
the quadratic variation of a stock price and the minimum ofisied gains and summed losses.
Keywords: Online Learning, Regret Minimization, Switching Costs,li@a Linear Optimization,
Option Pricing

1. Introduction

Online linear optimization (OLO) models a wide range of sequential decision gakivblems
in a possibly adversarial environment. In this setting, at each timetstepl,...,T an online
learning algorithmA (the learner) chooses a weight vector; taken from a non-empty compact
and convexdecision 6r action) setC ¢ RY. Simultaneously, an adversary selects a loss vector
Iy = (Lig,. .-, Iny) € RY, and the algorithm experiences a légs = x; - 1. We denotel 4, =
S _, la., for the cumulative loss oft at timet and alsdL; = >""_, 1,. The aim of the learner is
to achieve smallegretw.r.t. the best fixed action with hindsight, regardless of the sequencesof los
vectors chosen by the adversary. The regret is formally defin&d as= LA7T—minu€;C{u-LT}.l
For randomized learners, the aim is to obtain sragfiectedegret (alternatively, small with high
probability). Importantly, it is assumed thhtis also revealed to the learner once the lossis
incurred, namely, &ll informationfeedback mode. The alternatidanditfeedback mode, which
assumes that the learner is privy only to its own lbss will not be considered in this paper.

An important special case of OLO is the clasbist exper(BE) setting. This setting corre-
sponds to picking thevV-dimensional probability simpleA y as the decision sét. Thus, learner
A’s decision at time is a probability vectop,, and the regret becomés, r = L4 7—min;{L; r}.

1. Thus, OLO is a special case of online convex optimization (Gxkevich, 2003, in which the learner incurs a loss
of fi(x:), wheref; is a convex function chosen by the adversary, and the regye i (x:) —minuexc{>_, fi(u)}.
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In this settingl; may be thought of as the lossesMfdifferent experts, and the regret is measured
w.r.t. the cumulative loss of the best expert.

In the above representatiop; is a deterministically chosen point in the simplex, and may be
seen as a fractional bet placedalhexperts. This representation will be termed fiteetional view
of the BE setting. It is natural to also consigeras a random choice ofsingleexpert at timet.
Indeed, given a fractional learner, one may define another leavh@t at timet picks vertex; of
the simplex with probability; ¢, for every: and¢ (arandomized vievof the BE setting). Clearly,
the expected regret of these two learners is the same. Nevertheleddiffégreyramatically in their
sequence of actions. For illustrationpif = (1/N,...,1/N) for everyt, then the fractional learner
stays put, while the randomized learner switches between vertices erratically

In many real-world scenarios the amount of switching between decisionstésiahaand dis-
couraging excessive switching is naturally motivated. In a physicalsysteanging configurations
wastes energy. In an algorithmic system, changing algorithms implies ovededay and possible
user discomfort. Of particular interest for this work is the financial tasknahaging a portfolio,
where switching between assets inctresisaction costslue to commissions, spreads, etc. This
additional requirement may be incorporated in the OLO setting by definingiaded SC function
o: K x K — [0,B], whereB > 0 ando(x,x) = 0 for everyx € K, and aiming at minimizing
the (expecteddugmented regrel AT =Rar+ ZtT:‘ll o(x¢, x¢+1) rather than the standard regret.
This goal may be tackled in two conceptually different ways. One is to centdrners that are
alsolazy, that is, switch decisions a minimal number of times; indeed, such algorithms may ac
commodate any bounded Another is to consider learners that m@raoothly namely, that keep
ZtT:’ll o(x¢, x¢+1) sSmall by making (possibly many) switches that are not costly given a specific
Both these approaches will be considered in this paper.

1.1. Existing Algorithmsand Types of Regret Bounds

In the absence of SC, the most notable algorithm for the BE setting is the tded@Endomized
Weighted Majority algorithm\ovk, 199Q Littlestone and Warmuthl994 Freund and Schapire
1997). Hedge takes as parametergarning raten > 0 and initial weightsw; ; > 0,1 <14 < N.
For each round = 1,...,T, the expert probabilities are defined py, = w; ;/W;, wherelW, =
Zfil w; ¢, and afted, is revealed, the updaie; ;1 = w; ; exp(—nl; ) is applied to the weights.

Given a bounded range for the los$gs Hedge may be shown to have vanishing average regret.
If n is tuned solely as a function of time, we achieve the so-called zero-oglet kounds, which
have the formO(v/T In N). More refined bounds, called first-order bounds, are obtained when
is allowed to depend oi’., the cumulative loss of the best expert. These bounds take the form
O(y/L%In N). More recent second-order bounds obtained for various algoritrechsling Hedge
(Cesa-Bianchi et gl2007 Hazan and Kalg201Q Chiang et al.2012 replace the dependence on
the time horizonI” with quantities that measure the variability of the sequence of loss vdgtors
Such bounds generally offer an improvement over first-order boandsnay be significantly bet-
ter in cases of low variability. Similarly, first-order bounds offer an improget over zero-order
bounds given an expert with small total loss. It should be noted that tlaeseis types of bounds
are in general optimal.

One specific algorithm that achieves second-order bounds is the Ragindeights (PW) al-
gorithm (Cesa-Bianchi et gl2007), which replaces the exponential multiplicative update of Hedge
with its first-order approximatiom; ;1 = w; (1 — nl;+), for everyi andt. The regret bound for



HIGHER-ORDER REGRETBOUNDS WITH SWITCHING COSTS

PW replaces the time horizon by a known bound on the quadratic variatiore dbskes of any
expert, where the quadratic variation of an expert is the sum of its stjgangle-period losses.

When SCs are added, the randomized views of BE algorithms may generalhyS(i£) total
SCs? This prompted the introduction of a lazy version of Hedge called the ShrirBartpoard
(SD) algorithm Geulen et al.2010, which was originally set in a context of online buffering. SD
picks a single expert randomly at every rourahd rarely switches it, but nevertheless has the same
probability as Hedge to hold expertt timet. It achieves the zero-order bout{v/7' In N) on
the expected augmented regret againsblaliviousadversary (namely, one that fixes the losses in
advance), and their proof implies a similar first-order bound as well.

For the more general OLO setting, in the absence of SCs, optimal regratibdave been
shown for the RFTL algorithmShalev-Shwartz and Singe2007 Hazan 2011). This algorithm
proceeds by “following the leader”, namely, choosing the decision thatduwminimize the loss
so far, but tempers its greediness by adding a regularization factor to tlmirgd expression.
Formally, RFTL takes as parameters a learningsate0 and a strongly convex regularizer function
R : K — R, and on each round sets = argmingei {x-Li—1 + (1/7)R(x)}, whereLy =
0. RFTL generalizes both Hedge and the Lazy Projection variant of the ©@liadient Descent
algorithm (OGD), defined by the rube 1 = arg minygcic{||x + nL¢||2}, via proper choices dR.

For a continuously twice-differentiable regulariZey RFTL guarantees, for a proper choice;pfn
O(V/T) regret bound. The work dflazan and Kalg¢2010 showed second-order bounds for OGD
in the OLO setting, which were later improved@hiang et al(2012 using a different algorithm.

When SCs are introduced, the “Follow the Leader” approach prochatislazy and smooth
learners. The original Follow the Perturbed Leader algorithm and its kisjon, Follow the Lazy
Leader (FLL) Hannan1957 Kalai and Vempalg2009, achieveO(v/T) expected regret by using a
random perturbation rather than regularization. For FLL a single langerpation ensure®(v/T)
expected switches, and theref@?é\/T') expected augmented regret against an oblivious adversary.
OGD, on the other hand, has a smooth behavior@dT) augmented regret w.r.t. any normed
SCo(x,x’) = ||x — X|| (seeAndrew et al, 2013.

1.2. Contributionsin This Paper

This work considers the problem of obtaining higher-order augmentggétreounds. As in the
absence of SCs, the motivation is to achieve better bounds for sequbkatase “easier” in some
sense. Second-order bounds are of particular value becauselsacer quantities are linked to the
standard deviation of random variables in general, and in finance, t@yheolatility parameter.
Our first contribution is an infeasibility result. We show that for any norm€digre can be
no augmented regret bound given only some bound on the quadratitoraiia, ||1;||3 (or other
popular notions of variability). In particular, an adaptive (non-obligioadversary that knows the
expectation of a learner’s next action may force unbounded expeatgdemnted regret. (The same
is true for an oblivious adversary vs. a deterministic learner.) This reslds for general classes of
the OLO setting, including the BE setting and any decision set that contaitissaduand the origin
(like the setting for OGD). It also holds for SCs likéx, x') = Lix2xy that are lower bounded
by a normed SC. The proof technique is a novel application of the resut®far and Mansour
(2012. Specifically, for every learner we construct a difficult sequerasetl on the behavior of the

2. If SCs are positive for each pair of verticesAny, then the only way for expected SCs to &d@") is for p: to
converge to a vertex ak . This does not hold in general for every loss sequence, certainfpnbiedge and PW.
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learner and a second learner from the RFTL family. The properties eéthlgorithms ensure that
the learner incurs either high standard regret or high SCs and nathreegtandard regret.

Our second contribution consists of augmented regret bounds thatneieot our infeasibility
result. For RFTL with a normed SC in the OLO setting we showOdR/@ + A) bound, where
() bounds the quadratic variation andbounds the total length of the lossés, ||1;||.. We also
give anO(y/Q) bound for RFTL with the SGr(x,x’) = ||x — x'||? for any norm. For the BE
setting in particular, we derive expected augmented regret boundsdigafan any SC. This is
done by generalizing the Shrinking Dartboard methodology to any algoritanmthintains strictly
positive weights. Applied to PW and Hedge, this method yields bounds whosetenaia are
O(/(Q + B(Q + £*))In N) for PW andO(+/(¢ + BL*) In N) for Hedge. In these bound/, is
the number of experts) bounds) _, lﬁt for any expert, B boundss values,L* boundsL7,, andg
bounds the relative quadratic variatidn, (max;{l;} — min;{l;;})?. Importantly, the dependence
of the above bounds ok and£* disappears in the absence of SCs.

We apply our results to the financial problem of option pricing and speltyficepricing “at the
money” call options’ In the financial setting, the fractional view of BE algorithms provides a gecip
for allocating wealth among a set of assets. For call options, the assett®ekeand cash. More
importantly, regret bounds for such algorithms imply bounds on option piticas arbitrage-free
market DeMarzo et al.2006 Gofer and Mansou2012 Gofer, 2013.4 We extend analysis given
in Gofer and Mansouf2012) to a scenario where trading incurs proportional transaction costs. For
“at the money” call options the augmented regret results obtained for $iayjmice upper bound
of exp(2cIn2 + /(g/2 + 8cA*)In2) — 1. In this boundg bounds the quadratic variation of the
stock’s log price ratios; is the transaction cost rate for the stock, arichounds the minimum of
summed gains and summed losses (in log price ratio terms). Whe®, this bound has the same
asymptotic behavior as the Black and Scholes bound for small valugsafmely,0(,/q).

We conclude by adapting our infeasibility result to show that similar methodyiesh only
trivial price bounds for these options, given only a bound on the @igdrariation. This provides
an alternative regret-based proof for this well-known finance reswolirmodel.

1.3. Related Work

The lazy approach to learning with SCs has been considered as a spsgaif learning against
adversaries with bounded memoiidrhav et al. 2002. Specifically, it takes memory of depth
of the learner’s actions for the adversary’s loss values to simply incaigpthe SC. Thei@(T2/3)
regret bound for the full information case holds if a costia$ incurred for any switching, but it
is suboptimal. For the bandit setting, recent works have provea'/372/3) bound forN arms
(experts) which is optimal ifl" (Arora et al, 2012 Cesa-Bianchi et 312013 Dekel et al, 2013,
highlighting a fundamental difference between the two feedback modetsa et al.(2012 have
also showro(T') regret bounds for the OCO setting.

The FLL algorithm was modified in the work Bfevroye et al(2013 to work with perturbations
that are independent symmetric random walks, retaining its performaacargees. The work of
Gyorgy and Neuf2011) modified SD to work with an unknown time horizon, using variable learning
rates, and employed it to solve the limited-delay universal lossy souraegcprbblem.

3. A call option is a security that pays its holder at tiffighe sum ofmax{Sr — K, 0}, whereS; is the price of a given
stock at timef, and K is a set price, called thatrike price The option is “at the money” il = So.

4. In an arbitrage-free market, no algorithm trading in financial assetguaarantee profit without any risk of losing
money. For a randomized algorithm, we assume that even expecfédrayp not be guaranteed.
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The smoothed approach in the OCO framework was considergshtyew et al.(2013 for
normed (and even seminormed) SCs. They concluded that OGD-typélatgogiven byZinkevich
(2003 and Hazan et al (2007 have the same order of augmented and standard regret bounds,
namely,0(v/T) or O(log T) (the latter holding for exp-concave losses).

The smoothed view was also considered by the online algorithms community irs worthe
metrical task system problenB¢rodin et al, 1992. Here the decision space is finite, the losses
are not necessarily even convex, and the SC function is a metric. Impwarthe learner knows
the next loss and the goal is to minimize the competitive ratio rather than the (stanefgret. For
works that consider interpolating between these two different goalgBée and Burch 200Q
Buchbinder et a).2012 Bera et al.2013 Andrew et al, 2013. InterestinglyAndrew et al.(2013
showed that there are OCO problems with normed SC for which it is impossihilmtitaneously
obtain sublinear augmented regret and a finite competitive ratio.

Arbitrage-free option pricing with proportional transaction costs has weasidered in the
finance literature for the continuous-time, stochastically-based Blackt&:zMerton (BSM) model
as well as its discrete counterpart, the binomial model kéesiela and Rutkowskil997for more
details). In the BSM model the cheapest way to almost surely super-tepdicall option (that is,
to dominate its payoff) is to buy and hold the stock. This holds for any positilaility, transaction
cost rates, and strike price, and implies a trivial price bound. The salte foo the binomial model
as the trading frequency goes to infinity.

In the learning literature, adversarial derivative pricing based ocongkorder regret bounds was
pioneered byDeMarzo et al(2006 for call options and extended to exotic (non-standard) deriva-
tives by Gofer and Mansou(2011ab). Optimal asymptotic lower bounds for the price of “at the
money” call options were given iGofer and Mansouf2012. These works show that the adver-
sarial price of these call options behaves iK€, up to multiplicative factors, if) is the assumed
guadratic variation of the stock’s log price ratios, for small val@esThis asymptotic behavior
matches the BSM pricing. Other works priced exotic options by super-atjplic ©awid et al,
2011ha; Koolen and Vovk 2012, but did not consider second-order quantities.

Adversarial call option pricing may also be derived by considering tlaeteralue of the game
between the adversarial market and the traBeMarzo et al. 200§. Recently,Abernethy et al.
(2012 2013 have shown that given bounds on the quadratic variation of stockneetard the
magnitude of price jumps, the strongest adversary is BSM’s stochasti&pcess. Their works
apply to call options and to more general payoffs. For “at the money”ogaibns, the bound of
Abernethy et al(2013 behaves IikeO(Ql/ 8) for an asymptotically small). These works as well
as those based on regret minimization assumed the absence of transastson co

Numerous learning works deal with the problem of portfolio selection, wliee aim is to
maximize returns. Of those, some provide no adversarial performaacargees (e.gLi and Hoi,
2012, while others, beginning witicover (1991), provide them w.r.t. rich classes of investment
strategies. The pricing problems we consider require adversariggeas w.r.t. a small set of
assets, making both types of results generally unhelpful. We briefly conthmarfor some of the
rich strategy classes considered, there are provable regret bexerds the presence of transaction
costs. One class nstantly rebalanced portfolig€RPs), namely, strategies that always keep a
constant fraction of funds in each asset. For CRPs, the UniversdbRpalgorithm of Cover
(1997 has been analyzed with transaction costBhym and Kalai(1999. Another benchmark
includes all switching strategieSifiger 1999.
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Outline Section?2 provides some additional definitions. In Secti®nve give the infeasibility
result for pure second-order bounds. Sectignesents augmented regret bounds for RFTL. Bounds
derived by generalizing the Shrinking Dartboard method are given itiddee Applications to
option pricing are given in Sectiof We conclude the paper in Secti@n Note that background
and technical results pertaining to the financial applications are deferfggpendixA due to space
constraints.

2. Additional Notation and Preliminaries

We next cover some additional facts, conventions and notation that wikéaea later on.

It will be assumed that for a switching cost function, definedbyC x X — [0, B], the valueB
is known to the learner. We note that all normed SCs are equivalent inrike &t for every norm
|- || onRY there are:y, ca > 0s.t.c1||x]|1 < ||| < e2||x||1 for everyx € RY; as a result, all such
norms are bounded on a compdcP In particular, ||x|| < |Ix|l, < ||x]1 < N||x||« for every
x € RV andp € [1, 0]. That said, SCs do not have to be even metrics, as with the|gostx’ |2,
which we consider. On the other hand, not every metric is bounded anpaat/C. While allowing
unbounded costs might be considered, that would clearly invalidate thapgzgach.

We will sometimes rewrite the total SC Ethl o(x—1,%¢), definingxg = x;1 S.t. o(xp,x1) =
0. Note that even ik, were taken to be an arbitrary initial state, its effect would be bounded by
B. We denote byK; the number of changes to the decision vector in the firsunds, namely,
K=", Lix,_1#x,}- Thus, performing at mogtr switches means a total SC of at mésk'r.

We will consider primarily the quadratic variation of an entire loss sequhnce. , 17, defined
asQr = Zle 11;||3. For the BE setting in particular it is useful to consider the slightly different
notion of relative quadratic variationdefined as;r = Y1, §(1;)%, whered(v) = max;{v;} —
min; {v;} for anyv € RY. We assum&r < @ andqr < ¢ and that these bounds are known to
the learner. Note thag, < 2Q, but it may be thay; = 0 while Q is arbitrarily large.

In the BE setting we will sometimes use the notatioft) = argmin,;{L;,} for the index of
the best expert, where the smallest such index is taken in case of a tie.

Our results make regular use of the properties of convex functionsedein RY. For a
thorough coverage, sétockafellar(1970, Boyd and Vandenbergh@004), andNesterow(2004),
among others. We will denofe, y] for the line segment betweenandy, namely{ax+ (1—a)y :

0 < a < 1}. In addition, the convex conjugate of a functigmwill be denoted byf*.

3. Infeasibility of Pure Second-Order Regret Boundsfor Normed SCs

In this section we prove an impossibility result for obtaining second-ordandis for important
classes of OLO problems given a normed SC. Specifically, we will shovattyeearner may suffer
arbitrarily high augmented regret for some loss sequences with arbitrerdif guadratic varia-
tion. Note that this claim extends to the notions of variation considerddidaan and Kalé2010
andChiang et al(2012 and also to relative quadratic variation, since those are all dominated, up
to multiplicative factors, by the quadratic variation. We will consider a detertigrisarner for
simplicity, but the claim holds for randomized learners as well, as will be shown

We first give the proof idea. For any learnér we show the existence of a loss sequence for
which the learner incurs either high standard regret or high SCs alonghaiitinegative standard

5. The same holds for any seminorm, except thas non-negative.
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regret. This is portrayed for convenience as constructing thdeskaptively assuming knowledge
of the learner’s next decision vectgy. The loss vectors are all collinear with a pre-fixed veastor
and have pre-fixed absolute sizes. However, the sign, or directicggabf loss vector is learner-
dependent. Thus, for evety l; = d;a;v, wherea; > 0 andd; € {—1,1}. Importantly, one
may choose a sequen{e, }7°, s.t. the cumulative path lengtiv|2 >°;°, a; is infinite and yet the
quadratic variatiodlv||3 "¢, o is arbitrarily small.

The key element of the proof is that the directignis decided by observing the next decision
x; of a second online algorithm, denotdd as well as the next decision of the learnerd. More
concretelybeforedeciding on the direction df, the losses oft and A’ in the upcoming round are
compared, assuming we chaoge= d;_; (whered, = 1); if A stands to do better thad/, that
is, x¢ - di—1a.v < X} - dy—1a4v, then the direction is reversed, otherwise, it is left the same. This
construction ensures that the cumulative loss and regrétase never better than those 4f.

We use a deterministic algorithrf that calculates its decisiors as the gradient of a concave
potential function of the cumulative losses. Namety,= V&(nL;_1) for a concave potential
® : RV — R with a learning rate; > 0. We draw heavily on the special properties of these
algorithms, and in particular, their non-negative or even strictly positiyeetdor any loss sequence
(Gofer and Mansoy2012. Another property of the second-order remainders of potentials in that
family enables us to lower bound the SC4ffand A by Q(Zthl a).

We point out that all the details of the above construction may be known to dineelein
advance, making the losses entirely predictable. Nevertheless, fotanif—av, av], the values
L, inevitably either oscillate indefinitely within the interval or at some tifelepart it. In the
former case, we show that SCs rise arbitrarily with a;, while the regret of4, lower bounded
by the regret ofd’, is non-negative. In the latter case we show tRatr > Ra r = Q(1/n),
which can be made arbitrarily high by picking an arbitrarily smglllt follows that in both cases
the learner’'s augmented regret may reach any level we desire, vloerthe game may be stopped.

We now proceed to prove the result. We will assume the existence of a wectoR”, a
continuously twice-differentiable concave functién: RY — R, and a scalaA > 0, with the
following properties:

e For everyL ¢ RY it holds thatV®(L) € K.
e Itholds that§; = inf|y>\{®(sv) — ®(0) — minxex{x - sv}} > 0.
e Itholds thatt, = inf <)\ {—v V2®(sv)v} > 0.

Such a tripletv, ®, \) will be termedadmissibleand its existence will be justified later. We point
out that the last requirement implies in particular thagt 0.

The above vectoxr will be used when defining: = d:a;v. In addition, note that for any
e > 0, one may sety, = /6¢/(nt) for everyt = 1,2,... and satisfy bot_;°, a; = oo and
S2,a? = e. Now, for anyn > 0 we denoted, (L) = (1/n)®(nL) and may defined’ by
x; = V®,(Li—1) = V®(nL;_1), whereL, = 0. It then follows that for ever{,

R 2 ®y(Ly) = ®,(0) — min{x Ly} > 0 (1)

(Gofer and MansoyR012 Corollary 1). These considerations lead to the following lemma:

Lemmal Let(v,®,\) be admissible, ley > 0, and defined’ by x; = V&, (L;_;). If for some
T it holds thats = S| d;a, satisfiegs| > A/, thenRa7 > Ra . > & /1.
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Proof By Equationl, Ry 1 > % (®(nL7) — ®(0) — mingex{x - nL7}). SincenLy = (sn)v,
lsn| > A, and¢; = infjg > \{®(s'v) — ®(0) — minyexc{x - s'v}} > 0, we obtainRa 7 > &1 /9.
As argued beforel 4 7 > R4/ 7 and the result follows. [ |

Next, consider a case in which the valdgsall remain in the interval—Av /5, Av/n]. This implies
an unbounded number of direction reversals, and the S@snady be lower bounded as follows:

Lemma?2 If for everyt < T it holds thatL,; € [-Av/n, Av/n], anddr # dr_1, then

T-1 7]5 T-1

2
Z ”Xt+1 — Xt”l > Z ag .
t=1 t=1

[[Vloo

The proof is in the appendix. Lemniashows that to avoid arbitrarily large SCs, the vedigr
must leave the intervak-\v /n, Av /7| at some point. Otherwise, the learner incurs arbitrarily large
augmented regret, sindes; > R4, > 0 for anyt (see Equatiord). However, if the cumulative
loss does leave the interval, then by Lemina regret of at least; /7 is incurred. Since) > 0

is arbitrarily small, the augmented regret in either case can be made arbitragdy 1&e can now
prove the following:

Theorem 3 For any OLO problem with an admissible triplet, any normed SC, andiany 0, no

learner may guarantee bounded augmented regret for every lossseg with quadratic variation
smaller than@. In addition, no deterministic learner may guarantee such a bound agaims
oblivious adversary that can simulate the learner, and no learner mayagiee such a bound in
expectation against an adaptive adversary that knows the expectatiom lefarner’s next decision.

We comment that Theoreficlearly holds even if the SC is only lower bounded by a normed SC.

We conclude by proving the existence of admissible triplets for two genkrsdes of OLO
problems. One is the BE setting, and the other includes all cases for whiehB(0, a), where
B(0,a) is the closed ball with radiug centered a0, for somea > 0. For these settings the
existence of entire classes of admissible triplets is implied by the resul@ofar and Mansour
(2012, but note that for our purposes we require only a single represeniadr setting.

For the BE setting, we sé(L) = —In((1/N) S_Y , e~1+), which is the potential function of
the Hedge algorithm, along with = (1,0,...,0) and anyA > 0. For the casé&C O B(0,a), we
set®(L) = minkex{x - L + §[|x[|3}, which is the potential function of OGD with lazy projection,
along withv = (1,0,...,0), again, and\ = «. Itis thus implied that the reference algorithin,
which uses the gradient @f,,, would in fact be Hedge in the former setting and OGD in the latter,
More details may be found in the proof of the following corollary, given indppendix:

Corollary 4 Let K be the decision set of an OLO problem. Kif = Ay (the BE setting) or
K 2 B(0,a) for somea > 0, then for any learnerd and any@ > 0, there exist loss sequences
with quadratic variation smaller thary for which A incurs arbitrarily large augmented regret.

4. Higher-Order Augmented Regret Boundsfor RFTL

The result of the previous section may be circumvented in two ways: One is tsexguditional
restrictions on the losses, and the other is to assume SCs other than noesedrothis section
we pursue both these routes and provide two types of bounds on the retegmegret of RFTL
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in the OLO setting. One bound is for normed SCs given an additional boutidedengthof the
cumulative loss pathth:1 IIL;||2. The other depends purely on the quadratic variation, given that
o(x,x') < c|x — x/||3. In what follows,RFT L(n, R) stands for RFTL with learning ratgand a
regularizerR. Some useful properties of RFTL are given in the next theorem.

Theorem5 1If n > 0 andR : K — R is continuous and strongly convex with parameter
then®(L) = (—1/n)R*(—nL) is concave and continuously differentiable B, and for every
L € RY, it holds thatV® (L) = arg mingex{x - L + R(x)/n} and ®(L) = minyex{x - L +
R(x)/n}. Furthermore,V® is Lipschitz continuous with parametgf«, namely, for anyL,, L' €
RY, [VO(L) = VO(L)|2 < (n/e)|L — L.

The Lipschitz continuity oV ® is proven in AppendixXC. The rest of the above claims are found
in Gofer and Mansou¢2012 and their proofs are therefore omitted. We will continue to refer to
the function®(L) = minyex{x - L + R(x)/n} in what follows, and will also use the notation

D = maxy vex{R(u) — R(v)}. Next, the above theorem is applied in proving a general second-
order regret bound for RFTL.

Theorem6 If n > 0andR : £ — R is continuous and strongly convex with parametethen
Rrrrimmr)r < D/n+nQr/a, and forn = \/Da/Q, itholds thatRrpr,r)r < 2/ DQ/ .

We next consider SCs, where the Lipschitz continuitydf is key. It holds for every that
[xt11 = x¢ll2 = [VO(Ly) = VO(Li1)ll2 < (n/) [ Ly — L1l = (n/) [[1e]]2 -

Thus, for a SC that satisfiegx, x') < ¢||x — x'||2 we have that

T-1

7-1
o(xt,xi41) < (ne/a) Y [ILlla
=1

t=1

and for a SC satisfying (x,x’) < c|[|x — x'||4 we obtain

Z o(x¢,xe41) < (nc/a?) Z 13 < (FPc/a®)Qr -

Together with Theorerfi these observations lead to the following theorem:

Theorem 7 (i) Let A be a known upper bound oEtT:l IL||2, the cumulative loss path length.
If o(x,x") < ¢cl|x = X'||2, thenRpprrpr)r < D/n+nQr/a + (nc/a) Z?zl ||Il||2, and for

n = 1/Q+ <, it holds thatRRFTL(nR 7 <2y/(D/a)(Q + cA).
(i) If o(x,x') < c|x — |3, thenRpprrmm)r < D/n+ 197 (1+ 1), and if we set) =
VDa/(2Q) for @ > Dc?/(4a) andn = {/Da?/(4Qc) otherwise, we obtaiR prrrmr) T <
2. /QD/a in the former case an@ pprr )7 < 2.4 - /QcD?/a? in the latter.

The proof of the last part of the second claim, which is purely technicalyéndn the appendix.

The above theorem applies in particular to Hedge and OGD: Hedge pondsto RFTL with
R(x) = vazl z; Inz; defined onC = Ay, whereD = In N anda = 1. OGD corresponds to
R(x) = (1/2)|/x||? defined on, sayC = B(0, 1), for whichD = 1/2 anda = 1.
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We observe that while Theorefmapplies to the BE setting, it is preferable to obtain bounds in
terms that are optimized for a uniform translation of the losses in each rSuieth.a translation does
not affect the regret, but does afféc}, ||1;||2 and>", ||1||3, which feature in the regret bounds. To
optimize", (I; s —:)? we takey, = (1/N) | 1 and obtaing 3, (1is —%)? < +(max{l; ¢} —
min;{l;,})? by Popoviciu’s inequality (LemmaLin the appendix). Thus, we may restate Theorem
7, replacingd 7, [[1;l> with (v/N/2) 327 (max; {l; ;} — min;{l;;}) andQz = 37, 1113 with
grN/4, and assuming known bounds on these new quantities insteacuofiA.

5. Mixed-Order Boundsfor the Best Expert Setting

This section presents bounds on the expected augmented regret foE thettBig with any SC.
These bounds combine first and second order terms and are baseddapégation of the Shrinking
Dartboard scheme. The SD algorithm modifies Hedge in a way that uppad$®B{K ;| while
achieving the same regret as Hedge in expectation. We observe that seh&me is easily gen-
eralized and applied as a meta-algorithm to any BE algoriththnat deterministically assigns only
positiveweights to experts. This results in a modified algorithm denstBdA). We next describe
this construction and prove its properties.

Let p; denote the decisions of for ¢t > 1. We recursively define a quantity; by 7,1 =
Zy - ming{p; +/pi+1}, whereZ; > 0 is arbitrary. This definition is valid sincg; ; > 0 for every
i andt. Observe thap;:Z; is positive and non-increasing infor everyi, and thatZ, may be
computed at timeé. The algorithmSD(A) selects a single expett at each time as follows. It

starts with the same probability vectpi used byA. Attimet > 1, SD(A) flips a biased coin

F}; with probability of succesg; = M. If F; = 1, thenSD(A) setse; = e;—1, and

Pey_q,t—12t—1
otherwise, it usep; to randomly choose;. Note thatf; € (0, 1], making this definition valid.
The next characterization 6fD( A) is an adaptation of claims given @eulen et al(2010 and
is proved similarly. The proofs may be found in the appendix.

Lemma8 The algorithmSD(A) satisfies that forevery <i < Nandl <t <T,P(e; = i) =
Dits and thatIE[KT] < ln(Zl/ZT)

Using these properties we can bound the expected augmented re§iet.df as follows:

Lemma9 For any switching cost upper bounded by it holds that

T-1

E[ESD(A),T] < Rar+B Z In m?X{pi,tJrl/pi,t} -
t=1

We now proceed to derive augmented regret bounds that involve d@cdar characteristics.
Such bounds are available for PW and Hedge, and are given for cieme$s, along with additional
required facts, in AppendiB (Theorem222 and23). We will denotePW (pg, ) and Hed(po, n)
for PW and Hedge, respectively, run with learning rate 0 and initial weights given by a proba-
bility vector py with non-zero entries.

Theorem 10 Setpy = (1/N,...,1/N), and w.l.o.g., lemin;{/; ;} = 0 for everyt.

10



HIGHER-ORDER REGRETBOUNDS WITH SWITCHING COSTS

(i) Assumenax;{l;;} < M foreveryt, Zthl th < Qforeveryi, andL} < L*, whereM > 0,
Q, andL* are known. If0 < n < 1/(2M), then

E[Rsp(pw (pom).r) < (B +1/n)InN + (n + Bn?)Q + BnL*

and forn = min {ﬁ, \/(HB/(QB{‘A%QJFB& } it holds that

E[Rsp(pw (poay.r] < Bln N + max {4/\/1 In N,2v/((1 + B/(2M))Q + BL*) 1nN} .

(i) Assumegr < gandLj, < L*, whereq and L* are known. For every > 0 it holds that

E[Rsp(Hed(pom).r) < (B +1/n)InN + (n/8) - ¢ + BnL*

and forny = qig‘}j}* we haVeE (R p(rred(po.n).r] < BIn N ++/(q/2 + 4BL*)In N.

6. Application to Option Pricing with Transaction Costs

In this section we incorporate proportional transaction costs in the tradirglnexamined in
Gofer and Mansou(2012. We apply our augmented regret results to obtain new option price
bounds based on a generalization of their analysis, given in detail inn&ppéa.

We consider a discrete-time finite-horizon trading model with tradable aXsets. , X 5. The
price of asseK; at timet € {0,1,...,T} is denoted byX;,, and we assumg&; ; > 0 for every
1 andt. We assume a zero risk-free interest rate, and that any real quantityyaisset may be
bought or sold. Thus, for every < i < N we may define théractional assetin*OlXZ-, whose
initial value is1. For every asseX; we denote by ; the single-period return between- 1 and
t,s0X;; = X;;—1(1 + r;t). Arealization of the values,; ,...,r; 7 is aprice pathfor X;. A
realization of the values; ; for everyi andt is simply calleda price path

We assume that trading incupsoportional transaction costsNamely, buying or selling an
amount worthz of X; incurs a cost;x, where0 < ¢; < 1. We will denotecy; = max;{¢;} and
cm = min;{c;}. Note that if an asset is simply cash, its rate may reasonably be taken to Be zero

The trading protocol involves taading algorithm A, which is simply an algorithm for the BE
setting with/V experts. This algorithm starts with wealtly (w.l.0.g. Uy = 1). At every time period
t > 1, A picks a probability vectop; and divides its wealtli/;_; among the (fractional) assets
according to this vector. This operation incurs transaction costs andsldawgth a total wealth
Vi—1, of whichp; ;V;_; is placed withX; for 1 < i < N. Following that, the new asset prices
Xi4,..., XN, become known, the wealth of the algorithm is updatette= Zf:l Vicipi(1+
rie) = Vi1 (1 + Zf\;l pitrit), and time period + 1 begins. We assumié, = Uj (no setup cost)
and alsd/r = Ur, since there is no reason to change the distribution in the last round.v@llsat
the wealthl; is divided according to a probabilify; defined byp; ; o p;+(1 + ;) for everyi.

We assume that transaction costs are funded by the sale of assetsirdmilipthat the proce-
dure for reproportioning wealth among assets is not unique. Howeeetask of reproportioning
wealth with minimal transaction costs is efficiently solvatiéuf and Kalaj 1999, and w.l.0.g. it
may be assumed that an optimal procedure is employed by any trading algorithm.

6. Proportional transaction cost®gvis and Norman1990 have several different variants in the literature (see
Musiela and Rutkowskil997). We note that like some, we do not differentiate between buying and sedlieg.

11
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We will price anoption ¥ (X,...,Xxy,T), defined as a security that paysx;<;< n{X; 7}
attimeT’". Specifically, we will upper bound its price @t 0, denoted by (X1, ..., Xy, T). This
may be achieved by devising a trading algorithm shater-replicategor dominate¥ a fraction of
the option’s payoff. Namely, the algorithm guarantégs> /5 max;{X; v} for somes > 0, for
every price path in some sHtof allowed price paths. Investing g with the algorithm and selling
short the option at time allows a guaranteed profit, arbitrage, unlessV (X, ..., Xy, T) < 1/5.
Thus, a price bound is implied, assuming the marketligtrage-free’ A randomized algorithm will
require theexpected arbitrage-free assumptiommely, that n@xpectegrofit may be guarante€d.

The bound derived will be used to pric&aropean call optionThis security, denote@ (K, T'),
paysmax{Sr — K,0} attimeT', whereK > 0 is thestrike priceand St is the value of some asset
S attimeT'. The option is “at the money” i’ = Sy (w.l.0.g.,Sy = 1). We denote” (K, T') for the
price of C(K,T') at time0, and observe that' (K, T) = ¥(S,K,T) — K, whereK is K in cash.

6.1. Boundson Option Prices

We apply bounds on augmented regret to option pricing based on an ét&ipn of a trading
setup as a BE problem. The single-period losses of the experts areddefim@y ad; ; = — In(1+
rit), foreveryl < i < N, 1 < ¢ < T, implying thatL;; = —In(X,+/X;0). In contrast,
relating L 4 r, the cumulative loss of an algorithrh, and its final wealti/- is more elaborate (see
AppendixA, and especially Theore®, for the details.) These relations allow one to infer that
Vr > Bmax;{X; r} for every allowed price path, whereis derived from an upper bound on the
regret ofA. That in turn implies the price bounl(X,,...,Xy,7T) < 1/ via the arbitrage-free
assumption (see Lemnia in AppendixA). This conclusion may be stated more generally:

Theorem 11 Let A be a trading algorithm, and lety; < 0.2. It holds that for a knowmny,;; =
ant(emsear) > 0, if A guaranteed ar — Ly + an 3oy [Pt — Pt +1n X0 < + for some
~, for everyi and any valid price path, theW (X, ..., Xy, T) < exp(y).

Note that in realityc); < 0.2. If X; o = 1 for everyi, then~ in the above theorem becomes a
bound onR 4 T + o Zthl IIp: — pe+1ll1- This expression closely resembles regret augmented
with a normed SC, but importantly, the role pf is taken byp;. For an algorithm that holds a
single asset at each timewe have thap; = p; and the problem is solved. Otherwise, additional
ad hoc arguments are necessary. Importantly,ig probabilistic, then a variant of the above result
may be applied. The guarantee4fmay hold in expectation, and the result follows by invoking the
expectedarbitrage-free assumption and the concavityrof. This variant may be used to derive
concrete bounds o (X,,...,Xy,7) by plugging in the bounds obtained for SD, either with
Hedge or with PW. The next theorem will employ Hedge specifically to baufid 7').

To the end of this section we will consider two assets: a s®ulth S, = 1 whose price path
is denoted by(ry, ..., rr), and a unit of cash. It follows thatQr = qr = Zthl In?(1 4 7). We
will also denotel; = —1In(1 + r¢), ;7 = max{l;,0}, andl,; = max{—I;,0}, and assume that the
transaction cost rate f{& isc = ¢y < 0.2.

7. Short selling the option at timand receiving its payoff at tim& are assumed to incur no transaction costs. This,
and the assumption on the costless setup of the trading portfolio are admptedusiela and Rutkowskj1997).

8. By expectedarbitrage we mean w.r.t. the internal randomizations of a trading algariftnis is different from the
standard ternstatistical arbitrage which assumes a statistical model of prices.

12
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Theorem 12 Assume all valid price paths satisfyin{>"~ , ;;",>"" I7} < X\ andg¢r < g,
whereg and \* are given. Then it holds that(1,7") < exp(2cIn2 + 1/(q/2 + 8cA*)In2) — 1.

We emphasize that SD requires an oblivious adversary, so Thelzenust further assume that
market prices are unaffected by the trading algorithm’s actions. It is alspte see how* may
grow indefinitely withT, even giverngyr < ¢, trivializing the bound, unless prices move almost
entirely in one direction. Nevertheless, fo= 0, the bound becomesp(1/(¢/2)In2) — 1, and an
optimal ©(,/q) for a smallg, matching a result isofer (2013 that assumes no transaction costs.

We end this section with an adaptation of the infeasibility result of Se&ionoption pricing.
The option®¥ (S, 1, T) is trivially dominated by buying and holding the stock and the cash, yielding
U(S,1,7) < 2,and thusC(1,7) < 1. The following theorem shows that given only assumptions
on the quadratic variation, this bound may not be improved using our metibisis expected,
since similar results hold even for a stochastic price proddssigla and Rutkowskil997).

Theorem 13 Letc > 0 and letQ be a known upper bound on the quadratic varia@}f:1 In?(1+
r¢). Forany@ > 0 and for any trading algorithmA there is a loss sequence with quadratic
variation smaller thar) for whichVr/max{1, St} is arbitrarily close tol/2. As a result, Lemma
14 cannot provide a non-trivial price bound for an “at the money” call option S.

7. Conclusion

This work considered regret bounds in the OLO setting with full informatidmere regret is aug-
mented with SCs. We gave an infeasibility result for obtaining pure secatet-bounds with
normed SCs given only a bound on the quadratic variation. We also ggweeaited regret upper
bounds for RFTL and for variants of the Shrinking Dartboard schenmesd& bounds mostly fea-
ture an additional constraint on the loss sequence, such as a bouneltotatiength of losses or
the cumulative loss of the best expert. In the absence of SCs, howeehecome pure second-
order bounds. Both positive and negative results were applied to tbeepre@f option pricing with
transaction costs.

Future work It would be interesting to consider upper bounds that involve the secriai-
guantities examined bilazan and Kal¢2010 and Chiang et al(2012. In addition, one might
consider alternatives to our constraint on the total length of losses. Irdhiext, Lemma 9 in
Hazan and Kalé2010 is of interest (although we point out that it requires an additional bound
on the time horizon). Another interesting direction would be to consider secaer augmented
regret bounds in the more general setting of OCO.
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Appendix A. Return, Regret, and Pricing with Transaction Costs

This appendix explains the relations between option pricing, the perfomwdni@ading algorithms,
and the performance of algorithms for the BE setting. Those relations weeetoghed previously
assuming no transaction cosBeMarzo et al.2006 Gofer and Mansoy2011h 2012. The results
given here extend this analysis to a trading model with proportional triosamsts.
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Relating Option Pricing to Trading Algorithms

We start by linking the performance of trading algorithms to the pricing of optiath the following
simple lemma.

Lemma 14 (DeMarzo et al.2008 Gofer and Mansoy20111 If there exists an algorithm trad-
inginXy,...,Xy andg > 0 s.t. for all possible price paths and every< : < N, Vp > X, r,
then

U(Xy,..., XN, T)<1/B.

Proof It holds thatl// units of cash invested with the algorithm will always dominate the payoff
of ¥(X,y,...,Xy,T), implying an upper bound on the price of the option by the arbitrage-free
assumption. |

Importantly, if the algorithm is randomized, the condition must hold for ékpectationof V7
instead ofi itself, and theexpectedarbitrage-free assumption is invoked.

Relating Trading Performance and Regret

We next link the performance of a trading algoritbdrto its performance as a BE algorithm. This
result incorporates transaction costs in the analysis giv&oier and Mansou{2012).

Recall that the single-period losses of the experts are defingd as— In(1 + r;;), for every
1<i¢< N,1<t<T. Thus, the cumulative losses of the experts are exactly minus the logarithms
of the values of their respective fractional assets, that is,

t t

Liy = Zli,r = - Zln(Xi,T/Xi,Tfl) = —In(X;:/Xip) .

T=1 T=1
Such a simple transformation does not hold wk.f.  and V7, but a useful link may nevertheless
be established between these two quantities. We will require the next lemma.

Lemma 15 (Gofer and Mansoy2012 Let vazlpi =1, where0 < p; < 1foreveryl <i < N,
and letz; € (—1, 00) for everyl <+i < N. Then

N
1 + max;{z}
2
In <1 + E pzzl> (1/8)1In <1 ini{zi}> < ;_1 piIn(1 + 2;)

Before proceeding, we note that in the present context, the relatiekaticavariation ofly, ..., 1p

satisfies
T

qr = Z(max{lzt} mm{lzt} Zl 2 (H—nme) .

— 1+ ming{r;+}

We may now establish the following important relation:

Lemma 16 It holds that

T

0< Lar+ Y Wn(Uy/V;)+InVp < qr/8,
t=1
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and as a result,

Vr
max; { X OlXZ T

T
0< Rar+ Y In(U;/V;) +In

<qr/8.
=1 }

Proof We have that

T T T N
mVp = W(V/U) = In(U;/Vic) = > In (1 + Zpl-,m-,t> :
t=1 t=1 t=1 i=1

By the concavity oin(1 + 2),

T N T N T N
> I <1 + Zpi,m,t> >3 piln(U4rig) ==> > pialie=—Lar,
=1 i=1 =1 i=1

t=1 i=1
andthusp < Ly +1InVy — Ethl In(V;/U;), as required. For the other side, we have by Lemma
15that

T

N
—Lar = Zsztln +7it)

t=1 1

T
1 + max;{r; ¢}
In|1 i | — (1/8)In? | ———2 0t
1 [n< +Zp t’r t) ( /8) n <1+H11I1z{7"1,t}>]
T
=InVp = > In(Vi/Uy) — qr/8
t=1
as needed. Sinagin;{L; 7} = — Inmax;{X;  X;r}, we have that

T
0 < Lag —min{Lir} — mmax{X;{ Xizr} +InVp =Y In(V;/T) < qr/8,
7 7 ’
t=1

or equivalently,

T
0<Rar— Y W(Vi/U;) +1In
t=1

Vr
Ix-1lx.
max;{ i,0 2,1

}SQT/&

completing the proof. |

Explicitly Bounding Transaction Costs

The relation given in Lemma6 accounts for transaction costs only implicitly. The expressions
In(U,/V;) hide both the exact procedure for rearranging wealth among assetdlas\the trans-
action cost ratesy, ..., cy and relevant probabilities and losses. We turn next to derive explicit
expressions.
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HIGHER-ORDER REGRETBOUNDS WITH SWITCHING COSTS

Consider a single wealth reproportioning operation. Suppose that wiéalth 0, which is
distributed among asse¥,, . .., Xy according to distributiomp, is redivided according to distri-
butionp’. The total remaining wealth after transaction costs is dendted’he next two lemmas
will show that transaction costs may be bounded from above and belownis t#i|p — p’||:. As
mentioned in Sectio®, we will assume that wealth reproportioning operations are optimized to
minimize transaction costs.

Lemmal7 It holds that

Xiclpi—pil V' Xelp —pil
;7 = )
14>, cipl vV - 1- Z cipl
and as a result,
np-ph<i-2 <M by
1+ cay P—Pi vV S 1C P—Pl1-

For the special cas&’ = 2, one may obtain the |mproved bounds

Cm + CMf

1%
Jp-pPh<1l—-—=<-"—"|p-pl-
\% 2(1 — cnp)

Cm t+Cupr
2(1+cm)

Proof The optimal redistribution algorithm either buys or sells a certain quantity df aaset.
Suppose; € R is the amount of money spent &, wherez; > 0 stands for buying more of the
asset, and; < 0 stands for selling. For every the new wealth in assétis p;V’' = p;V + z,
and the transaction cost incurredci$z;|. Summing over the assets we have=V + >, z. In
addition, the transaction costs account for the difference in total wealtis,— V' = >". ¢;|z|.
We may therefore write

V=V'=Y ailal =) al - p)V —pi(V -V

7 7

We may now derive the result using the triangle inequality. On the one hand,
> il = p)V = pi(V =V <> cillp; — pilV A+ pi[V = V)
=V. z:cllpZ pil + (V =V Zczpl .

On the other hand,

>l =p)V = pi(V =V 2 3 eillp = pilV = pilV = V')

% 7

=V'Zcz'lp2—pi| —(V =V e}

i

Together, we get the two-sided inequality

VS alpi—pil = (V=V) D e <V =V SV el —pil + (V=V) Y el

19
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and rearranging, we obtain
V- icilp —/pi\ “V_V< V- >icilp; —/Pz‘\
14>, cip) 1= el
and the first claim of the lemma follows, with the second claim of the lemma as an immediate

For N = 2, it holds that|p, — po| = |p} — p1] = (1/2)|lp — p’||1 and the first claim of the
lemma therefore gives

(@+alp-plh _, V' _(+e)lp-plh

214+, cipl) V= 201 =), )

Since) ", ¢ip; < epr ander + ¢ = ¢y, + e, it follows that

!/

M.||p_p/||1<1_7 M'HP—P/\M
2(1+CM) - vV = 2(1—CM) ’
concluding the proof. |

Using the previous lemma, we may derive bound$ugi’ /V') that will be more useful for our
purposes. We use the fact that for any 1/2 it holds that

—z—22<In(l-2z)< —z. (2)

By the second part of Lemnig,

!
— Wm—pW1SK;§1— :
1—cpy |4 14 cp

Cm

1- Ip—p'll -

Note that both the leftmost and rightmost expressions have the forme, and we would like
to show thatz < 1/2 in both cases so that Equati@could be applied. To achieve that, since
[P — p[l1 < 2, it would suffice to require thag=.— < 1, or equivalently, that,; < 0.2. We then
have that

%4 Cm c
e <In(1- p-Ph)<——"—-|p-p
n v n < 1+c¢ Hp b ‘1> =14 Hp p Hl

and also that

!
iy 2 (1= 12 o o))

1—cpy ‘
2
CM / Cv 2
> _ M =
> 1_%ﬂp Pl (1_qﬂﬂp Pl
2
__Cm TR L5 T ST
> e P e
CM(1+CM)

= —WHP -p-

Together, and sincey; < 0.2, we have

!/

v
—%mm—ﬂhﬁmvf&ﬂ&MW—Mh
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The same considerations may be applied in the dase 2, for which Lemmal? yields

o CmteM o < V' <po Cmten
2(1 — car) =y s an L

It is easy to verify that it:); < 0.2, we may apply Equatiofi and obtain that

V' Cm + CMm /
n— < —-—— . —
NS (it ey PP

and also that

%4 Cm + Car (em +cnr)?

1 o > __m =M _ / _ _ 1112
n vV = 2(1 — CM) ||p P ||1 ( CM)2 H P Hl
Cm + , (Cm + car)?

> m - — _
T lp—P'[h 20 —ca)? lp = p'llh
(Cm+CM)(1 ‘|‘Cm) ’

We may thus obtain

!/

Vv
—(em+cem) - lp—Ph < 1n7 < —04(cpm +em)llp =Pl s

where we further used the assumption that< 0.2. These results are summarized in the following
lemma.

Lemma 18 Assuming that,; < 0.2, it holds that

V/
In 3> = —alp—p|1,

wherea € [0.8¢,,, 2¢ps], and for the special cas®y = 2, a € [0.4(¢m + car), Cm + ]

We may now give an explicit relation between loss, return, and transactsis for a complete
trading process.

Theorem 19 Let A be an algorithm trading inV assets, and let;; < 0.2. It holds that

T

0<Lar+WnVr+a) [[B—puili <ar/8,
t=1
and
T

0<Rar+a) [P =Pl +1In
t=1

Vr
-1
maxi{Xw X@T

}SQT/S,

where p; is a probability vector defined by;; o p;:exp(—l;;) for every:i andt and o €
[0.8¢,m, 2¢ps], and for N = 2 in particular, a € [0.4(¢y, + ¢ar), ¢m + Car)-
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Proof By Lemmals,
Zln Vi/Uy) = —042 Pt — P11,

where the distributiom;, is defined by

~ pit(M ) pirexp(=lit)
p’i,t - N - N .
D=1 Pit(L+150) D21 pirexp(—ljz)
The result is now immediate from Lemmé&. [ |

Appendix B. Additional Claims

Lemma 20 (See, e.g.YandenberghelLet f : C' — R be strongly convex with parameter where
C C RV, Thenf has at most one minimizer, and for such a minimizeit holds that

1
Fy) = f60) + galx = yl3
for everyy € C.

Lemma 21 (Popoviciu’s inequality)lf X is a bounded random variable with values [im, /],
thenVar(X) < (M —m)? /4, with equality iffP(X = M) = P(X = m) = 1/2.

Theorem 22 (Cesa-Bianchi et §12007) Let A stand for PW (pg,n). Assume that;; < M for
everyt =1,...,Tandi = 1,..., N for someM > 0. Then for any sequence of losses, expert
0<n<1/(2M),andT > 1, it holds that

1
Lyr<-In

< LZT +
n WT+1

Theorem 23 The algorithmHed(po, ) satisfies that for every expert

1 7% 1 1
—1In <L T+ — In
n  Wrg n Pio
and
n
L CLip< -1 I,
Hed(po,n),T iT o pr + 3 qr

If ¢ is a known upper bound ogy, then setting; = /(8/¢)In N andp;o = 1/N for everyi
implies thatR icq (o7 < v/(¢/2)In N.°

9. This result fromGofer(2013 improves the constants of a result in the same spirit giv&esa-Bianchi et a(2007).
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Proof Let A stand forHed(pg,n). Hedge may be defined as the gradient of the concave potential

N

1 oL,

@y (L) = —%ln E pjoe” "
i=1

It holds that .
. 1
Rar = ®,(Ly) — mjm{Lj,T} -3 D VPP (2]
t=1

wherez, € [L;_1, L] fort =1,...,T (see, e.g., Theorem 2 {Bofer and Mansoy2012). Equiv-
alently,

T
1
Lar = ®y(Lr) — 3 Z 1] V20, (21, - (3)
t=1

By definition of ®,, it holds for everyi that
1 [ 1
®,(Lr) — Lir =——In ij,oe_"Lj’T + ~Ine kT
n , n
J=1

_ 1 [ exel=nlir) | _ 1, pirs
n
1
U

Z;-V:l pj70€_nLjvT n Dbio
1
pio
Note that sincél/n) In(W1/Wr41) = &, (Lr), this yields the first of the required claims. Com-
bining Equations8 and4, we have that for every,

< (4)

In

1.1 1<

Lar—Li7<=1In — =3 1'V2, (2], . 5
ar=Lip € 2;t ()l ()

Now we bound the sum on the right hand side. For ewverig holds that—lfv%n(zt)lt =
nVar(Y:), whereY; is some discrete random variable that may attain only the vajyes. ., [y,
(see, e.g., Lemma 6 iBofer and Mansoy20129. Thus, by Popoviciu’s inequality (Lemn#d),

1 VARl < - (il ) - minl; )’

for everyt, and Equatiord yields

pio 8
as needed. Setting o = 1/N for everyi andn = /(8/¢) In N then yields

1
Lag =Ly < SN + 2.q=(@/DIN

completing the proof. |
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Appendix C. Missing Proofs

Proof of Lemma&2: Denotet; < to < ... for all times of true direction reversal, namely, times
t > 1 whend; = —d;_1. Now consider a time intervat, '] between two reversals, with = ¢;
and7r’ = t;11. By our constructionx - d-a,v > x’. - dra,v andx,s - dra.v < x_, - d-a;v, or
equivalentlyx. - d,v > x/. - d,v andx,, - d,v < x_, - d.v. These two inequalities combine to give

(xr —xp7) - dev > (X — %) - drv . (6)
Now,
dT(LTlfl - LT*l)
dr ZZJ:;I at
Ly —L;

= (V@ (Lr—1) — VO, (Lr—1)) - T, (7)
t

(x7 —X7) - drv = (VO (Lr—1) — V&y(Lro1)) -

t=1
By Taylor’s expansion we have for afy, L’ € R" that
1
@y (L) = By(L) = V&, (L) - (L~ L) + S (L~ L) V>, (2)(L — L)
and

B, (1) — (L) = VB, (L) (' ~ L) + (I L)V, (2) (L - L)

wherez;, z2 € [L,L’]. Summing these two equations and rearranging then yields
1
(V& (L)) = V&, (L)) - (L - L) = = (I = L) (V*®, (1) + VP (22))(L' ~ L)
= (L'~ L) (V*®(nz1) + V*@(nzs))(L' ~ L).

ForL = L,_; andL’ = L,,_; it holds thatz; = s;v andzy = syv with |s1], [s2| < A/n, and by
admissibility,
2

-1
(VO (Lr—1) = V@,(Lr—1)) - (Lr—1 — Ly1) 2 02 (Z at) - (8)
t=1
Therefore, together with Equatidtwe obtain
-1
(X, =x}) - drv =& Y ar, €)
t=1
and with Equatioré we now have
71
(xr — Xp7) - drv > néo Z a; , (10)
t=1

and since by @lder’s inequality(x, — x./) - d-v < ||v]|s||X+ — x,||1 We obtain that

-1 T'—1

&
3 s = xill = Ixe = %ol > oY

t=1 HVHOO t=1
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It may be verified that all the above arguments hold also# 1 and7’ = ¢;. Summing up over
intervals including1, ¢1] yields that for every.,

tn—1 tn—1

2
Z ||Xt+l XtHl > ||n|| Z ag ,
%

t=1

and the proof is complete. [ |

Proof of Theoren8: First, by the equivalence of norms, our results so far prove the fashdor
any deterministicA given any normed SC. This claim holds also for randomized algorithms, since
we never actually used the fact thats deterministic.

Our construction requires knowledge of the learner’s next decisfoA.i$ deterministic, then
an oblivious adversary that can simulate its run may clearly construct gjoesee in advance.

Suppose then that the learner is randomized, and that forteaast beforeA playsx; the
adversary may know, = E;[x;], whereE, is the conditional expectation at timeThe adversary
may run the construction against a mock learAetthat playsys, . .., yr. Note that the losses are
completely determined by the learner’'s randomizations, which are the onlgesofirandomness
in the game between the learner and the adversary.

Note also that even though the length of the game is a random variable, it nieaabed as a
known constant, due to the nature of the construction. The reason istratyf target high value
for the augmented regret, it is possible to find a bollinr the time it may take to reach it inside
the interval, or earlier, by leaving the interval. Thus, it is always possibpatbthe loss sequence
with extra0 values to ensure lengfhi. On such values, the augmented regret of any learner cannot
decrease.

By our construction, given some arbitrarily larf@g, the adversary may guarantee

T-1

Ry < Rayr = ZYt l; — mln{u Lr} + ) lyeer — vl
t=1 t=1

regardless of the learner’'s randomizations. Now, for evérjolds that
Ellas) = Elx¢ - 1] = E[E¢[x¢ - I]] = E[E¢[x¢] - L] = Elys - 1] = E[la, 4] ,
implying thatE[L o 7] = E[L 4, 7] and thusE[R 4 7| = E[R 4, 7]. In addition,
Elllxt+1 = x¢l[] = E[Erra[llxer1r — xe[l]] 2 Ef[[Eepa[xes1 — xe][I] = Efllye1 — xll] ,
where we used Jensen’s inequality and the fact that all norms arexcdffeeherefore have that

Ellyet = yelll <Elllyerr —xelll + Efllxe = xea[l] + Efllxe—1 — ]
< Efllxera =%l + Efllxe — xe-1l] + Efl[x — x|

for everyt > 2. Consequently, denotingy = maxy xecx {||x — x'||} we obtain that

T-1 T— T—

> Elllyes — yill] - Z [lye+1 = yell] < Z [llxt41 —x4[] -

t=1 t= t=1
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It follows that

T-1

Raz+ ) %1 — x|
=1

T-1
2 é (E[RALT} — Do + ZE[HYtJrl - yt\H) _ 1 (E[éAl,T] _ Do)
1

T-1

=E[Ray 7] + ) Ellxitr — xi]
t=1

E[Rar] = E

t=1 3
23 (Ro — Do) ,
where the first inequality uses the fact that our construction ensure&tha > 0. SinceRy is
arbitrarily large, the proof is complete. |
Proof of Corollary4: It holds that®(L) = —In((1/N) Zfil e~14) is concave and continuously

twice-differentiable with a gradient itAy. In addition, for everys > 0 we have

pi(a) = a(iLr;fza{@(L) — ®(0) — min{u-L}} >0

= inf “1"V2o(L)I} > 0.
pala) = o dnf L VIR >

(SeeGofer and Mansouy2012 Subsection 5.2). It is easily verified that fer= (1,0,...,0) and
anyA > 0, (v, ®, \) is admissible sinc€; > pi(A) and&s > pa(N).

For the cas& 2 B(0,a), it may be shown thab(L) = mingex{x - L + 1||x||3} is concave
and continuously twice-differentiable with a gradieniinIn addition, we have

pi(@) = inf (@(L) - @(0) -~ minfu-L}} >0

a) = inf —ITV2<I> LMY > 0.
p2(a) ||L||2Sa,||1||2=1{ (L)1}

(For details, se&ofer and Mansouyr2012 especially Subsection 5.1.) Again, it is easy to verify
that forv = (1,0,...,0) and\ = q, (v, ®, \) is admissible sinc€; > p1(\) and&y > p2(N). B

Proof of the Lipschitz continuity part of Theoredn Let L, L’ € RY and denotex = V&(L)
andx’ = V®(L’). We may assume that # x’, since otherwise the claim is trivial. The function
f: K — Rdefined byf(u) = nu-L+R(u) is strongly convex with parameterand is minimized
by x. Now, By Lemma20, we have that

1
nx' L+ R(x) >nx-L+R(x)+ 504“)( —X|5.
The same argument also yields that
1
- L+ R(x) > nx - L+ R(X) + Salx = x]l3 ,

and adding the two equations, we have that

< -L4+nx-L' >nx-L4nx' L' +a|x —x|3
or equivalently,
(x' =) (L-L) > (a/n)x" - x]f5 -
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Therefore,

IVe(L) - VoL)|2[x" — x|z = Ix —x|i3
< (nfe)(x' = x) - (L - L)
< (nfe)llx" = x[l,|[L = L2,

where the last step is by the Cauchy-Schwarz inequality. Dividing botls sigex’ — x||,, yields
the desired result. |

Proof of Theoren®: For everyl <t < T it holds that®(L;) — ®(L;—1) > VO(L¢) - (Ly — Li—1)
since® is concave (settind.y, = 0), and thus

O(Ly) — P(Ly—q) — (VO(Ly) = VO(Ly—1)) - (Ly — Ly—1) > VO(Ly—q) - (Ly — Ly—q) .
By the Cauchy-Schwarz inequality and the Lipschitz continuitiydf, we get
[(VO(Lt) = VO(Li1)) - (Lt — L) < [[VE(Li) = VO(Li—1)|2] Lt — L2
< (n/a)|lLy — Ly all3
and thus,
®(Ly) = ®(Ly—1) + (n/a) Ly = Ly-a]3 > VO(Lyo1) - (L — L) -

Summing up ovet <t < T, we have that

T

T
®(Ly) — ©(Lo) + (n/c) Z Lt — Lol > Z VO(Li-1) - (Lt = Lt-1) = LrrrimRr).1 -
=1 =1

Therefore,
Rrrrimr)r < ®(Lr) — ®(Lo) +nQr/a — f(nei,fcl{x -Lr} . (11)

Now, letxy € K be a minimizer fox - L, and letx; = V®(Lg). By Theorenb
®(Lo) = x1 - Lo + R(x1)/n = R(x1)/n

and
®(Lr) < x0-Lr 4+ R(x0)/n,

and therefore
®(Lr) — ®(Lo) — I;?el}cl{x -Lr} <x¢-Lr+R(x0)/n—R(x1)/n— %o - Lt
1 D
= H(R(XO) —R(x1)) < P

Plugging the above inequality into Equati@f, we obtain the first part of the theorem, and the
second part follows immediately. [ |
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Proof of TheorenT: If Q > Dc?/(4a), then it holds thatic/a = \/Dc?/(2aQ) < /2, and thus

éRFTL(n,R),T <D/n+ e <1 + \/§> =/2QD/a+ \/QD/(2a) (1 + \/§>

«

= (\/§+ 1/V2+ 1) VQD/a
<3.2y/QD/a .

OtherwiseQ < Dc?/(4a), and it holds thatic/a = {/Dc?/(4Qa) > 1 and

ERFTL(n,R),T < D/n+2n%cQ/o® = 3/4QcD?/a? + 3/QcD?/(2a2)
<24y/QcD?/a? .

Proof of LemmaB: The proof of the first claim proceeds by inductionioriort = 1 the assertion
is obvious, and we assume it is true faand prove it fort + 1. It holds that

Pit+12t+1 _ Pit+141+1

P(@H—l — 7;’ Ft+1 — 1) = ]P(et = ’i, Ft+1 = 1) = Dit thZt Zt 5

where the second equality used the induction assumption. In addition,

P(ety1 =i, Fry1 = 0) = P(eg1 = i|Fyyp1 = 0)P(Fi41 = 0)

N
= Dit+1 ZP(Ft-i-l = Ole; = j)P(er = j)

j=1
N
Pj,t+1Zt+1>
= Dit+1 IL——==—— ) Djt
' ; ( Pjtlt ’
N
- Djt+144+1
= Dit+1 Zl Pjt — T
]:

where the third equality again used the induction assumption. Thus,

N Pit+1Zt41 Zt+1
Plepy1 = i) = ————— + pi,t41 (1 - > = Pit+1 5

Zy Zy
as required.
For the second claim, note first that for evegndt,
. Pit+12t41
Plejr1 Zetler=1) <1 — ——7—.
(et1 7# e ) -~

Denotinga; = P(ey11 # e¢), we have by the first part that

—NIP’ =i)P —'<N o PitnZer) L
ar = Z (€111 # eler = i)P(eg = i) < Z Dit — 7 =17
=1 i=1
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Since—a; > In(1 — o) > In(Zy11/Z;), it follows that

T-1

Z Z
Zat< Zl t+1:—12—?

Finally,

T-1
=E [Z 1{6t+17ﬁet}] Z ap < ln T
t=1

concluding the proof. [ |

Proof of Lemma®: First, note that the expected standard regref B A) is identical to that ofd

since N
ZZP e =1 zt] = Zzpi,tli,t =Lar,

t=1 i=1 t=1 i=1

E[Lsp(a)

and consequentli[Rsp4) r] = Ra 7. Next, we have

T-1 71
E[Kr) <In(Z1/Zr) =Y In(Z/Z141) = > In max{piz+1/Pit} -
= =1

The result now follows because
E[Rspa)r] < E[Rsp(ayr] + BE[Kr] .
[ ]

Proof of TheoremiO: Note first that assumingiin;{l; .} = 0 for everyt is w.l.0.g. since we may
bound the augmented regret given the translated ldsseanin;{/;.} instead of the original ones.
The implication both for PW and Hedge is that for every; ; > w; 41 for every: with at least
one index;j for whichw;; = w; 1. Therefore,

m?X{pz',tH/pz‘,t} = (Wy/Witr) m?X{wz‘,tH/wz‘,t} =W/ Wi

for everyt, and consequently,

Z In mlax{pi’t_s_l/pi’t} = Z In(Wy/Wigr) = In(Wy/Wrp) < In(Wy/Wriq) .
t=1 t=1

Thus, by Lemm& N
E[Rspayr] < Rar + BIn(W1/Wryq), (12)

where A stands for either algorithm.
(i) Let A stand forPW (pg, n). It follows from Theoren®2 that for every expert,

+nlet+B <77L

1 1
LA,T LzT + Bln(Wl/WT+1) —In
n DPio

)

+ (n+ Bn? Zz +BnLir  (13)

= (B+1/n)
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Settingi = m/(7T") we obtain in conjunction with Equatiat? that

E[ESD(A),T] < (B+1/n)InN + (n+ Bn*)Q + BnL*
< BN + (1/n)In N +n((1+ B/(2M))Q + BL*) .

This bound is minimized by = min { k7. \ /557 gz | vielding that

E[Rsp(ayr] < Bln N + max {4M In N,2v/((1 + B/(2M))Q + BL*) lnN} .

(i) Let A stand forH ed(pg, n). It follows from Theoren®3 that for every expert,

3

1 1
Lar—Lir+ Bln(W1/Wry) < —In +--qr+B <77Li,T +In ; )
7,0

1
n  pio 8
1 7
+ < -qr+BnL;r (14)
pio 8

=(B+1/n)n

Fori = m(T) Equationsl2 and14yield

ElRsp(ar] < (B+1/mmN + - q+ ByL*

immediately implying the bound for the specific valueyof [ |
Proof of Theoremil: SinceL; r = —In(X; /X, ), we have by Theorer9 that

T
0<Lar—Lir —In(X;7/Xip) +am Z 1Pt — Pes1l1 +1InVp
=1

for a suitablen,;, and therefore

T

—y < —(Lar—Liz +In X0+ ay Z Pt — Pe+1ll1) <InVp —In X, 7.
=1

Thus, we have thdtr/X; 7 > e~7 for everyi, and Lemmél4 yields the result. [ |

Proof of Theorenl2 Observe thatS D(A) places all weight on a single asset, and therefore
p: = pt. As aresult, assuming the Sx, x') = ay||x — x'||1, one has for everythat

T

ﬁSD(A),T +In m]aX{Xj,o} > Lspayr + am Z Pt — Pes1l1 — Lir +1n X 0
t=1

> —(InVpr—-InX;r),

where the last inequality used Theoré®(which also provides a proper value faf,). Thus, an
upper bound/ onE[Rgp4),r] implies that

U-+ln max{ijo} > —EDH Vr —1In Xi,T] =In Xz',T + E[— In VT] > 1n Xi,T —In E[VT] ,
J
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where the last inequality is by Jensen’s inequality. Therefore,

E[Vr]
_— > -U -1 X
ma, (X1} = exp(—U nmjax{ i0t)
and by the expected version of Lemiéawe haveV (X, ..., Xy, T) < max;{X;o} exp(U). In
particular, a concrete bound f6t(1,7) = ¥(S,1,7) — 1 may be derived using Theorei®. We
will use the simpler bound for Hedge, and the valid bouhd= 2a),. By Theoreml19 we have
ay = ¢, and therefore,

C(1,T) +1 < exp (Bln2 +/(q/2 + ABL) 1n2)

= exp (201112 +/(q/2 +80£*)ln2> :

Crucially, however, TheoreriO requires that the losses be transformed. Namell, # (I;,0),
we must subtractin{l;,0} from both entries for every. This transformation does not affegt
or g, but means thaf* is actually an upper bound cmin{zfz1 It Zle l; }, and it is therefore
replaced with\*. |

Proof of Theorenl3 We employ the same construction used to prove the infeasibility result of
Section3, in the specific context of the BE setting wifth = 2. The first expert will be the stock
and the second will be the cash. Before proceeding, we note that te&wdion works regardless

of any randomization on the side of the algorithm. For every tirdenotep; for the decision of

A andm, for the decision ofd’. We will also denotep, and#; for the probabilities that satisfy
Dit X pirexp(—liy) andm;; oc m; . exp(—l;4), respectively, for every andt. Note that the
construction involves arbitrarily small quadratic variation, and is thus gpiate for any bound).
Since proving the claim for smaller transaction cost rates is harder, we ssayna w.l.0.g. that

¢ = cpr < 0.2. Sincecys > 0, Theoreml9implies that fora,,, = 0.4¢cps > 0,

Vr

T
In —————= <qgr/8—Rar — 5, —
nmax{l,ST} < ar/ AT amz 1Pt — Pesill1,

t=1
and sinceyr is arbitrarily small it suffices to show that for an arbitrarily smatt 0

T

—Rar —am Z Pt — Peyi1l <In(1/2) + €,
=1

or equivalently, that

T
Rar+om Y B —peals >m2—ec. (15)
t=1
As already argued, we may obtain an admissible triplet®, \) by settingv = (1,0), (L) =
—In((1/N) ZiN:1 e~1i), and choosing somg > 0, which may be arbitrarily large. The learning
rate will be set ag = 1 + 6 for somed > 0, which may be arbitrarily small. Thus, the reference
algorithm A’ is Hed(pg,n), wherepy is uniform.
As before, the cumulative loss either leayeg\/n)v, (A/n)v] for someT" or remains inside
it. For the first case, Lemma guarantees thak4 7 > &;/n, and it holds that; > pi(\) =
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In N (seeGofer and Mansouyr2012 Lemma 7). Thus, by choosing a large enough

N Trep N
and a small enough we may obtain thaR 4 7 > &;/n > In2 — ¢ for an arbitrarily smalk > 0,
satisfying Equatiori5, as required.

It now remains to show that Equatid®is satisfied ifL.; never leaves the interval. To do that, it
suffices to show thaR 4 r — Rar 17 + o, Zle |P+ — Pt+1/|1 grows arbitrarily large, sincd’ has
non-negative regret. Now, siné& 7 — Rarr = >1—;, (lay — Lars), and|[Be — peta|l1 = 2[p1s —
p1.1+1| for everyt, this expression equal‘gtT:1 (lag — Lary + 200m|P1t — p14+1]). Furthermore,
our construction guaranteés; > [ 4/, for everyt, so it would be sufficient even to show that

i > (lag—lae+ 6P —prena]) = 00, (16)
teTN[1..T)

whereT is some set of times and= 2q«,, > 0. We now proceed to show that such a set exists.
In what follows we will refer top; = (p;, 1 — p;) rather thanp; = (p1,, p2,) for short, and
similarly for all other two-dimensional probability vectors. As before, dertp < t5 < ... for
times of true direction reversals, namely, times 1 whend; = —d;_1. Consider a single time
interval [, 72| between two reversals, with = t; andm = t,11, whered,, = —1. We assume
thati is large enough s.ts > a, for everyt > t¢;. Recall thall; = dia;v = (dia,0) for everyt,
S0las = pidiay andly y = mdias. Thus, the fact thaty ; > 14/, necessitates thay < m, for
t € [m,m2) andp,, > m.,. We will prove that for any probability values.,, ..., p,, that satisfy
these conditions, it holds that

To—1 To—1 To—1

Z (lA,t —lar g + KDy —Pt+1’) > Z KTy — Tpp1| >0 Z at (17)

t=71 t=71 t=71

for some constarit > 0 that does not depend on the specific intefval 72]. Now, note that since
L; remains inside a finite interval, the sums of steps in either directipa=(1 or d; = —1) must
diverge. Thus, if we tak§ = {¢ : d, = —1}, then proving the claim in Equatidl would satisfy
Equationl6 and complete the proof.

We now proceed to prove the claim in Equatibh Defining f : [0,1] x RT x R — R by

re Y? T
flz,y,2) = =

eV 4+1—x x4+ (1—z)ev?’

we have for every thatm, 1 = f(m,n, dias), 7 = f(m, 1,dray) andpy = f(pe, 1, drar). Now,
for any fixed valueg’ > y,
xr . X
+(1—xz)evs x4+ (1—x)ev?
z(1 —z)(e¥* — e¥'’?)
(x+ (1 —x)ev?)(z + (1 — x)ev'?)
z(1 —z)(y' —y) exp(y”z)
= (= 1
(l' + (1 _ x)eyz)(w + (1 _ x)eylz) ( Z) ) ( 8)

f(x,y/,z)—f(a:,y,z) = T
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for somey” € [y,y']. Clearly, given somé, b, > 0, then for anyz € (by,1 — b1) and|z| < bo,
there is somés > 0 s.t.|f(x,y, z) — f(x,y, 2)| > bs|z|. Thus,

To—1 To—1 To—1

S Fe— el = > (1 day) — F(m 146, drag)| > ) baay

t=T71 t=m71 t=T71

for someb, > 0, since the values; are bounded and the probabilities given by A’ (namely,
Hedge) are bounded away froinand 1 inside the interval—(\/n)v, (\/n)v]. This proves the
right inequality of (L7), and we now turn to the left inequality. Note first that for every [, 72),

Dt — Te41 = Dt — Tp + Tp — Ty
= f(pe, 1, —ag) — f(me, 1, —ay) + f(me, 1, —ar) — f(me,m, —ag)
S f(ﬂ-ta 17 —CLt) - f(ﬂ-tana _at) <0. (19)

(The first inequality holds since, < m; and f(x,y, z) is increasing inc for every fixedy andz;
the second inequality follows from Equati@8 and the fact that; € (0, 1).) Now, observe that the
left inequality of (L7) amounts to saying that if; were replaced byt; for everyt € [, 72, then
the sum

To—1 To—1

D ile = mils + P — peal) = D (L — Lare + KlDr — pria )

t=71 t=T1

may not increase for any valid valugs We will use induction to prove a stronger claim, namely,
that the same is true if the change is applied only to a suffix of the indiges,t + 1, 7»]. If t = 1,

then the termk|p-,—1 — p,| is replaced by |p,,—1 — 7, |. Using (L9) and the fact thap,, > 7.,

we have thap.,—1 — pr, < Pr,—1 — T, < 0, SO the replacement does not increase the sum. the
inductive step amounts to showing that the sum is not increased by replacing

Pro—tlry—t + E|Pry—t—1 — Pry—t| + K[Pry—t — Ty 141
with
Tr‘l‘zftngft + /{|ﬁT27t71 - 7T‘I‘27t| + /{|%T27t - 7T7'27t+1|
if 0 —¢t>m,and
pTQ—tlTQ—t + H|I/)\7'2—t - 7TT2—t+1‘
with
7-‘—7'2—lflT2—t + H’%Tg—t - 7T7'2—t+1‘
if 9 —¢ = 7. Itholds thaty,, ¢ < 7, and thu,, 41,4 > 7, _¢l7,—¢. In addition, f(z, y, 2)
is increasing inc for any giveny andz, and therefore,,_; < 7,,_:. Furthermore, by Equation
18 7t < Try—t4+1, and thereforelp,, s — mr,—¢ 41| > |Try—t — Try—t4+1|- COMbining these facts
yields
pTzftszft + K’|Z/)\T27t - 7T7'27t+1| > 7T7-2,tl7-2,t + R’%Tgft - 7TT27t+1| ’
proving the claim for the case — ¢t = 71. If » —t > 71, then since,,_; < 7,4, it suffices to
show that the expression

pTz—tlTQ—t + H|ﬁ7’2—t—1 - p’rz—t’ + ﬁ|ﬁ7‘2—t - 7T’7’2—t+1‘
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does not increase for.,_; € [0, 7,—¢]. Observe thap.,_; < 7, < Try—41 IMPliESK|Dr,—¢ —
Try—tt1| = —K(Dry—t — Try,—t+1), @nd therefore we may examine instead the expression

pTzftlTQ*t + H|p‘f'2*t*1 - pTz*t‘ — KPry—t -

If pry—t € [0,Dr,—t—1], then we obtai,, ¢lr,—+ + KPry—t—1 — KPry—t — KPry—t, Which clearly
decreases ip,,—¢. If pr,—t € (Pry—t—1, Tr,—t], then we need consider the expressiQn 1, ; +
KDry—t — KDry—t, SO it remains to show thatz) = =l + kx — kf(x, 1,1) is non-increasing i,
for a negative. Sincel < 0 it holds that

of(x,1,1) el

= >el >1
Ox (x+(1—m)el)2_6_ T4

and therefore
Jd@) <k+l-r(1+1)=1(1-k) <0,

completing the proof. |
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