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Abstract
This work examines online linear optimization with full information and switching costs (SCs) and
focuses on regret bounds that depend on properties of the loss sequences. The SCs considered are
bounded functions of a pair of decisions, and regret is augmented with the total SC.

We show under general conditions that for any normed SC,σ(x,x′) = ‖x−x′‖, regretcannot
be boundedgiven only a boundQ on the quadratic variation of losses. With an additional bound
Λ on the total length of losses, we proveO(

√
Q+ Λ) regret for Regularized Follow the Leader

(RFTL). Furthermore, anO(
√
Q) bound holds for RFTL given a cost‖x − x′‖2. By generalizing

the Shrinking Dartboard algorithm, we also show an expectedregret bound for the best expert
setting with any SC, given bounds on the total loss of the bestexpert and the quadratic variation of
any expert. As SCs vanish, all our bounds depend purely on quadratic variation.

We apply our results to pricing options in an arbitrage-freemarket with proportional transaction
costs. In particular, we upper bound the price of “at the money” call options, assuming bounds on
the quadratic variation of a stock price and the minimum of summed gains and summed losses.
Keywords: Online Learning, Regret Minimization, Switching Costs, Online Linear Optimization,
Option Pricing

1. Introduction

Online linear optimization (OLO) models a wide range of sequential decision making problems
in a possibly adversarial environment. In this setting, at each time stept = 1, . . . , T an online
learning algorithmA (the learner) chooses a weight vectorxt taken from a non-empty compact
and convexdecision (or action) setK ⊂ R

N . Simultaneously, an adversary selects a loss vector
lt = (l1,t, . . . , lN,t) ∈ R

N , and the algorithm experiences a losslA,t = xt · lt. We denoteLA,t =∑t
τ=1 lA,τ for the cumulative loss ofA at timet and alsoLt =

∑t
τ=1 lτ . The aim of the learner is

to achieve smallregretw.r.t. the best fixed action with hindsight, regardless of the sequence of loss
vectors chosen by the adversary. The regret is formally defined asRA,T = LA,T−minu∈K{u·LT }.1

For randomized learners, the aim is to obtain smallexpectedregret (alternatively, small with high
probability). Importantly, it is assumed thatlt is also revealed to the learner once the losslA,t is
incurred, namely, afull information feedback mode. The alternativebandit feedback mode, which
assumes that the learner is privy only to its own losslA,t, will not be considered in this paper.

An important special case of OLO is the classicbest expert(BE) setting. This setting corre-
sponds to picking theN -dimensional probability simplex∆N as the decision setK. Thus, learner
A’s decision at timet is a probability vectorpt, and the regret becomesRA,T = LA,T−minj{Lj,T }.

1. Thus, OLO is a special case of online convex optimization (OCO,Zinkevich, 2003), in which the learner incurs a loss
of ft(xt), whereft is a convex function chosen by the adversary, and the regret is

∑
t
ft(xt)−minu∈K{

∑
t
ft(u)}.
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In this settinglt may be thought of as the losses ofN different experts, and the regret is measured
w.r.t. the cumulative loss of the best expert.

In the above representation,pt is a deterministically chosen point in the simplex, and may be
seen as a fractional bet placed onall experts. This representation will be termed thefractional view
of the BE setting. It is natural to also considerpt as a random choice of asingleexpert at timet.
Indeed, given a fractional learner, one may define another learner,which at timet picks vertexi of
the simplex with probabilitypi,t, for everyi andt (a randomized viewof the BE setting). Clearly,
the expected regret of these two learners is the same. Nevertheless, theydiffer dramatically in their
sequence of actions. For illustration, ifpt = (1/N, . . . , 1/N) for everyt, then the fractional learner
stays put, while the randomized learner switches between vertices erratically.

In many real-world scenarios the amount of switching between decisions is material, and dis-
couraging excessive switching is naturally motivated. In a physical system, changing configurations
wastes energy. In an algorithmic system, changing algorithms implies overhead, delay, and possible
user discomfort. Of particular interest for this work is the financial task ofmanaging a portfolio,
where switching between assets incurstransaction costsdue to commissions, spreads, etc. This
additional requirement may be incorporated in the OLO setting by defining a bounded SC function
σ : K × K → [0, B], whereB ≥ 0 andσ(x,x) = 0 for everyx ∈ K, and aiming at minimizing
the (expected)augmented regret̃RA,T = RA,T +

∑T−1
t=1 σ(xt,xt+1) rather than the standard regret.

This goal may be tackled in two conceptually different ways. One is to consider learners that are
also lazy, that is, switch decisions a minimal number of times; indeed, such algorithms may ac-
commodate any boundedσ. Another is to consider learners that movesmoothly, namely, that keep∑T−1

t=1 σ(xt,xt+1) small by making (possibly many) switches that are not costly given a specificσ.
Both these approaches will be considered in this paper.

1.1. Existing Algorithms and Types of Regret Bounds

In the absence of SC, the most notable algorithm for the BE setting is the Hedgeor Randomized
Weighted Majority algorithm (Vovk, 1990; Littlestone and Warmuth, 1994; Freund and Schapire,
1997). Hedge takes as parameters alearning rateη > 0 and initial weightswi,1 > 0, 1 ≤ i ≤ N .
For each roundt = 1, . . . , T , the expert probabilities are defined bypi,t = wi,t/Wt, whereWt =∑N

i=1wi,t, and afterlt is revealed, the updatewi,t+1 = wi,t exp(−ηli,t) is applied to the weights.
Given a bounded range for the lossesli,t, Hedge may be shown to have vanishing average regret.

If η is tuned solely as a function of time, we achieve the so-called zero-order regret bounds, which
have the formO(

√
T lnN). More refined bounds, called first-order bounds, are obtained whenη

is allowed to depend onL∗
T , the cumulative loss of the best expert. These bounds take the form

O(
√
L∗
T lnN). More recent second-order bounds obtained for various algorithms including Hedge

(Cesa-Bianchi et al., 2007; Hazan and Kale, 2010; Chiang et al., 2012) replace the dependence on
the time horizonT with quantities that measure the variability of the sequence of loss vectorslt.
Such bounds generally offer an improvement over first-order boundsand may be significantly bet-
ter in cases of low variability. Similarly, first-order bounds offer an improvement over zero-order
bounds given an expert with small total loss. It should be noted that thesevarious types of bounds
are in general optimal.

One specific algorithm that achieves second-order bounds is the Polynomial Weights (PW) al-
gorithm (Cesa-Bianchi et al., 2007), which replaces the exponential multiplicative update of Hedge
with its first-order approximationwi,t+1 = wi,t(1 − ηli,t), for everyi andt. The regret bound for
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PW replaces the time horizon by a known bound on the quadratic variation of the losses of any
expert, where the quadratic variation of an expert is the sum of its squared single-period losses.

When SCs are added, the randomized views of BE algorithms may generally incur Θ(T ) total
SCs.2 This prompted the introduction of a lazy version of Hedge called the ShrinkingDartboard
(SD) algorithm (Geulen et al., 2010), which was originally set in a context of online buffering. SD
picks a single expert randomly at every roundt and rarely switches it, but nevertheless has the same
probability as Hedge to hold experti at timet. It achieves the zero-order boundO(

√
T lnN) on

the expected augmented regret against anobliviousadversary (namely, one that fixes the losses in
advance), and their proof implies a similar first-order bound as well.

For the more general OLO setting, in the absence of SCs, optimal regret bounds have been
shown for the RFTL algorithm (Shalev-Shwartz and Singer, 2007; Hazan, 2011). This algorithm
proceeds by “following the leader”, namely, choosing the decision that would minimize the loss
so far, but tempers its greediness by adding a regularization factor to the minimized expression.
Formally, RFTL takes as parameters a learning rateη > 0 and a strongly convex regularizer function
R : K → R, and on each round setsxt = argminx∈K {x · Lt−1 + (1/η)R(x)}, whereL0 =
0. RFTL generalizes both Hedge and the Lazy Projection variant of the Online Gradient Descent
algorithm (OGD), defined by the rulext+1 = argminx∈K{‖x+ ηLt‖2}, via proper choices ofR.
For a continuously twice-differentiable regularizerR, RFTL guarantees, for a proper choice ofη, an
O(

√
T ) regret bound. The work ofHazan and Kale(2010) showed second-order bounds for OGD

in the OLO setting, which were later improved inChiang et al.(2012) using a different algorithm.
When SCs are introduced, the “Follow the Leader” approach producesboth lazy and smooth

learners. The original Follow the Perturbed Leader algorithm and its lazy version, Follow the Lazy
Leader (FLL) (Hannan, 1957; Kalai and Vempala, 2005), achieveO(

√
T ) expected regret by using a

random perturbation rather than regularization. For FLL a single large perturbation ensuresO(
√
T )

expected switches, and thereforeO(
√
T ) expected augmented regret against an oblivious adversary.

OGD, on the other hand, has a smooth behavior andO(
√
T ) augmented regret w.r.t. any normed

SCσ(x,x′) = ‖x− x′‖ (seeAndrew et al., 2013).

1.2. Contributions in This Paper

This work considers the problem of obtaining higher-order augmented regret bounds. As in the
absence of SCs, the motivation is to achieve better bounds for sequencesthat are “easier” in some
sense. Second-order bounds are of particular value because second-order quantities are linked to the
standard deviation of random variables in general, and in finance, to the key volatility parameter.

Our first contribution is an infeasibility result. We show that for any normed SC there can be
no augmented regret bound given only some bound on the quadratic variation

∑
t ‖lt‖22 (or other

popular notions of variability). In particular, an adaptive (non-oblivious) adversary that knows the
expectation of a learner’s next action may force unbounded expected augmented regret. (The same
is true for an oblivious adversary vs. a deterministic learner.) This resultholds for general classes of
the OLO setting, including the BE setting and any decision set that contains a ball around the origin
(like the setting for OGD). It also holds for SCs likeσ(x,x′) = 1{x 6=x′} that are lower bounded
by a normed SC. The proof technique is a novel application of the results ofGofer and Mansour
(2012). Specifically, for every learner we construct a difficult sequence based on the behavior of the

2. If SCs are positive for each pair of vertices in∆N , then the only way for expected SCs to beo(T ) is for pt to
converge to a vertex of∆N . This does not hold in general for every loss sequence, certainly notfor Hedge and PW.
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learner and a second learner from the RFTL family. The properties of those algorithms ensure that
the learner incurs either high standard regret or high SCs and non-negative standard regret.

Our second contribution consists of augmented regret bounds that circumvent our infeasibility
result. For RFTL with a normed SC in the OLO setting we show anO(

√
Q+ Λ) bound, where

Q bounds the quadratic variation andΛ bounds the total length of the losses,
∑

t ‖lt‖2. We also
give anO(

√
Q) bound for RFTL with the SCσ(x,x′) = ‖x − x′‖2 for any norm. For the BE

setting in particular, we derive expected augmented regret bounds that hold for any SC. This is
done by generalizing the Shrinking Dartboard methodology to any algorithm that maintains strictly
positive weights. Applied to PW and Hedge, this method yields bounds whose mainterms are
O(
√
(Q+B(Q+ L∗)) lnN) for PW andO(

√
(q +BL∗) lnN) for Hedge. In these bounds,N is

the number of experts,Q bounds
∑

t l
2
i,t for any experti, B boundsσ values,L∗ boundsL∗

T , andq
bounds the relative quadratic variation

∑
t(maxi{li,t} −mini{li,t})2. Importantly, the dependence

of the above bounds onΛ andL∗ disappears in the absence of SCs.
We apply our results to the financial problem of option pricing and specifically to pricing “at the

money” call options.3 In the financial setting, the fractional view of BE algorithms provides a recipe
for allocating wealth among a set of assets. For call options, the assets arestock and cash. More
importantly, regret bounds for such algorithms imply bounds on option pricesin an arbitrage-free
market (DeMarzo et al., 2006; Gofer and Mansour, 2012; Gofer, 2013).4 We extend analysis given
in Gofer and Mansour(2012) to a scenario where trading incurs proportional transaction costs. For
“at the money” call options the augmented regret results obtained for SD yield a price upper bound
of exp(2c ln 2 +

√
(q/2 + 8cλ∗) ln 2) − 1. In this bound,q bounds the quadratic variation of the

stock’s log price ratios,c is the transaction cost rate for the stock, andλ∗ bounds the minimum of
summed gains and summed losses (in log price ratio terms). Whenc = 0, this bound has the same
asymptotic behavior as the Black and Scholes bound for small values ofq, namely,Θ(

√
q).

We conclude by adapting our infeasibility result to show that similar methods canyield only
trivial price bounds for these options, given only a bound on the quadratic variation. This provides
an alternative regret-based proof for this well-known finance result inour model.

1.3. Related Work

The lazy approach to learning with SCs has been considered as a specialcase of learning against
adversaries with bounded memory (Merhav et al., 2002). Specifically, it takes memory of depth1
of the learner’s actions for the adversary’s loss values to simply incorporate the SC. TheirO(T 2/3)
regret bound for the full information case holds if a cost of1 is incurred for any switching, but it
is suboptimal. For the bandit setting, recent works have proved aΘ̃(N1/3T 2/3) bound forN arms
(experts) which is optimal inT (Arora et al., 2012; Cesa-Bianchi et al., 2013; Dekel et al., 2013),
highlighting a fundamental difference between the two feedback models.Arora et al.(2012) have
also showno(T ) regret bounds for the OCO setting.

The FLL algorithm was modified in the work ofDevroye et al.(2013) to work with perturbations
that are independent symmetric random walks, retaining its performance guarantees. The work of
György and Neu(2011) modified SD to work with an unknown time horizon, using variable learning
rates, and employed it to solve the limited-delay universal lossy source coding problem.

3. A call option is a security that pays its holder at timeT the sum ofmax{ST −K, 0}, whereSt is the price of a given
stock at timet, andK is a set price, called thestrike price. The option is “at the money” ifK = S0.

4. In an arbitrage-free market, no algorithm trading in financial assets can guarantee profit without any risk of losing
money. For a randomized algorithm, we assume that even expected profit may not be guaranteed.
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The smoothed approach in the OCO framework was considered byAndrew et al.(2013) for
normed (and even seminormed) SCs. They concluded that OGD-type algorithms given byZinkevich
(2003) and Hazan et al.(2007) have the same order of augmented and standard regret bounds,
namely,O(

√
T ) orO(log T ) (the latter holding for exp-concave losses).

The smoothed view was also considered by the online algorithms community in works on the
metrical task system problem (Borodin et al., 1992). Here the decision space is finite, the losses
are not necessarily even convex, and the SC function is a metric. Importantly, the learner knows
the next loss and the goal is to minimize the competitive ratio rather than the (standard) regret. For
works that consider interpolating between these two different goals, see(Blum and Burch, 2000;
Buchbinder et al., 2012; Bera et al., 2013; Andrew et al., 2013). Interestingly,Andrew et al.(2013)
showed that there are OCO problems with normed SC for which it is impossible to simultaneously
obtain sublinear augmented regret and a finite competitive ratio.

Arbitrage-free option pricing with proportional transaction costs has been considered in the
finance literature for the continuous-time, stochastically-based Black-Scholes-Merton (BSM) model
as well as its discrete counterpart, the binomial model (seeMusiela and Rutkowski, 1997for more
details). In the BSM model the cheapest way to almost surely super-replicate a call option (that is,
to dominate its payoff) is to buy and hold the stock. This holds for any positivevolatility, transaction
cost rates, and strike price, and implies a trivial price bound. The same holds for the binomial model
as the trading frequency goes to infinity.

In the learning literature, adversarial derivative pricing based on second-order regret bounds was
pioneered byDeMarzo et al.(2006) for call options and extended to exotic (non-standard) deriva-
tives byGofer and Mansour(2011a,b). Optimal asymptotic lower bounds for the price of “at the
money” call options were given inGofer and Mansour(2012). These works show that the adver-
sarial price of these call options behaves like

√
Q, up to multiplicative factors, ifQ is the assumed

quadratic variation of the stock’s log price ratios, for small valuesQ. This asymptotic behavior
matches the BSM pricing. Other works priced exotic options by super-replication (Dawid et al.,
2011b,a; Koolen and Vovk, 2012), but did not consider second-order quantities.

Adversarial call option pricing may also be derived by considering the exact value of the game
between the adversarial market and the trader (DeMarzo et al., 2006). Recently,Abernethy et al.
(2012, 2013) have shown that given bounds on the quadratic variation of stock returns and the
magnitude of price jumps, the strongest adversary is BSM’s stochastic price process. Their works
apply to call options and to more general payoffs. For “at the money” calloptions, the bound of
Abernethy et al.(2013) behaves likeO(Q1/8) for an asymptotically smallQ. These works as well
as those based on regret minimization assumed the absence of transaction costs.

Numerous learning works deal with the problem of portfolio selection, where the aim is to
maximize returns. Of those, some provide no adversarial performance guarantees (e.g.,Li and Hoi,
2012), while others, beginning withCover(1991), provide them w.r.t. rich classes of investment
strategies. The pricing problems we consider require adversarial guarantees w.r.t. a small set of
assets, making both types of results generally unhelpful. We briefly commentthat for some of the
rich strategy classes considered, there are provable regret boundseven in the presence of transaction
costs. One class isconstantly rebalanced portfolios(CRPs), namely, strategies that always keep a
constant fraction of funds in each asset. For CRPs, the Universal Portfolio algorithm of Cover
(1991) has been analyzed with transaction costs byBlum and Kalai(1999). Another benchmark
includes all switching strategies (Singer, 1998).
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Outline Section2 provides some additional definitions. In Section3 we give the infeasibility
result for pure second-order bounds. Section4 presents augmented regret bounds for RFTL. Bounds
derived by generalizing the Shrinking Dartboard method are given in Section 5. Applications to
option pricing are given in Section6. We conclude the paper in Section7. Note that background
and technical results pertaining to the financial applications are deferredto AppendixA due to space
constraints.

2. Additional Notation and Preliminaries

We next cover some additional facts, conventions and notation that will be needed later on.
It will be assumed that for a switching cost function, defined byσ : K×K → [0, B], the valueB

is known to the learner. We note that all normed SCs are equivalent in the sense that for every norm
‖ · ‖ onRN there arec1, c2 > 0 s.t. c1‖x‖1 ≤ ‖x‖ ≤ c2‖x‖1 for everyx ∈ R

N ; as a result, all such
norms are bounded on a compactK.5 In particular,‖x‖∞ ≤ ‖x‖p ≤ ‖x‖1 ≤ N‖x‖∞ for every
x ∈ R

N andp ∈ [1,∞]. That said, SCs do not have to be even metrics, as with the cost‖x− x′‖2,
which we consider. On the other hand, not every metric is bounded on a compactK. While allowing
unbounded costs might be considered, that would clearly invalidate the lazyapproach.

We will sometimes rewrite the total SC as
∑T

t=1 σ(xt−1,xt), definingx0 = x1 s.t.σ(x0,x1) =
0. Note that even ifx0 were taken to be an arbitrary initial state, its effect would be bounded by
B. We denote byKt the number of changes to the decision vector in the firstt rounds, namely,
Kt =

∑t
τ=1 1{xτ−1 6=xτ}. Thus, performing at mostKT switches means a total SC of at mostBKT .

We will consider primarily the quadratic variation of an entire loss sequencel1, . . . , lT , defined
asQT =

∑T
t=1 ‖lt‖22. For the BE setting in particular it is useful to consider the slightly different

notion of relative quadratic variation, defined asqT =
∑T

t=1 δ(lt)
2, whereδ(v) = maxi{vi} −

mini{vi} for anyv ∈ R
N . We assumeQT ≤ Q andqT ≤ q and that these bounds are known to

the learner. Note thatqT ≤ 2QT , but it may be thatqT = 0 whileQT is arbitrarily large.
In the BE setting we will sometimes use the notationm(t) = argmini{Li,t} for the index of

the best expert, where the smallest such index is taken in case of a tie.
Our results make regular use of the properties of convex functions defined onR

N . For a
thorough coverage, seeRockafellar(1970), Boyd and Vandenberghe(2004), andNesterov(2004),
among others. We will denote[x,y] for the line segment betweenx andy, namely,{ax+(1−a)y :
0 ≤ a ≤ 1}. In addition, the convex conjugate of a functionf will be denoted byf∗.

3. Infeasibility of Pure Second-Order Regret Bounds for Normed SCs

In this section we prove an impossibility result for obtaining second-order bounds for important
classes of OLO problems given a normed SC. Specifically, we will show thatany learner may suffer
arbitrarily high augmented regret for some loss sequences with arbitrarily small quadratic varia-
tion. Note that this claim extends to the notions of variation considered byHazan and Kale(2010)
andChiang et al.(2012) and also to relative quadratic variation, since those are all dominated, up
to multiplicative factors, by the quadratic variation. We will consider a deterministic learner for
simplicity, but the claim holds for randomized learners as well, as will be shown.

We first give the proof idea. For any learnerA, we show the existence of a loss sequence for
which the learner incurs either high standard regret or high SCs along withnon-negative standard

5. The same holds for any seminorm, except thatc1 is non-negative.
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regret. This is portrayed for convenience as constructing the losslt adaptively assuming knowledge
of the learner’s next decision vectorxt. The loss vectors are all collinear with a pre-fixed vectorv

and have pre-fixed absolute sizes. However, the sign, or direction, ofeach loss vector is learner-
dependent. Thus, for everyt, lt = dtatv, whereat > 0 anddt ∈ {−1, 1}. Importantly, one
may choose a sequence{at}∞t=1 s.t. the cumulative path length‖v‖2

∑∞
t=1 at is infinite and yet the

quadratic variation‖v‖22
∑∞

t=1 a
2
t is arbitrarily small.

The key element of the proof is that the directiondt is decided by observing the next decision
x′
t of a second online algorithm, denotedA′, as well as the next decisionxt of the learnerA. More

concretely,beforedeciding on the direction oflt, the losses ofA andA′ in the upcoming round are
compared, assuming we chosedt = dt−1 (whered0 = 1); if A stands to do better thanA′, that
is, xt · dt−1atv < x′

t · dt−1atv, then the direction is reversed, otherwise, it is left the same. This
construction ensures that the cumulative loss and regret ofA are never better than those ofA′.

We use a deterministic algorithmA′ that calculates its decisionsx′
t as the gradient of a concave

potential function of the cumulative losses. Namely,x′
t = ∇Φ(ηLt−1) for a concave potential

Φ : R
N → R with a learning rateη > 0. We draw heavily on the special properties of these

algorithms, and in particular, their non-negative or even strictly positive regret for any loss sequence
(Gofer and Mansour, 2012). Another property of the second-order remainders of potentials in that
family enables us to lower bound the SC ofA′ andA byΩ(

∑T
t=1 at).

We point out that all the details of the above construction may be known to the learner in
advance, making the losses entirely predictable. Nevertheless, for any interval[−αv, αv], the values
Lt inevitably either oscillate indefinitely within the interval or at some timeT depart it. In the
former case, we show that SCs rise arbitrarily with

∑
t at, while the regret ofA, lower bounded

by the regret ofA′, is non-negative. In the latter case we show thatRA,T ≥ RA′,T = Ω(1/η),
which can be made arbitrarily high by picking an arbitrarily smallη. It follows that in both cases
the learner’s augmented regret may reach any level we desire, whereupon the game may be stopped.

We now proceed to prove the result. We will assume the existence of a vectorv ∈ R
N , a

continuously twice-differentiable concave functionΦ : RN → R, and a scalarλ > 0, with the
following properties:

• For everyL ∈ R
N it holds that∇Φ(L) ∈ K.

• It holds thatξ1 = inf |s|≥λ{Φ(sv)− Φ(0)−minx∈K{x · sv}} > 0.

• It holds thatξ2 = inf |s|≤λ{−v⊤∇2Φ(sv)v} > 0.

Such a triplet(v,Φ, λ) will be termedadmissible, and its existence will be justified later. We point
out that the last requirement implies in particular thatv 6= 0.

The above vectorv will be used when defininglt = dtatv. In addition, note that for any
ǫ > 0, one may setat =

√
6ǫ/(πt) for every t = 1, 2, . . . and satisfy both

∑∞
t=1 at = ∞ and∑∞

t=1 a
2
t = ǫ. Now, for anyη > 0 we denoteΦη(L) = (1/η)Φ(ηL) and may defineA′ by

x′
t = ∇Φη(Lt−1) = ∇Φ(ηLt−1), whereL0 = 0. It then follows that for everyT ,

RA′,T ≥ Φη(LT )− Φη(0)−min
x∈K

{x · LT } ≥ 0 (1)

(Gofer and Mansour, 2012, Corollary 1). These considerations lead to the following lemma:

Lemma 1 Let (v,Φ, λ) be admissible, letη > 0, and defineA′ byx′
t = ∇Φη(Lt−1). If for some

T it holds thats =
∑T

t=1 dtat satisfies|s| ≥ λ/η, thenRA,T ≥ RA′,T ≥ ξ1/η.
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Proof By Equation1, RA′,T ≥ 1
η (Φ(ηLT )− Φ(0)−minx∈K{x · ηLT }). SinceηLT = (sη)v,

|sη| ≥ λ, andξ1 = inf |s′|≥λ{Φ(s′v) − Φ(0) −minx∈K{x · s′v}} > 0, we obtainRA′,T ≥ ξ1/η.
As argued before,RA,T ≥ RA′,T and the result follows.

Next, consider a case in which the valuesLt all remain in the interval[−λv/η, λv/η]. This implies
an unbounded number of direction reversals, and the SCs ofA may be lower bounded as follows:

Lemma 2 If for everyt ≤ T it holds thatLt ∈ [−λv/η, λv/η], anddT 6= dT−1, then

T−1∑

t=1

‖xt+1 − xt‖1 >
ηξ2

‖v‖∞

T−1∑

t=1

at .

The proof is in the appendix. Lemma2 shows that to avoid arbitrarily large SCs, the vectorLt

must leave the interval[−λv/η, λv/η] at some point. Otherwise, the learner incurs arbitrarily large
augmented regret, sinceRA,t ≥ RA′,t ≥ 0 for any t (see Equation1). However, if the cumulative
loss does leave the interval, then by Lemma1 a regret of at leastξ1/η is incurred. Sinceη > 0
is arbitrarily small, the augmented regret in either case can be made arbitrarily large. We can now
prove the following:

Theorem 3 For any OLO problem with an admissible triplet, any normed SC, and anyQ > 0, no
learner may guarantee bounded augmented regret for every loss sequence with quadratic variation
smaller thanQ. In addition, no deterministic learner may guarantee such a bound against an
oblivious adversary that can simulate the learner, and no learner may guarantee such a bound in
expectation against an adaptive adversary that knows the expectation ofthe learner’s next decision.

We comment that Theorem3 clearly holds even if the SC is only lower bounded by a normed SC.
We conclude by proving the existence of admissible triplets for two general classes of OLO

problems. One is the BE setting, and the other includes all cases for whichK ⊇ B(0, a), where
B(0, a) is the closed ball with radiusa centered at0, for somea > 0. For these settings the
existence of entire classes of admissible triplets is implied by the results ofGofer and Mansour
(2012), but note that for our purposes we require only a single representative per setting.

For the BE setting, we setΦ(L) = − ln((1/N)
∑N

i=1 e
−Li), which is the potential function of

the Hedge algorithm, along withv = (1, 0, . . . , 0) and anyλ > 0. For the caseK ⊇ B(0, a), we
setΦ(L) = minx∈K{x ·L+ 1

2‖x‖22}, which is the potential function of OGD with lazy projection,
along withv = (1, 0, . . . , 0), again, andλ = a. It is thus implied that the reference algorithmA′,
which uses the gradient ofΦη, would in fact be Hedge in the former setting and OGD in the latter.
More details may be found in the proof of the following corollary, given in theappendix:

Corollary 4 Let K be the decision set of an OLO problem. IfK = ∆N (the BE setting) or
K ⊇ B(0, a) for somea > 0, then for any learnerA and anyQ > 0, there exist loss sequences
with quadratic variation smaller thanQ for whichA incurs arbitrarily large augmented regret.

4. Higher-Order Augmented Regret Bounds for RFTL

The result of the previous section may be circumvented in two ways: One is to impose additional
restrictions on the losses, and the other is to assume SCs other than normed ones. In this section
we pursue both these routes and provide two types of bounds on the augmented regret of RFTL
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in the OLO setting. One bound is for normed SCs given an additional bound on the lengthof the
cumulative loss path,

∑T
t=1 ‖lt‖2. The other depends purely on the quadratic variation, given that

σ(x,x′) ≤ c‖x− x′‖22. In what follows,RFTL(η,R) stands for RFTL with learning rateη and a
regularizerR. Some useful properties of RFTL are given in the next theorem.

Theorem 5 If η > 0 and R : K → R is continuous and strongly convex with parameterα,
thenΦ(L) = (−1/η)R∗(−ηL) is concave and continuously differentiable onRN , and for every
L ∈ R

N , it holds that∇Φ(L) = argminx∈K{x · L + R(x)/η} andΦ(L) = minx∈K{x · L +
R(x)/η}. Furthermore,∇Φ is Lipschitz continuous with parameterη/α, namely, for anyL,L′ ∈
R
N , ‖∇Φ(L′)−∇Φ(L)‖2 ≤ (η/α)‖L− L′‖2.

The Lipschitz continuity of∇Φ is proven in AppendixC. The rest of the above claims are found
in Gofer and Mansour(2012) and their proofs are therefore omitted. We will continue to refer to
the functionΦ(L) = minx∈K{x · L + R(x)/η} in what follows, and will also use the notation
D = maxu,v∈K{R(u) −R(v)}. Next, the above theorem is applied in proving a general second-
order regret bound for RFTL.

Theorem 6 If η > 0 andR : K → R is continuous and strongly convex with parameterα, then
RRFTL(η,R),T ≤ D/η+ ηQT /α, and forη =

√
Dα/Q, it holds thatRRFTL(η,R),T ≤ 2

√
DQ/α.

We next consider SCs, where the Lipschitz continuity of∇Φ is key. It holds for everyt that

‖xt+1 − xt‖2 = ‖∇Φ(Lt)−∇Φ(Lt−1)‖2 ≤ (η/α)‖Lt − Lt−1‖2 = (η/α)‖lt‖2 .

Thus, for a SC that satisfiesσ(x,x′) ≤ c‖x− x′‖2 we have that

T−1∑

t=1

σ(xt,xt+1) ≤ (ηc/α)
T−1∑

t=1

‖lt‖2 ,

and for a SC satisfyingσ(x,x′) ≤ c‖x− x′‖22 we obtain

T−1∑

t=1

σ(xt,xt+1) ≤ (η2c/α2)

T−1∑

t=1

‖lt‖22 ≤ (η2c/α2)QT .

Together with Theorem6 these observations lead to the following theorem:

Theorem 7 (i) Let Λ be a known upper bound on
∑T

t=1 ‖lt‖2, the cumulative loss path length.
If σ(x,x′) ≤ c‖x − x′‖2, thenR̃RFTL(η,R),T ≤ D/η + ηQT /α + (ηc/α)

∑T
t=1 ‖lt‖2, and for

η =
√

Dα
Q+cΛ , it holds thatR̃RFTL(η,R),T ≤ 2

√
(D/α)(Q+ cΛ).

(ii) If σ(x,x′) ≤ c‖x − x′‖22, thenR̃RFTL(η,R),T ≤ D/η + ηQT

α

(
1 + ηc

α

)
, and if we setη =√

Dα/(2Q) for Q ≥ Dc2/(4α) andη = 3
√
Dα2/(4Qc) otherwise, we obtaiñRRFTL(η,R),T ≤

3.2 ·
√
QD/α in the former case and̃RRFTL(η,R),T ≤ 2.4 · 3

√
QcD2/α2 in the latter.

The proof of the last part of the second claim, which is purely technical, is given in the appendix.
The above theorem applies in particular to Hedge and OGD: Hedge corresponds to RFTL with

R(x) =
∑N

i=1 xi lnxi defined onK = ∆N , whereD = lnN andα = 1. OGD corresponds to
R(x) = (1/2)‖x‖22 defined on, say,K = B(0, 1), for whichD = 1/2 andα = 1.

9
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We observe that while Theorem7 applies to the BE setting, it is preferable to obtain bounds in
terms that are optimized for a uniform translation of the losses in each round.Such a translation does
not affect the regret, but does affect

∑
t ‖lt‖2 and

∑
t ‖lt‖22, which feature in the regret bounds. To

optimize
∑

i(li,t−γt)
2 we takeγt = (1/N)

∑N
i=1 li,t and obtain1

N

∑
i(li,t−γt)

2 ≤ 1
4(maxi{li,t}−

mini{li,t})2 by Popoviciu’s inequality (Lemma21in the appendix). Thus, we may restate Theorem
7, replacing

∑T
t=1 ‖lt‖2 with (

√
N/2)

∑T
t=1(maxi{li,t} −mini{li,t}) andQT =

∑T
t=1 ‖lt‖22 with

qTN/4, and assuming known bounds on these new quantities instead ofQ andΛ.

5. Mixed-Order Bounds for the Best Expert Setting

This section presents bounds on the expected augmented regret for the BE setting with any SC.
These bounds combine first and second order terms and are based on an adaptation of the Shrinking
Dartboard scheme. The SD algorithm modifies Hedge in a way that upper boundsE[KT ] while
achieving the same regret as Hedge in expectation. We observe that the SDscheme is easily gen-
eralized and applied as a meta-algorithm to any BE algorithmA that deterministically assigns only
positiveweights to experts. This results in a modified algorithm denotedSD(A). We next describe
this construction and prove its properties.

Let pt denote the decisions ofA for t ≥ 1. We recursively define a quantityZt by Zt+1 =
Zt · mini{pi,t/pi,t+1}, whereZ1 > 0 is arbitrary. This definition is valid sincepi,t > 0 for every
i and t. Observe thatpi,tZt is positive and non-increasing int for every i, and thatZt may be
computed at timet. The algorithmSD(A) selects a single expertet at each timet as follows. It
starts with the same probability vectorp1 used byA. At time t > 1, SD(A) flips a biased coin

Ft with probability of successft =
pet−1,t

Zt

pet−1,t−1Zt−1
. If Ft = 1, thenSD(A) setset = et−1, and

otherwise, it usespt to randomly chooseet. Note thatft ∈ (0, 1], making this definition valid.
The next characterization ofSD(A) is an adaptation of claims given inGeulen et al.(2010) and

is proved similarly. The proofs may be found in the appendix.

Lemma 8 The algorithmSD(A) satisfies that for every1 ≤ i ≤ N and1 ≤ t ≤ T , P(et = i) =
pi,t, and thatE[KT ] ≤ ln(Z1/ZT ).

Using these properties we can bound the expected augmented regret ofSD(A) as follows:

Lemma 9 For any switching costσ upper bounded byB it holds that

E[R̃SD(A),T ] ≤ RA,T +B
T−1∑

t=1

lnmax
i

{pi,t+1/pi,t} .

We now proceed to derive augmented regret bounds that involve second-order characteristics.
Such bounds are available for PW and Hedge, and are given for completeness, along with additional
required facts, in AppendixB (Theorems22 and23). We will denotePW (p0, η) andHed(p0, η)
for PW and Hedge, respectively, run with learning rateη > 0 and initial weights given by a proba-
bility vectorp0 with non-zero entries.

Theorem 10 Setp0 = (1/N, . . . , 1/N), and w.l.o.g., letmini{li,t} = 0 for everyt.

10
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(i) Assumemaxi{li,t} ≤ M for everyt,
∑T

t=1 l
2
i,t ≤ Q for everyi, andL∗

T ≤ L∗, whereM > 0,
Q, andL∗ are known. If0 < η ≤ 1/(2M), then

E[R̃SD(PW (p0,η)),T ] ≤ (B + 1/η) lnN + (η +Bη2)Q+BηL∗ ,

and forη = min
{

1
2M ,

√
lnN

(1+B/(2M))Q+BL∗

}
it holds that

E[R̃SD(PW (p0,η)),T ] ≤ B lnN +max
{
4M lnN, 2

√
((1 +B/(2M))Q+BL∗) lnN

}
.

(ii) AssumeqT ≤ q andL∗
T ≤ L∗, whereq andL∗ are known. For everyη > 0 it holds that

E[R̃SD(Hed(p0,η)),T ] ≤ (B + 1/η) lnN + (η/8) · q +BηL∗ ,

and forη =
√

8 lnN
q+8BL∗ we haveE[R̃SD(Hed(p0,η)),T ] ≤ B lnN +

√
(q/2 + 4BL∗) lnN .

6. Application to Option Pricing with Transaction Costs

In this section we incorporate proportional transaction costs in the trading model examined in
Gofer and Mansour(2012). We apply our augmented regret results to obtain new option price
bounds based on a generalization of their analysis, given in detail in Appendix A.

We consider a discrete-time finite-horizon trading model with tradable assetsX1, . . . ,XN . The
price of assetXi at timet ∈ {0, 1, . . . , T} is denoted byXi,t, and we assumeXi,t > 0 for every
i and t. We assume a zero risk-free interest rate, and that any real quantity ofany asset may be
bought or sold. Thus, for every1 ≤ i ≤ N we may define thefractional assetsX−1

i,0 Xi, whose
initial value is1. For every assetXi we denote byri,t the single-period return betweent − 1 and
t, soXi,t = Xi,t−1(1 + ri,t). A realization of the valuesri,1, . . . , ri,T is a price pathfor Xi. A
realization of the valuesri,t for everyi andt is simply calleda price path.

We assume that trading incursproportional transaction costs. Namely, buying or selling an
amount worthx of Xi incurs a costcix, where0 ≤ ci < 1. We will denotecM = maxi{ci} and
cm = mini{ci}. Note that if an asset is simply cash, its rate may reasonably be taken to be zero.6

The trading protocol involves atrading algorithmA, which is simply an algorithm for the BE
setting withN experts. This algorithm starts with wealthU0 (w.l.o.g.U0 = 1). At every time period
t ≥ 1, A picks a probability vectorpt and divides its wealthUt−1 among the (fractional) assets
according to this vector. This operation incurs transaction costs and leaves A with a total wealth
Vt−1, of which pi,tVt−1 is placed withXi for 1 ≤ i ≤ N . Following that, the new asset prices
X1,t, . . . , XN,t become known, the wealth of the algorithm is updated toUt =

∑N
i=1 Vt−1pi,t(1 +

ri,t) = Vt−1(1 +
∑N

i=1 pi,tri,t), and time periodt+ 1 begins. We assumeV0 = U0 (no setup cost)
and alsoVT = UT , since there is no reason to change the distribution in the last round. Observe that
the wealthUt is divided according to a probabilitŷpt defined bŷpi,t ∝ pi,t(1 + ri,t) for everyi.

We assume that transaction costs are funded by the sale of assets, and point out that the proce-
dure for reproportioning wealth among assets is not unique. However, the task of reproportioning
wealth with minimal transaction costs is efficiently solvable (Blum and Kalai, 1999), and w.l.o.g. it
may be assumed that an optimal procedure is employed by any trading algorithm.

6. Proportional transaction costs (Davis and Norman, 1990) have several different variants in the literature (see
Musiela and Rutkowski, 1997). We note that like some, we do not differentiate between buying and sellingrates.
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We will price anoptionΨ(X1, . . . ,XN , T ), defined as a security that paysmax1≤i≤N{Xi,T }
at timeT . Specifically, we will upper bound its price att = 0, denoted byΨ(X1, . . . ,XN , T ). This
may be achieved by devising a trading algorithm thatsuper-replicates(or dominates) a fraction of
the option’s payoff. Namely, the algorithm guaranteesVT ≥ βmaxi{Xi,T } for someβ > 0, for
every price path in some setΠ of allowed price paths. Investing1/β with the algorithm and selling
short the option at time0 allows a guaranteed profit, orarbitrage, unlessΨ(X1, . . . ,XN , T ) ≤ 1/β.
Thus, a price bound is implied, assuming the market isarbitrage-free.7 A randomized algorithm will
require theexpected arbitrage-free assumption, namely, that noexpectedprofit may be guaranteed.8

The bound derived will be used to price aEuropean call option. This security, denotedC(K,T ),
paysmax{ST −K, 0} at timeT , whereK ≥ 0 is thestrike priceandST is the value of some asset
S at timeT . The option is “at the money” ifK = S0 (w.l.o.g.,S0 = 1). We denoteC(K,T ) for the
price ofC(K,T ) at time0, and observe thatC(K,T ) = Ψ(S,K, T )−K, whereK is K in cash.

6.1. Bounds on Option Prices

We apply bounds on augmented regret to option pricing based on an interpretation of a trading
setup as a BE problem. The single-period losses of the experts are defined simply asli,t = − ln(1+
ri,t), for every1 ≤ i ≤ N , 1 ≤ t ≤ T , implying thatLi,t = − ln(Xi,t/Xi,0). In contrast,
relatingLA,T , the cumulative loss of an algorithmA, and its final wealthVT is more elaborate (see
AppendixA, and especially Theorem19, for the details.) These relations allow one to infer that
VT ≥ βmaxi{Xi,T } for every allowed price path, whereβ is derived from an upper bound on the
regret ofA. That in turn implies the price boundΨ(X1, . . . ,XN , T ) ≤ 1/β via the arbitrage-free
assumption (see Lemma14 in AppendixA). This conclusion may be stated more generally:

Theorem 11 Let A be a trading algorithm, and letcM ≤ 0.2. It holds that for a knownαM =
αM (cm, cM ) ≥ 0, if A guaranteesLA,T − Li,T + αM

∑T
t=1 ‖p̂t − pt+1‖1 + lnXi,0 ≤ γ for some

γ, for everyi and any valid price path, thenΨ(X1, . . . ,XN , T ) ≤ exp(γ).

Note that in realitycM ≪ 0.2. If Xi,0 = 1 for everyi, thenγ in the above theorem becomes a
bound onRA,T + αM

∑T
t=1 ‖p̂t − pt+1‖1. This expression closely resembles regret augmented

with a normed SC, but importantly, the role ofpt is taken byp̂t. For an algorithm that holds a
single asset at each timet, we have that̂pt = pt and the problem is solved. Otherwise, additional
ad hoc arguments are necessary. Importantly, ifA is probabilistic, then a variant of the above result
may be applied. The guarantee ofA may hold in expectation, and the result follows by invoking the
expectedarbitrage-free assumption and the concavity oflnx. This variant may be used to derive
concrete bounds onΨ(X1, . . . ,XN , T ) by plugging in the bounds obtained for SD, either with
Hedge or with PW. The next theorem will employ Hedge specifically to boundC(1, T ).

To the end of this section we will consider two assets: a stockS with S0 = 1 whose price path
is denoted by(r1, . . . , rT ), and a unit of cash1. It follows thatQT = qT =

∑T
t=1 ln

2(1 + rt). We
will also denotelt = − ln(1 + rt), l

+
t = max{lt, 0}, andl−t = max{−lt, 0}, and assume that the

transaction cost rate forS is c = cM ≤ 0.2.

7. Short selling the option at time0 and receiving its payoff at timeT are assumed to incur no transaction costs. This,
and the assumption on the costless setup of the trading portfolio are adoptedfrom Musiela and Rutkowski(1997).

8. By expectedarbitrage we mean w.r.t. the internal randomizations of a trading algorithm. This is different from the
standard termstatistical arbitrage, which assumes a statistical model of prices.
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Theorem 12 Assume all valid price paths satisfymin{∑T
t=1 l

+
t ,
∑T

t=1 l
−
t } ≤ λ∗ and qT ≤ q,

whereq andλ∗ are given. Then it holds thatC(1, T ) ≤ exp(2c ln 2 +
√
(q/2 + 8cλ∗) ln 2)− 1.

We emphasize that SD requires an oblivious adversary, so Theorem12 must further assume that
market prices are unaffected by the trading algorithm’s actions. It is also easy to see howλ∗ may
grow indefinitely withT , even givenqT ≤ q, trivializing the bound, unless prices move almost
entirely in one direction. Nevertheless, forc = 0, the bound becomesexp(

√
(q/2) ln 2)−1, and an

optimalΘ(
√
q) for a smallq, matching a result inGofer(2013) that assumes no transaction costs.

We end this section with an adaptation of the infeasibility result of Section3 to option pricing.
The optionΨ(S,1, T ) is trivially dominated by buying and holding the stock and the cash, yielding
Ψ(S,1, T ) ≤ 2, and thusC(1, T ) ≤ 1. The following theorem shows that given only assumptions
on the quadratic variation, this bound may not be improved using our methods.This is expected,
since similar results hold even for a stochastic price process (Musiela and Rutkowski, 1997).

Theorem 13 Letc > 0 and letQ be a known upper bound on the quadratic variation
∑T

t=1 ln
2(1+

rt). For anyQ > 0 and for any trading algorithmA there is a loss sequence with quadratic
variation smaller thanQ for whichVT /max{1, ST } is arbitrarily close to1/2. As a result, Lemma
14cannot provide a non-trivial price bound for an “at the money” call option onS.

7. Conclusion

This work considered regret bounds in the OLO setting with full information,where regret is aug-
mented with SCs. We gave an infeasibility result for obtaining pure second-order bounds with
normed SCs given only a bound on the quadratic variation. We also gave augmented regret upper
bounds for RFTL and for variants of the Shrinking Dartboard scheme. Those bounds mostly fea-
ture an additional constraint on the loss sequence, such as a bound on the total length of losses or
the cumulative loss of the best expert. In the absence of SCs, however,they become pure second-
order bounds. Both positive and negative results were applied to the problem of option pricing with
transaction costs.

Future work It would be interesting to consider upper bounds that involve the second-order
quantities examined byHazan and Kale(2010) andChiang et al.(2012). In addition, one might
consider alternatives to our constraint on the total length of losses. In thiscontext, Lemma 9 in
Hazan and Kale(2010) is of interest (although we point out that it requires an additional bound
on the time horizon). Another interesting direction would be to consider second-order augmented
regret bounds in the more general setting of OCO.
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András Gÿorgy and Gergely Neu. Near-optimal rates for limited-delay universal lossy source cod-
ing. In Proceedings of the IEEE International Symposium on Information Theory, pages 2218–
2222, 2011.

James Hannan. Approximation to Bayes risk in repeated play. In M. Dresher, A. Tucker, and
P. Wolfe, editors,Contributions to the Theory of Games, volume 3, pages 97–139. Princeton
University Press, 1957.

Elad Hazan. The convex optimization approach to regret minimization. In Suvrit Sra, Sebastian
Nowozin, and Stephen J. Wright, editors,Optimization for Machine Learning. MIT Press, 2011.

Elad Hazan and Satyen Kale. Extracting certainty from uncertainty: regret bounded by variation in
costs.Machine Learning, 80(2-3):165–188, 2010.

15



GOFER

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization.Machine Learning, 69(2-3):169–192, 2007.

Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal of
Computer and System Sciences, 71(3):291–307, 2005.

Wouter M Koolen and Vladimir Vovk. Buy low, sell high. InAlgorithmic Learning Theory, pages
335–349, 2012.

Bin Li and Steven CH Hoi. On-line portfolio selection with moving average reversion. arXiv
preprint arXiv:1206.4626, 2012.

N. Littlestone and M.K. Warmuth. The weighted majority algorithm.Information and Computation,
108:212–261, 1994.

Neri Merhav, Erik Ordentlich, Gadiel Seroussi, and Marcelo J Weinberger. On sequential strategies
for loss functions with memory.IEEE Transactions on Information Theory, 48(7):1947–1958,
2002.

Marek Musiela and Marek Rutkowski.Martingale methods in financial modelling, volume 36.
Springer, 1997.

Yurii Nesterov.Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic
Publishers, 2004.

R. Tyrrell Rockafellar.Convex Analysis. Princeton University Press, 1970.

Shai Shalev-Shwartz and Yoram Singer. A primal-dual perspective ofonline learning algorithms.
Machine Learning, 69(2-3):115–142, 2007.

Yoram Singer. Switching portfolios. InProceedings of the 14th Conference on Uncertainty in
Artificial Intelligence, pages 488–495, 1998.

Lieven Vandenberghe. Optimization methods for large-scale systems.
http://www.seas.ucla.edu/ ˜ vandenbe/236C/lectures/smoothing.pdf .

Volodimir G. Vovk. Aggregating strategies. InProceedings of the 3rd Annual Workshop on Com-
putational Learning Theory, pages 371–383, 1990.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
ICML, pages 928–936, 2003.

Appendix A. Return, Regret, and Pricing with Transaction Costs

This appendix explains the relations between option pricing, the performance of trading algorithms,
and the performance of algorithms for the BE setting. Those relations were developed previously
assuming no transaction costs (DeMarzo et al., 2006; Gofer and Mansour, 2011b, 2012). The results
given here extend this analysis to a trading model with proportional transaction costs.
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HIGHER-ORDER REGRETBOUNDS WITH SWITCHING COSTS

Relating Option Pricing to Trading Algorithms

We start by linking the performance of trading algorithms to the pricing of options with the following
simple lemma.

Lemma 14 (DeMarzo et al., 2006; Gofer and Mansour, 2011b) If there exists an algorithmA trad-
ing in X1, . . . ,XN andβ > 0 s.t. for all possible price paths and every1 ≤ i ≤ N , VT ≥ βXi,T ,
then

Ψ(X1, . . . ,XN , T ) ≤ 1/β .

Proof It holds that1/β units of cash invested with the algorithm will always dominate the payoff
of Ψ(X1, . . . ,XN , T ), implying an upper bound on the price of the option by the arbitrage-free
assumption.

Importantly, if the algorithm is randomized, the condition must hold for theexpectationof VT

instead ofVT itself, and theexpectedarbitrage-free assumption is invoked.

Relating Trading Performance and Regret

We next link the performance of a trading algorithmA to its performance as a BE algorithm. This
result incorporates transaction costs in the analysis given inGofer and Mansour(2012).

Recall that the single-period losses of the experts are defined asli,t = − ln(1 + ri,t), for every
1 ≤ i ≤ N , 1 ≤ t ≤ T . Thus, the cumulative losses of the experts are exactly minus the logarithms
of the values of their respective fractional assets, that is,

Li,t =
t∑

τ=1

li,τ = −
t∑

τ=1

ln(Xi,τ/Xi,τ−1) = − ln(Xi,t/Xi,0) .

Such a simple transformation does not hold w.r.t.LA,T andVT , but a useful link may nevertheless
be established between these two quantities. We will require the next lemma.

Lemma 15 (Gofer and Mansour, 2012) Let
∑N

i=1 pi = 1, where0 ≤ pi ≤ 1 for every1 ≤ i ≤ N ,
and letzi ∈ (−1,∞) for every1 ≤ i ≤ N . Then

ln

(
1 +

N∑

i=1

pizi

)
− (1/8) ln2

(
1 + maxi{zi}
1 + mini{zi}

)
≤

N∑

i=1

pi ln(1 + zi) .

Before proceeding, we note that in the present context, the relative quadratic variation ofl1, . . . , lT
satisfies

qT =
T∑

t=1

(max
i

{li,t} −min
i
{li,t})2 =

T∑

t=1

ln2
(
1 + maxi{ri,t}
1 + mini{ri,t}

)
.

We may now establish the following important relation:

Lemma 16 It holds that

0 ≤ LA,T +
T∑

t=1

ln(Ut/Vt) + lnVT ≤ qT /8 ,

17



GOFER

and as a result,

0 ≤ RA,T +
T∑

t=1

ln(Ut/Vt) + ln
VT

maxi{X−1
i,0 Xi,T }

≤ qT /8 .

Proof We have that

lnVT −
T∑

t=1

ln(Vt/Ut) =
T∑

t=1

ln(Ut/Vt−1) =
T∑

t=1

ln

(
1 +

N∑

i=1

pi,tri,t

)
.

By the concavity ofln(1 + z),

T∑

t=1

ln

(
1 +

N∑

i=1

pi,tri,t

)
≥

T∑

t=1

N∑

i=1

pi,t ln(1 + ri,t) = −
T∑

t=1

N∑

i=1

pi,tli,t = −LA,T ,

and thus,0 ≤ LA,T + lnVT −∑T
t=1 ln(Vt/Ut), as required. For the other side, we have by Lemma

15 that

−LA,T =

T∑

t=1

N∑

i=1

pi,t ln(1 + ri,t)

≥
T∑

t=1

[
ln

(
1 +

N∑

i=1

pi,tri,t

)
− (1/8) ln2

(
1 + maxi{ri,t}
1 + mini{ri,t}

)]

= lnVT −
T∑

t=1

ln(Vt/Ut)− qT /8 ,

as needed. Sincemini{Li,T } = − lnmaxi{X−1
i,0 Xi,T }, we have that

0 ≤ LA,T −min
i
{Li,T } − lnmax

i
{X−1

i,0 Xi,T }+ lnVT −
T∑

t=1

ln(Vt/Ut) ≤ qT /8 ,

or equivalently,

0 ≤ RA,T −
T∑

t=1

ln(Vt/Ut) + ln
VT

maxi{X−1
i,0 Xi,T }

≤ qT /8 ,

completing the proof.

Explicitly Bounding Transaction Costs

The relation given in Lemma16 accounts for transaction costs only implicitly. The expressions
ln(Ut/Vt) hide both the exact procedure for rearranging wealth among assets as well as the trans-
action cost ratesc1, . . . , cN and relevant probabilities and losses. We turn next to derive explicit
expressions.
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Consider a single wealth reproportioning operation. Suppose that wealthV > 0, which is
distributed among assetsX1, . . . ,XN according to distributionp, is redivided according to distri-
butionp′. The total remaining wealth after transaction costs is denotedV ′. The next two lemmas
will show that transaction costs may be bounded from above and below in terms of‖p − p′‖1. As
mentioned in Section6, we will assume that wealth reproportioning operations are optimized to
minimize transaction costs.

Lemma 17 It holds that
∑

i ci|p′i − pi|
1 +

∑
i cip

′
i

≤ 1− V ′

V
≤
∑

i ci|p′i − pi|
1−∑i cip

′
i

,

and as a result,
cm

1 + cM
· ‖p− p′‖1 ≤ 1− V ′

V
≤ cM

1− cM
· ‖p− p′‖1 .

For the special caseN = 2, one may obtain the improved bounds

cm + cM
2(1 + cM )

· ‖p− p′‖1 ≤ 1− V ′

V
≤ cm + cM

2(1− cM )
· ‖p− p′‖1 .

Proof The optimal redistribution algorithm either buys or sells a certain quantity of each asset.
Supposezi ∈ R is the amount of money spent onXi, wherezi > 0 stands for buying more of the
asset, andzi < 0 stands for selling. For everyi, the new wealth in asseti is p′iV

′ = piV + zi,
and the transaction cost incurred isci|zi|. Summing over the assets we haveV ′ = V +

∑
i zi. In

addition, the transaction costs account for the difference in total wealths,soV − V ′ =
∑

i ci|zi|.
We may therefore write

V − V ′ =
∑

i

ci|zi| =
∑

i

ci|(p′i − pi)V − p′i(V − V ′)| .

We may now derive the result using the triangle inequality. On the one hand,

∑

i

ci|(p′i − pi)V − p′i(V − V ′)| ≤
∑

i

ci(|p′i − pi|V + p′i|V − V ′|)

= V ·
∑

i

ci|p′i − pi|+ (V − V ′) ·
∑

i

cip
′
i .

On the other hand,
∑

i

ci|(p′i − pi)V − p′i(V − V ′)| ≥
∑

i

ci(|p′i − pi|V − p′i|V − V ′|)

= V ·
∑

i

ci|p′i − pi| − (V − V ′) ·
∑

i

cip
′
i .

Together, we get the two-sided inequality

V ·
∑

i

ci|p′i − pi| − (V − V ′) ·
∑

i

cip
′
i ≤ V − V ′ ≤ V ·

∑

i

ci|p′i − pi|+ (V − V ′) ·
∑

i

cip
′
i ,
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and rearranging, we obtain

V ·∑i ci|p′i − pi|
1 +

∑
i cip

′
i

≤ V − V ′ ≤ V ·∑i ci|p′i − pi|
1−∑i cip

′
i

,

and the first claim of the lemma follows, with the second claim of the lemma as an immediateresult.
For N = 2, it holds that|p′2 − p2| = |p′1 − p1| = (1/2)‖p − p′‖1 and the first claim of the

lemma therefore gives

(c1 + c2)‖p− p′‖1
2(1 +

∑
i cip

′
i)

≤ 1− V ′

V
≤ (c1 + c2)‖p− p′‖1

2(1−∑i cip
′
i)

.

Since
∑

i cip
′
i ≤ cM andc1 + c2 = cm + cM , it follows that

cm + cM
2(1 + cM )

· ‖p− p′‖1 ≤ 1− V ′

V
≤ cm + cM

2(1− cM )
· ‖p− p′‖1 ,

concluding the proof.

Using the previous lemma, we may derive bounds onln(V ′/V ) that will be more useful for our
purposes. We use the fact that for anyx ≤ 1/2 it holds that

− x− x2 ≤ ln(1− x) ≤ −x . (2)

By the second part of Lemma17,

1− cM
1− cM

· ‖p− p′‖1 ≤ V ′

V
≤ 1− cm

1 + cM
· ‖p− p′‖1 .

Note that both the leftmost and rightmost expressions have the form1 − x, and we would like
to show thatx ≤ 1/2 in both cases so that Equation2 could be applied. To achieve that, since
‖p− p′‖1 ≤ 2, it would suffice to require thatcM1−cM

≤ 1
4 , or equivalently, thatcM ≤ 0.2. We then

have that

ln
V ′

V
≤ ln

(
1− cm

1 + cM
· ‖p− p′‖1

)
≤ − cm

1 + cM
· ‖p− p′‖1

and also that

ln
V ′

V
≥ ln

(
1− cM

1− cM
· ‖p− p′‖1

)

≥ − cM
1− cM

‖p− p′‖1 −
c2M

(1− cM )2
‖p− p′‖21

≥ − cM
1− cM

‖p− p′‖1 −
2c2M

(1− cM )2
‖p− p′‖1

= −cM (1 + cM )

(1− cM )2
‖p− p′‖1 .

Together, and sincecM ≤ 0.2, we have

−2cM‖p− p′‖1 ≤ ln
V ′

V
≤ −0.8cm‖p− p′‖1 .
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The same considerations may be applied in the caseN = 2, for which Lemma17yields

1− cm + cM
2(1− cM )

· ‖p− p′‖1 ≤
V ′

V
≤ 1− cm + cM

2(1 + cM )
· ‖p− p′‖1 .

It is easy to verify that ifcM ≤ 0.2, we may apply Equation2 and obtain that

ln
V ′

V
≤ − cm + cM

2(1 + cM )
· ‖p− p′‖1

and also that

ln
V ′

V
≥ − cm + cM

2(1− cM )
· ‖p− p′‖1 −

(cm + cM )2

4(1− cM )2
· ‖p− p′‖21

≥ − cm + cM
2(1− cM )

· ‖p− p′‖1 −
(cm + cM )2

2(1− cM )2
· ‖p− p′‖1

= −(cm + cM )(1 + cm)

2(1− cM )2
‖p− p′‖1 .

We may thus obtain

−(cm + cM ) · ‖p− p′‖1 ≤ ln
V ′

V
≤ −0.4(cm + cM )‖p− p′‖1 ,

where we further used the assumption thatcM ≤ 0.2. These results are summarized in the following
lemma.

Lemma 18 Assuming thatcM ≤ 0.2, it holds that

ln
V ′

V
= −α‖p− p′‖1 ,

whereα ∈ [0.8cm, 2cM ], and for the special caseN = 2, α ∈ [0.4(cm + cM ), cm + cM ].

We may now give an explicit relation between loss, return, and transaction costs for a complete
trading process.

Theorem 19 LetA be an algorithm trading inN assets, and letcM ≤ 0.2. It holds that

0 ≤ LA,T + lnVT + α
T∑

t=1

‖p̂t − pt+1‖1 ≤ qT /8 ,

and

0 ≤ RA,T + α

T∑

t=1

‖p̂t − pt+1‖1 + ln
VT

maxi{X−1
i,0 Xi,T }

≤ qT /8 ,

where p̂t is a probability vector defined bŷpi,t ∝ pi,t exp(−li,t) for every i and t and α ∈
[0.8cm, 2cM ], and forN = 2 in particular,α ∈ [0.4(cm + cM ), cm + cM ].
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Proof By Lemma18,
T∑

t=1

ln(Vt/Ut) = −α
T∑

t=1

‖p̂t − pt+1‖1 ,

where the distribution̂pt is defined by

p̂i,t =
pi,t(1 + ri,t)∑N
j=1 pj,t(1 + rj,t)

=
pi,t exp(−li,t)∑N
j=1 pj,t exp(−lj,t)

.

The result is now immediate from Lemma16.

Appendix B. Additional Claims

Lemma 20 (See, e.g.,Vandenberghe) Let f : C → R be strongly convex with parameterα, where
C ⊆ R

N . Thenf has at most one minimizer, and for such a minimizerx, it holds that

f(y) ≥ f(x) +
1

2
α‖x− y‖22

for everyy ∈ C.

Lemma 21 (Popoviciu’s inequality)If X is a bounded random variable with values in[m,M ],
thenV ar(X) ≤ (M −m)2/4, with equality iffP(X = M) = P(X = m) = 1/2.

Theorem 22 (Cesa-Bianchi et al., 2007) Let A stand forPW (p0, η). Assume thatli,t ≤ M for
everyt = 1, . . . , T and i = 1, . . . , N for someM > 0. Then for any sequence of losses, experti,
0 < η ≤ 1/(2M), andT ≥ 1, it holds that

LA,T ≤ 1

η
ln

W1

WT+1
≤ Li,T +

1

η
ln

1

pi,0
+ η

T∑

t=1

l2i,t .

Theorem 23 The algorithmHed(p0, η) satisfies that for every experti,

1

η
ln

W1

WT+1
≤ Li,T +

1

η
ln

1

pi,0

and

LHed(p0,η),T − Li,T ≤ 1

η
ln

1

pi,0
+

η

8
· qT .

If q is a known upper bound onqT , then settingη =
√
(8/q) lnN and pi,0 = 1/N for everyi

implies thatRHed(p0,η),T ≤
√
(q/2) lnN .9

9. This result fromGofer(2013) improves the constants of a result in the same spirit given inCesa-Bianchi et al.(2007).
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Proof LetA stand forHed(p0, η). Hedge may be defined as the gradient of the concave potential

Φη(L) = −1

η
ln




N∑

j=1

pj,0e
−ηLj


 .

It holds that

RA,T = Φη(LT )−min
j

{Lj,T } −
1

2

T∑

t=1

l⊤t ∇2Φη(zt)lt ,

wherezt ∈ [Lt−1,Lt] for t = 1, . . . , T (see, e.g., Theorem 2 inGofer and Mansour, 2012). Equiv-
alently,

LA,T = Φη(LT )−
1

2

T∑

t=1

l⊤t ∇2Φη(zt)lt . (3)

By definition ofΦη it holds for everyi that

Φη(LT )− Li,T = −1

η
ln




N∑

j=1

pj,0e
−ηLj,T


+

1

η
ln e−ηLi,T

=
1

η
ln

(
exp(−ηLi,T )∑N
j=1 pj,0e

−ηLj,T

)
=

1

η
ln

pi,T+1

pi,0

≤ 1

η
ln

1

pi,0
. (4)

Note that since(1/η) ln(W1/WT+1) = Φη(LT ), this yields the first of the required claims. Com-
bining Equations3 and4, we have that for everyi,

LA,T − Li,T ≤ 1

η
ln

1

pi,0
− 1

2

T∑

t=1

l⊤t ∇2Φη(zt)lt . (5)

Now we bound the sum on the right hand side. For everyt, it holds that−l⊤t ∇2Φη(zt)lt =
ηV ar(Yt), whereYt is some discrete random variable that may attain only the valuesl1,t, . . . , lN,t

(see, e.g., Lemma 6 inGofer and Mansour, 2012). Thus, by Popoviciu’s inequality (Lemma21),

−l⊤t ∇2Φ(zt)lt ≤
η

4
· (max

j
{lj,t} −min

j
{lj,t})2

for everyt, and Equation5 yields

LA,T − Li,T ≤ 1

η
ln

1

pi,0
+

η

8
· qT ,

as needed. Settingpi,0 = 1/N for everyi andη =
√
(8/q) lnN then yields

LA,T − Li,T ≤ 1

η
lnN +

η

8
· q =

√
(q/2) lnN ,

completing the proof.

23



GOFER

Appendix C. Missing Proofs

Proof of Lemma2: Denotet1 < t2 < . . . for all times of true direction reversal, namely, times
t > 1 whendt = −dt−1. Now consider a time interval[τ, τ ′] between two reversals, withτ = ti
andτ ′ = ti+1. By our construction,xτ · dτaτv ≥ x′

τ · dτaτv andxτ ′ · dτaτ ′v < x′
τ ′ · dτaτ ′v, or

equivalently,xτ ·dτv ≥ x′
τ ·dτv andxτ ′ ·dτv < x′

τ ′ ·dτv. These two inequalities combine to give

(xτ − xτ ′) · dτv > (x′
τ − x′

τ ′) · dτv . (6)

Now,

(x′
τ − x′

τ ′) · dτv = (∇Φη(Lτ−1)−∇Φη(Lτ ′−1)) ·
dτ (Lτ ′−1 − Lτ−1)

dτ
∑τ ′−1

t=τ at

= (∇Φη(Lτ−1)−∇Φη(Lτ ′−1)) ·
Lτ ′−1 − Lτ−1∑τ ′−1

t=τ at
. (7)

By Taylor’s expansion we have for anyL,L′ ∈ R
N that

Φη(L)− Φη(L
′) = ∇Φη(L

′) · (L− L′) +
1

2
(L− L′)⊤∇2Φη(z1)(L− L′)

and

Φη(L
′)− Φη(L) = ∇Φη(L) · (L′ − L) +

1

2
(L′ − L)⊤∇2Φη(z2)(L

′ − L)

wherez1, z2 ∈ [L,L′]. Summing these two equations and rearranging then yields

(∇Φη(L
′)−∇Φη(L)) · (L− L′) = −1

2
(L′ − L)⊤(∇2Φη(z1) +∇2Φη(z2))(L

′ − L)

= −η

2
(L′ − L)⊤(∇2Φ(ηz1) +∇2Φ(ηz2))(L

′ − L) .

ForL = Lτ−1 andL′ = Lτ ′−1 it holds thatz1 = s1v andz2 = s2v with |s1|, |s2| ≤ λ/η, and by
admissibility,

(∇Φη(Lτ ′−1)−∇Φη(Lτ−1)) · (Lτ−1 − Lτ ′−1) ≥ ηξ2

(
τ ′−1∑

t=τ

at

)2

. (8)

Therefore, together with Equation7 we obtain

(x′
τ − x′

τ ′) · dτv ≥ ηξ2

τ ′−1∑

t=τ

at , (9)

and with Equation6 we now have

(xτ − xτ ′) · dτv > ηξ2

τ ′−1∑

t=τ

at , (10)

and since by Ḧolder’s inequality,(xτ − xτ ′) · dτv ≤ ‖v‖∞‖xτ − xτ ′‖1 we obtain that

τ ′−1∑

t=τ

‖xt+1 − xt‖1 ≥ ‖xτ ′ − xτ‖1 >
ηξ2

‖v‖∞

τ ′−1∑

t=τ

at .
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It may be verified that all the above arguments hold also ifτ = 1 andτ ′ = t1. Summing up over
intervals including[1, t1] yields that for everyn,

tn−1∑

t=1

‖xt+1 − xt‖1 >
ηξ2

‖v‖∞

tn−1∑

t=1

at ,

and the proof is complete.

Proof of Theorem3: First, by the equivalence of norms, our results so far prove the first claim for
any deterministicA given any normed SC. This claim holds also for randomized algorithms, since
we never actually used the fact thatA is deterministic.

Our construction requires knowledge of the learner’s next decision. If A is deterministic, then
an oblivious adversary that can simulate its run may clearly construct the sequence in advance.

Suppose then that the learner is randomized, and that for eacht, just beforeA playsxt the
adversary may knowyt = Et[xt], whereEt is the conditional expectation at timet. The adversary
may run the construction against a mock learnerA1 that playsy1, . . . ,yT . Note that the losses are
completely determined by the learner’s randomizations, which are the only source of randomness
in the game between the learner and the adversary.

Note also that even though the length of the game is a random variable, it may betreated as a
known constant, due to the nature of the construction. The reason is that for any target high value
for the augmented regret, it is possible to find a boundT for the time it may take to reach it inside
the interval, or earlier, by leaving the interval. Thus, it is always possible topad the loss sequence
with extra0 values to ensure lengthT . On such values, the augmented regret of any learner cannot
decrease.

By our construction, given some arbitrarily largeR0, the adversary may guarantee

R0 ≤ R̃A1,T =
T∑

t=1

yt · lt −min
u∈K

{u · LT }+
T−1∑

t=1

‖yt+1 − yt‖

regardless of the learner’s randomizations. Now, for everyt it holds that

E[lA,t] = E[xt · lt] = E[Et[xt · lt]] = E[Et[xt] · lt] = E[yt · lt] = E[lA1,t] ,

implying thatE[LA,T ] = E[LA1,T ] and thus,E[RA,T ] = E[RA1,T ]. In addition,

E[‖xt+1 − xt‖] = E[Et+1[‖xt+1 − xt‖]] ≥ E[‖Et+1[xt+1 − xt]‖] = E[‖yt+1 − xt‖] ,

where we used Jensen’s inequality and the fact that all norms are convex. We therefore have that

E[‖yt+1 − yt‖] ≤ E[‖yt+1 − xt‖] + E[‖xt − xt−1‖] + E[‖xt−1 − yt‖]
≤ E[‖xt+1 − xt‖] + E[‖xt − xt−1‖] + E[‖xt − xt−1‖]

for everyt ≥ 2. Consequently, denotingD0 = maxx,x′∈K{‖x− x′‖} we obtain that

T−1∑

t=1

E[‖yt+1 − yt‖]−D0 ≤
T−1∑

t=2

E[‖yt+1 − yt‖] ≤ 3

T−1∑

t=1

E[‖xt+1 − xt‖] .
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It follows that

E[R̃A,T ] = E

[
RA,T +

T−1∑

t=1

‖xt+1 − xt‖
]
= E[RA1,T ] +

T−1∑

t=1

E[‖xt+1 − xt‖]

≥ 1

3

(
E[RA1,T ]−D0 +

T−1∑

t=1

E[‖yt+1 − yt‖]
)

=
1

3

(
E[R̃A1,T ]−D0

)

≥ 1

3
(R0 −D0) ,

where the first inequality uses the fact that our construction ensures that RA1,T ≥ 0. SinceR0 is
arbitrarily large, the proof is complete.

Proof of Corollary4: It holds thatΦ(L) = − ln((1/N)
∑N

i=1 e
−Li) is concave and continuously

twice-differentiable with a gradient in∆N . In addition, for everya > 0 we have

ρ1(a) = inf
δ(L)≥a

{Φ(L)− Φ(0)−min
u∈K

{u · L}} > 0

ρ2(a) = inf
δ(L)≤a,δ(l)=1

{−l⊤∇2Φ(L)l} > 0 .

(SeeGofer and Mansour, 2012, Subsection 5.2). It is easily verified that forv = (1, 0, . . . , 0) and
anyλ > 0, (v,Φ, λ) is admissible sinceξ1 ≥ ρ1(λ) andξ2 ≥ ρ2(λ).

For the caseK ⊇ B(0, a), it may be shown thatΦ(L) = minx∈K{x · L + 1
2‖x‖22} is concave

and continuously twice-differentiable with a gradient inK. In addition, we have

ρ1(a) = inf
‖L‖2≥a

{Φ(L)− Φ(0)−min
u∈K

{u · L}} > 0

ρ2(a) = inf
‖L‖2≤a,‖l‖2=1

{−l⊤∇2Φ(L)l} > 0 .

(For details, seeGofer and Mansour, 2012, especially Subsection 5.1.) Again, it is easy to verify
that forv = (1, 0, . . . , 0) andλ = a, (v,Φ, λ) is admissible sinceξ1 ≥ ρ1(λ) andξ2 ≥ ρ2(λ).

Proof of the Lipschitz continuity part of Theorem5: Let L,L′ ∈ R
N and denotex = ∇Φ(L)

andx′ = ∇Φ(L′). We may assume thatx 6= x′, since otherwise the claim is trivial. The function
f : K → R defined byf(u) = ηu ·L+R(u) is strongly convex with parameterα and is minimized
by x. Now, By Lemma20, we have that

ηx′ · L+R(x′) ≥ ηx · L+R(x) +
1

2
α‖x− x′‖22 .

The same argument also yields that

ηx · L′ +R(x) ≥ ηx′ · L′ +R(x′) +
1

2
α‖x′ − x‖22 ,

and adding the two equations, we have that

ηx′ · L+ ηx · L′ ≥ ηx · L+ ηx′ · L′ + α‖x′ − x‖22
or equivalently,

(x′ − x) · (L− L′) ≥ (α/η)‖x′ − x‖22 .
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Therefore,

‖∇Φ(L′)−∇Φ(L)‖2‖x′ − x‖2 = ‖x′ − x‖22
≤ (η/α)(x′ − x) · (L− L′)

≤ (η/α)‖x′ − x‖2‖L− L′‖2 ,

where the last step is by the Cauchy-Schwarz inequality. Dividing both sides by‖x′ − x‖2 yields
the desired result.

Proof of Theorem6: For every1 ≤ t ≤ T it holds thatΦ(Lt)− Φ(Lt−1) ≥ ∇Φ(Lt) · (Lt − Lt−1)
sinceΦ is concave (settingL0 = 0), and thus

Φ(Lt)− Φ(Lt−1)− (∇Φ(Lt)−∇Φ(Lt−1)) · (Lt − Lt−1) ≥ ∇Φ(Lt−1) · (Lt − Lt−1) .

By the Cauchy-Schwarz inequality and the Lipschitz continuity of∇Φ, we get

|(∇Φ(Lt)−∇Φ(Lt−1)) · (Lt − Lt−1)| ≤ ‖∇Φ(Lt)−∇Φ(Lt−1)‖2‖Lt − Lt−1‖2
≤ (η/α)‖Lt − Lt−1‖22 ,

and thus,

Φ(Lt)− Φ(Lt−1) + (η/α)‖Lt − Lt−1‖22 ≥ ∇Φ(Lt−1) · (Lt − Lt−1) .

Summing up over1 ≤ t ≤ T , we have that

Φ(LT )− Φ(L0) + (η/α)
T∑

t=1

‖Lt − Lt−1‖22 ≥
T∑

t=1

∇Φ(Lt−1) · (Lt − Lt−1) = LRFTL(η,R),T .

Therefore,
RRFTL(η,R),T ≤ Φ(LT )− Φ(L0) + ηQT /α−min

x∈K
{x · LT } . (11)

Now, letx0 ∈ K be a minimizer forx · LT , and letx1 = ∇Φ(L0). By Theorem5

Φ(L0) = x1 · L0 +R(x1)/η = R(x1)/η

and
Φ(LT ) ≤ x0 · LT +R(x0)/η ,

and therefore

Φ(LT )− Φ(L0)−min
x∈K

{x · LT } ≤ x0 · LT +R(x0)/η −R(x1)/η − x0 · LT

=
1

η
(R(x0)−R(x1)) ≤

D

η
.

Plugging the above inequality into Equation11, we obtain the first part of the theorem, and the
second part follows immediately.
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Proof of Theorem7: If Q ≥ Dc2/(4α), then it holds thatηc/α =
√
Dc2/(2αQ) ≤

√
2, and thus

R̃RFTL(η,R),T ≤ D/η +
ηQ

α

(
1 +

√
2
)
=
√
2QD/α+

√
QD/(2α)

(
1 +

√
2
)

=
(√

2 + 1/
√
2 + 1

)√
QD/α

≤ 3.2
√
QD/α .

Otherwise,Q < Dc2/(4α), and it holds thatηc/α = 3
√
Dc2/(4Qα) > 1 and

R̃RFTL(η,R),T ≤ D/η + 2η2cQ/α2 = 3
√

4QcD2/α2 + 3
√
QcD2/(2α2)

≤ 2.4 3
√
QcD2/α2 .

Proof of Lemma8: The proof of the first claim proceeds by induction ont. For t = 1 the assertion
is obvious, and we assume it is true fort and prove it fort+ 1. It holds that

P(et+1 = i, Ft+1 = 1) = P(et = i, Ft+1 = 1) = pi,t ·
pi,t+1Zt+1

pi,tZt
=

pi,t+1Zt+1

Zt
,

where the second equality used the induction assumption. In addition,

P(et+1 = i, Ft+1 = 0) = P(et+1 = i|Ft+1 = 0)P(Ft+1 = 0)

= pi,t+1

N∑

j=1

P(Ft+1 = 0|et = j)P(et = j)

= pi,t+1

N∑

j=1

(
1− pj,t+1Zt+1

pj,tZt

)
· pj,t

= pi,t+1

N∑

j=1

(
pj,t −

pj,t+1Zt+1

Zt

)

= pi,t+1

(
1− Zt+1

Zt

)
,

where the third equality again used the induction assumption. Thus,

P(et+1 = i) =
pi,t+1Zt+1

Zt
+ pi,t+1

(
1− Zt+1

Zt

)
= pi,t+1 ,

as required.
For the second claim, note first that for everyi andt,

P(et+1 6= et|et = i) ≤ 1− pi,t+1Zt+1

pi,tZt
.

Denotingαt = P(et+1 6= et), we have by the first part that

αt =
N∑

i=1

P(et+1 6= et|et = i)P(et = i) ≤
N∑

i=1

(
pi,t −

pi,t+1Zt+1

Zt

)
= 1− Zt+1

Zt
.
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Since−αt ≥ ln(1− αt) ≥ ln(Zt+1/Zt), it follows that

T−1∑

t=1

αt ≤ −
T−1∑

t=1

ln
Zt+1

Zt
= − ln

ZT

Z1
.

Finally,

E[KT ] = E

[
T−1∑

t=1

1{et+1 6=et}

]
=

T−1∑

t=1

αt ≤ ln
Z1

ZT
,

concluding the proof.

Proof of Lemma9: First, note that the expected standard regret ofSD(A) is identical to that ofA
since

E[LSD(A),T ] = E

[
T∑

t=1

N∑

i=1

P(et = i)li,t

]
=

T∑

t=1

N∑

i=1

pi,tli,t = LA,T ,

and consequentlyE[RSD(A),T ] = RA,T . Next, we have

E[KT ] ≤ ln(Z1/ZT ) =
T−1∑

t=1

ln(Zt/Zt+1) =
T−1∑

t=1

lnmax
i

{pi,t+1/pi,t} .

The result now follows because

E[R̃SD(A),T ] ≤ E[RSD(A),T ] +BE[KT ] .

Proof of Theorem10: Note first that assumingmini{li,t} = 0 for everyt is w.l.o.g. since we may
bound the augmented regret given the translated lossesli,t−minj{lj,t} instead of the original ones.
The implication both for PW and Hedge is that for everyt, wi,t ≥ wi,t+1 for everyi with at least
one indexj for whichwj,t = wj,t+1. Therefore,

max
i

{pi,t+1/pi,t} = (Wt/Wt+1)max
i

{wi,t+1/wi,t} = Wt/Wt+1

for everyt, and consequently,

T−1∑

t=1

lnmax
i

{pi,t+1/pi,t} =
T−1∑

t=1

ln(Wt/Wt+1) = ln(W1/WT ) ≤ ln(W1/WT+1) .

Thus, by Lemma9
E[R̃SD(A),T ] ≤ RA,T +B ln(W1/WT+1) , (12)

whereA stands for either algorithm.
(i) Let A stand forPW (p0, η). It follows from Theorem22 that for every experti,

LA,T − Li,T +B ln(W1/WT+1) ≤
1

η
ln

1

pi,0
+ η

T∑

t=1

l2i,t +B

(
ηLi,T + ln

1

pi,0
+ η2

T∑

t=1

l2i,t

)

= (B + 1/η) ln
1

pi,0
+ (η +Bη2)

T∑

t=1

l2i,t +BηLi,T (13)
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Settingi = m(T ) we obtain in conjunction with Equation12 that

E[R̃SD(A),T ] ≤ (B + 1/η) lnN + (η +Bη2)Q+BηL∗

≤ B lnN + (1/η) lnN + η((1 +B/(2M))Q+BL∗) .

This bound is minimized byη = min
{

1
2M ,

√
lnN

(1+B/(2M))Q+BL∗

}
, yielding that

E[R̃SD(A),T ] ≤ B lnN +max
{
4M lnN, 2

√
((1 +B/(2M))Q+BL∗) lnN

}
.

(ii) Let A stand forHed(p0, η). It follows from Theorem23 that for every experti,

LA,T − Li,T +B ln(W1/WT+1) ≤
1

η
ln

1

pi,0
+

η

8
· qT +B

(
ηLi,T + ln

1

pi,0

)

= (B + 1/η) ln
1

pi,0
+

η

8
· qT +BηLi,T (14)

For i = m(T ) Equations12and14yield

E[R̃SD(A),T ] ≤ (B + 1/η) lnN +
η

8
· q +BηL∗ ,

immediately implying the bound for the specific value ofη.

Proof of Theorem11: SinceLi,T = − ln(Xi,T /Xi,0), we have by Theorem19 that

0 ≤ LA,T − Li,T − ln(Xi,T /Xi,0) + αM

T∑

t=1

‖p̂t − pt+1‖1 + lnVT ,

for a suitableαM , and therefore

−γ ≤ −(LA,T − Li,T + lnXi,0 + αM

T∑

t=1

‖p̂t − pt+1‖1) ≤ lnVT − lnXi,T .

Thus, we have thatVT /Xi,T ≥ e−γ for everyi, and Lemma14yields the result.

Proof of Theorem12: Observe thatSD(A) places all weight on a single asset, and therefore
p̂t = pt. As a result, assuming the SCσ(x,x′) = αM‖x− x′‖1, one has for everyi that

R̃SD(A),T + lnmax
j

{Xj,0} ≥ LSD(A),T + αM

T∑

t=1

‖p̂t − pt+1‖1 − Li,T + lnXi,0

≥ −(lnVT − lnXi,T ) ,

where the last inequality used Theorem19 (which also provides a proper value forαM ). Thus, an
upper boundU onE[R̃SD(A),T ] implies that

U + lnmax
j

{Xj,0} ≥ −E[lnVT − lnXi,T ] = lnXi,T + E[− lnVT ] ≥ lnXi,T − lnE[VT ] ,
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where the last inequality is by Jensen’s inequality. Therefore,

E[VT ]

maxj{Xj,T }
≥ exp(−U − lnmax

j
{Xj,0}) ,

and by the expected version of Lemma14 we haveΨ(X1, . . . ,XN , T ) ≤ maxj{Xj,0} exp(U). In
particular, a concrete bound forC(1, T ) = Ψ(S,1, T ) − 1 may be derived using Theorem10. We
will use the simpler bound for Hedge, and the valid boundB = 2αM . By Theorem19 we have
αM = c, and therefore,

C(1, T ) + 1 ≤ exp
(
B ln 2 +

√
(q/2 + 4BL∗) ln 2

)

= exp
(
2c ln 2 +

√
(q/2 + 8cL∗) ln 2

)
.

Crucially, however, Theorem10 requires that the losses be transformed. Namely, iflt = (lt, 0),
we must subtractmin{lt, 0} from both entries for everyt. This transformation does not affectqT
or q, but means thatL∗ is actually an upper bound onmin{∑T

t=1 l
+
t ,
∑T

t=1 l
−
t }, and it is therefore

replaced withλ∗.

Proof of Theorem13: We employ the same construction used to prove the infeasibility result of
Section3, in the specific context of the BE setting withN = 2. The first expert will be the stock
and the second will be the cash. Before proceeding, we note that the construction works regardless
of any randomization on the side of the algorithm. For every timet denotept for the decision of
A andπt for the decision ofA′. We will also denotêpt and π̂t for the probabilities that satisfy
p̂i,t ∝ pi,t exp(−li,t) and π̂i,t ∝ πi,t exp(−li,t), respectively, for everyi and t. Note that the
construction involves arbitrarily small quadratic variation, and is thus appropriate for any boundQ.
Since proving the claim for smaller transaction cost rates is harder, we may assume w.l.o.g. that
c = cM ≤ 0.2. SincecM > 0, Theorem19 implies that forαm = 0.4cM > 0,

ln
VT

max{1, ST }
≤ qT /8−RA,T − αm

T∑

t=1

‖p̂t − pt+1‖1 ,

and sinceqT is arbitrarily small it suffices to show that for an arbitrarily smallǫ > 0

−RA,T − αm

T∑

t=1

‖p̂t − pt+1‖1 ≤ ln(1/2) + ǫ ,

or equivalently, that

RA,T + αm

T∑

t=1

‖p̂t − pt+1‖1 ≥ ln 2− ǫ . (15)

As already argued, we may obtain an admissible triplet(v,Φ, λ) by settingv = (1, 0), Φ(L) =
− ln((1/N)

∑N
i=1 e

−Li), and choosing someλ > 0, which may be arbitrarily large. The learning
rate will be set asη = 1 + δ for someδ > 0, which may be arbitrarily small. Thus, the reference
algorithmA′ isHed(p0, η), wherep0 is uniform.

As before, the cumulative loss either leaves[−(λ/η)v, (λ/η)v] for someT or remains inside
it. For the first case, Lemma1 guarantees thatRA,T ≥ ξ1/η, and it holds thatξ1 ≥ ρ1(λ) =
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ln N
N−1+exp(−λ) (seeGofer and Mansour, 2012, Lemma 7). Thus, by choosing a large enoughλ

and a small enoughδ we may obtain thatRA,T ≥ ξ1/η ≥ ln 2 − ǫ for an arbitrarily smallǫ > 0,
satisfying Equation15, as required.

It now remains to show that Equation15 is satisfied ifLt never leaves the interval. To do that, it
suffices to show thatRA,T −RA′,T + αm

∑T
t=1 ‖p̂t − pt+1‖1 grows arbitrarily large, sinceA′ has

non-negative regret. Now, sinceRA,T −RA′,T =
∑T

t=1

(
lA,t − lA′,t

)
, and‖p̂t−pt+1‖1 = 2|p̂1,t−

p1,t+1| for everyt, this expression equals
∑T

t=1

(
lA,t − lA′,t + 2αm|p̂1,t − p1,t+1|

)
. Furthermore,

our construction guaranteeslA,t ≥ lA′,t for everyt, so it would be sufficient even to show that

lim
T→∞

∑

t∈T ∩[1..T ]

(
lA,t − lA′,t + κ|p̂1,t − p1,t+1|

)
= ∞ , (16)

whereT is some set of times andκ = 2αm > 0. We now proceed to show that such a set exists.
In what follows we will refer topt = (pt, 1 − pt) rather thanpt = (p1,t, p2,t) for short, and

similarly for all other two-dimensional probability vectors. As before, denote t1 < t2 < . . . for
times of true direction reversals, namely, timest > 1 whendt = −dt−1. Consider a single time
interval [τ1, τ2] between two reversals, withτ1 = ti andτ2 = ti+1, wheredτ1 = −1. We assume
that i is large enough s.t.κ > at for everyt ≥ ti. Recall thatlt = dtatv = (dtat, 0) for everyt,
so lA,t = ptdtat andlA′,t = πtdtat. Thus, the fact thatlA,t ≥ lA′,t necessitates thatpt ≤ πt for
t ∈ [τ1, τ2) andpτ2 > πτ2 . We will prove that for any probability valuespτ1 , . . . , pτ2 that satisfy
these conditions, it holds that

τ2−1∑

t=τ1

(
lA,t − lA′,t + κ|p̂t − pt+1|

)
≥

τ2−1∑

t=τ1

κ|π̂t − πt+1| ≥ b

τ2−1∑

t=τ1

at (17)

for some constantb > 0 that does not depend on the specific interval[τ1, τ2]. Now, note that since
Lt remains inside a finite interval, the sums of steps in either direction (dt = 1 or dt = −1) must
diverge. Thus, if we takeT = {t : dt = −1}, then proving the claim in Equation17 would satisfy
Equation16and complete the proof.

We now proceed to prove the claim in Equation17. Definingf : [0, 1]× R
+ × R → R by

f(x, y, z) =
xe−yz

xe−yz + 1− x
=

x

x+ (1− x)eyz
,

we have for everyt thatπt+1 = f(πt, η, dtat), π̂t = f(πt, 1, dtat) andp̂t = f(pt, 1, dtat). Now,
for any fixed valuesy′ > y,

f(x, y′, z)− f(x, y, z) =
x

x+ (1− x)ey′z
− x

x+ (1− x)eyz

=
x(1− x)(eyz − ey

′z)

(x+ (1− x)eyz)(x+ (1− x)ey′z)

=
x(1− x)(y′ − y) exp(y′′z)

(x+ (1− x)eyz)(x+ (1− x)ey′z)
· (−z) , (18)
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for somey′′ ∈ [y, y′]. Clearly, given someb1, b2 > 0, then for anyx ∈ (b1, 1 − b1) and|z| < b2,
there is someb3 > 0 s.t. |f(x, y′, z)− f(x, y, z)| ≥ b3|z|. Thus,

τ2−1∑

t=τ1

|π̂t − πt+1| =
τ2−1∑

t=τ1

|f(πt, 1, dtat)− f(πt, 1 + δ, dtat)| ≥
τ2−1∑

t=τ1

b4at

for someb4 > 0, since the valuesat are bounded and the probabilitiesπt given byA′ (namely,
Hedge) are bounded away from0 and1 inside the interval[−(λ/η)v, (λ/η)v]. This proves the
right inequality of (17), and we now turn to the left inequality. Note first that for everyt ∈ [τ1, τ2),

p̂t − πt+1 = p̂t − π̂t + π̂t − πt+1

= f(pt, 1,−at)− f(πt, 1,−at) + f(πt, 1,−at)− f(πt, η,−at)

≤ f(πt, 1,−at)− f(πt, η,−at) < 0 . (19)

(The first inequality holds sincept ≤ πt andf(x, y, z) is increasing inx for every fixedy andz;
the second inequality follows from Equation18and the fact thatπt ∈ (0, 1).) Now, observe that the
left inequality of (17) amounts to saying that ifpt were replaced byπt for everyt ∈ [τ1, τ2], then
the sum

τ2−1∑

t=τ1

(ptlt − πtlt + κ|p̂t − pt+1|) =
τ2−1∑

t=τ1

(
lA,t − lA′,t + κ|p̂t − pt+1|

)

may not increase for any valid valuespt. We will use induction to prove a stronger claim, namely,
that the same is true if the change is applied only to a suffix of the indices,[τ2 − t+ 1, τ2]. If t = 1,
then the termκ|p̂τ2−1 − pτ2 | is replaced byκ|p̂τ2−1 − πτ2 |. Using (19) and the fact thatpτ2 > πτ2
we have that̂pτ2−1 − pτ2 < p̂τ2−1 − πτ2 < 0, so the replacement does not increase the sum. the
inductive step amounts to showing that the sum is not increased by replacing

pτ2−tlτ2−t + κ|p̂τ2−t−1 − pτ2−t|+ κ|p̂τ2−t − πτ2−t+1|

with
πτ2−tlτ2−t + κ|p̂τ2−t−1 − πτ2−t|+ κ|π̂τ2−t − πτ2−t+1|

if τ2 − t > τ1, and
pτ2−tlτ2−t + κ|p̂τ2−t − πτ2−t+1|

with
πτ2−tlτ2−t + κ|π̂τ2−t − πτ2−t+1|

if τ2− t = τ1. It holds thatpτ2−t ≤ πτ2−t, and thuspτ2−tlτ2−t ≥ πτ2−tlτ2−t. In addition,f(x, y, z)
is increasing inx for any giveny andz, and thereforêpτ2−t ≤ π̂τ2−t. Furthermore, by Equation
18, π̂τ2−t < πτ2−t+1, and therefore,|p̂τ2−t − πτ2−t+1| ≥ |π̂τ2−t − πτ2−t+1|. Combining these facts
yields

pτ2−tlτ2−t + κ|p̂τ2−t − πτ2−t+1| ≥ πτ2−tlτ2−t + κ|π̂τ2−t − πτ2−t+1| ,
proving the claim for the caseτ2 − t = τ1. If τ2 − t > τ1, then sincepτ2−t ≤ πτ2−t, it suffices to
show that the expression

pτ2−tlτ2−t + κ|p̂τ2−t−1 − pτ2−t|+ κ|p̂τ2−t − πτ2−t+1|
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does not increase forpτ2−t ∈ [0, πτ2−t]. Observe that̂pτ2−t ≤ π̂τ2−t < πτ2−t+1 impliesκ|p̂τ2−t −
πτ2−t+1| = −κ(p̂τ2−t − πτ2−t+1), and therefore we may examine instead the expression

pτ2−tlτ2−t + κ|p̂τ2−t−1 − pτ2−t| − κp̂τ2−t .

If pτ2−t ∈ [0, p̂τ2−t−1], then we obtainpτ2−tlτ2−t + κp̂τ2−t−1 − κp̂τ2−t − κpτ2−t, which clearly
decreases inpτ2−t. If pτ2−t ∈ (p̂τ2−t−1, πτ2−t], then we need consider the expressionpτ2−tlτ2−t +
κpτ2−t − κp̂τ2−t, so it remains to show thatg(x) = xl + κx − κf(x, 1, l) is non-increasing inx,
for a negativel. Sincel < 0 it holds that

∂f(x, 1, l)

∂x
=

el

(x+ (1− x)el)2
≥ el ≥ 1 + l ,

and therefore
g′(x) ≤ κ+ l − κ(1 + l) = l(1− κ) < 0 ,

completing the proof.
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