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Abstract

The Thompson Sampling (TS) policy is a widely implemented algorithm for the stochastic multi-
armed bandit (MAB) problem. Given a prior distribution over possible parameter settings of the
underlying reward distributions of the arms, at each time instant, the policy plays an arm with
probability equal to the probability that this arm has largest mean reward conditioned on the current
posterior distributions of the arms. This policy generalizes the celebrated “probability matching”
heuristic which has been experimentally and widely observed in human decision making. However,
despite its ubiquity, the Thompson Sampling policy is poorly understood.

Our goal in this paper is to make progress towards understanding the empirical success of
this policy. We proceed using the lens of approximation algorithms and problem definitions from
stochastic optimization. We focus on an objective function termed stochastic regret that captures
the expected number of times the policy plays an arm that is not the eventual best arm, where
the expectation is over the prior distribution. Given such a definition, we show that TS is a 2—
approximation to the optimal decision policy in two extreme but canonical scenarios. One such
scenario is the two-armed bandit problem which is used as a calibration point in all bandit literature.
The second scenario is stochastic optimization where the outcome of a random variable is revealed
in a single play to a high or low deterministic value. We show that the 2 approximation is tight
in both these scenarios. We provide an uniform analysis framework that in theory is capable of
proving our conjecture that the TS policy is a 2—approximation to the optimal decision policy for
minimizing stochastic regret, for any prior distribution and any time horizon.
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1. Introduction

In this paper, we consider the decision theoretic problem of iteratively choosing among competing
options when faced with uncertainty about these. In a celebrated set of (widely replicated) human
experiments surveyed in Vulkan (1992), it has been shown that humans follow a policy termed
as probability matching when faced with competing options. More concretely, suppose there are
K colors. At each step, one color 4 is chosen in an i.i.d. fashion with probability p; (so that
Zfi 1pi = 1) and shown to a subject. These probabilities can be assumed to be known to the
subject. The subject is supposed to guess the color before it is shown, and his goal is to minimize
expected number of mistakes made. Clearly, from the viewpoint of stochastic optimization, this is a
one-shot decision problem, and the optimal policy is to always guess color * = argmax,p;, and the
expected number of mistakes per step is 1 — p;=. However the human subjects appear to follow a
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different policy — at each step, they guess the color ¢ with probability p;. This “probability matching”
policy matches the probability that an option is correct (p; for option i) with the probability of
choosing that option. Such a policy clearly does not optimize the expected number of mistakes.
However, the expected number of mistakes is » . p;(1 — p;) < 2(1 — p;+), and this bound is tight.
Therefore, regardless of K, probability matching is a 2—approximation to the expected number of
mistakes. There are several reasons proposed for why humans employ this policy — however that is
not the concern of this paper.

Our focus in this paper is a related decision policy termed Thompson Sampling (TS) that is
widely implemented for the multi-armed bandit (MAB) problem. In the MAB problem, there are
competing options (henceforth stated as arms) with underlying reward distributions, and the policy
has a belief (or prior distribution) over the parameters of these distributions. At each step, the
policy chooses (or plays) one arm, obtains its reward, and this play refines the prior via Bayes’ rule.
The policy executes over a horizon of 7' steps with the goal of maximizing expected reward. The
Thompson sampling policy generalizes probability matching in the natural way — at each step ¢, p;;
is the probability arm ¢ has largest expected reward conditioned on the current prior, and the policy
plays arm ¢ with probability p;;.

Thompson Sampling is widely used in practical MAB settings Chapelle and Li (2011); Li et al.
(2010); Dudik et al. (2011); Agrawal and Goyal (2012b,a); Scott (2010); Kaufmann et al. (2012);
Bubeck and Liu (2013); Russo and Van-Roy (2013), particularly in the context of learning click-
through rates in ad auctions and search results at almost every large technology company. There are
several reasons for its wide popularity, most notably it has the best empirical performance for the
stochastic MAB problem and its variants Chapelle and Li (2011) — understanding this aspect (in the
Bayesian setting) is our goal in this paper.

Since Thompson Sampling is a policy for a stochastic decision problem (MAB with priors),
and since it coincides with probability matching experiments Vulkan (1992) for T' = 1 steps,
this naturally brings up the questions: Can we bring to bear the analysis techniques in stochas-
tic optimization to the analysis of Thompson Sampling? Is an approximation result, such as the
2—approximation for probability matching discussed above, true for Thompson Sampling as well?
We show that this is indeed possible using the following roadmap:

Mistake-based Objective and Stochastic Optimization. Generalizing the notion of mistakes in
probability matching, we define a Stochastic Regret objective that accounts for the expected number
of times a policy plays an arm whose underlying expected reward is not the maximum, where the
expectation is over the prior probabilities (as is standard in stochastic optimization). Our notion of
stochastic regret is related to the notions of 0—1 regret Lai and Robbins (1985); Auer et al. (2002)
and Bayes risk Lai (1987) in computational learning; however, there are subtle differences (see
Section 1.3), and to the best of our knowledge it has not been studied before. Given this objective,
we consider the stochastic optimization problem of minimizing it over a horizon of T steps for a
given prior distribution. The optimum solution is a (likely exponential size) dynamic program, and
we can compare the performance of any decision policy for the MAB problem against its value.
The optimum and the candidate algorithm start with the same prior information — this reduces the
algorithm design question to a tradeoff between efficiency and performance.

Approximation Analysis. Our main contribution is in the analysis of Thompson Sampling as
an approximation algorithm for this stochastic optimization problem. Analogous to probability
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matching, we show that this policy is a 2-approximation over any time horizon 7" in two canonical
cases — the two armed bandit problem (which is the standard setting in which MAB problems have
been widely studied), and the setting where the uncertainty about an arm resolves to a high or
low value in a single play (Bernoulli point priors). Despite its simplicity, the latter formulation is
very useful in a variety of emerging systems optimization tasks Babu et al. (2009); Demberel et al.
(2009); Herodotou and Babu (2011).

Though TS generalizes probability matching in a natural way, this does not extend to the anal-
ysis, which becomes non-trivial due to available information about the arms changing over time, in
a different fashion for different policies. We intuitively define an “approximation preserving cou-
pling” between two executions of a policy that differ only in their first play, and show that any policy
that preserves a certain guarantee in this coupling is a 2—approximation. We show that TS preserves
this property in the settings we focus on. Based on simulation studies, we finally conjecture that the
2—approximation holds for all priors that are independent across arms. We believe that the above
described analysis avenue will be fruitful for both the design of new approximation algorithms as
well as analysis of Thompson Sampling type algorithms in more general settings.

1.1. Preliminaries and Definitions

Problem 1 (BAYESIAN MAB GITTINS AND JONES (1972); SCOTT (2010); THOMPSON (1933))
In this problem, there are n independent arms; for each arm i, the rewards are drawn 1.1.d. from dis-
tribution D;(0;), where the parameter 0; is unknown a priori. If arm i is played at time t, a reward
it Is drawn i.i.d. from D;(0;) and observed. As input, there is a n-dimensional prior distribution
D over the possible values of the parameters 6.

A decision policy P plays exactly one arm each step, and there is a horizon of T' steps. At
time t, the information available to the decision policy is the sequence of plays and corresponding
observations until time t and the remaining horizon I’ — t; the policy is therefore a mapping from
this information space to the set {1,2,...,n} corresponding to which arm to play next. Let Rp(0)
be the expected reward of P over a horizon of T steps when the underlying parameters are 0. The
goal is to design P to maximize Eg..p [Rp(0)).

In a Bayesian sense, each play and corresponding observation refines the prior D to a corre-
sponding posterior via Bayes rule. Let D; denote the posterior at time ¢; the policy P is a mapping
from this posterior and remaining horizon 7" — ¢ to an action (playing one of the n arms). Through-
out this paper, we will assume D is a product distribution across arms, i.e., there are independent
priors D; for the parameters 6;. Playing arm ¢ only updates D;; the priors of other arms stay the
same since they are independent.

Definition 1 (THOMPSON SAMPLING, henceforth denoted as TS) Let 11;(60;) = E[D;(6;)] de-
note the expected reward from a play of arm © given that the underlying parameter is 0;. Let
k(@) = argmax;p;(0;) denote the arm with the highest expected mean given parameter vector
0. The Thompson Sampling (TS) policy is defined at time step t as follows. Let Dy denote the cur-
rent posterior density over 0. Define q;; as the probability of arm i having largest expected mean
given this posterior, i.e., gy = Pro.p, [k(0) = i|. The TS policy plays arm i with probability g;.
(We assume the probability that two arms have the same mean to be a measure zero event, so that
the policy is well defined.)

1. We are assuming 0; is scalar; this is without loss of generality.
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1.1.1. THE STOCHASTIC OPTIMIZATION PROBLEM

As mentioned before, we extend the notion of mistake in probability matching in a natural fashion
to define the notion of stochastic regret.

Definition 2 (STOCHASTIC REGRET) Given a decision policy P for Problem 1, let M (i, ) denote
the expected number of times the policy plays arm 1, conditioned on the underlying parameter vector
being 0, where the expectation is over the random outcomes observed when the arms are played. Let
M(6) = >, .10) M (i, 0) denote the expected number of times an arm other than k(8) is played.
The stochastic regret of policy P is the expected number of steps the policy makes a sub-optimal
play relative to a policy that knew 0, where the expectation is over @ ~ D. Therefore, the Stochastic
Regret of policy P is Eg..p [M(0)].

Given any time horizon T" and prior D, there is an optimal policy OPT (D, T) that minimizes
the stochastic regret, which can be computed by dynamic programming (see Section 2). In this
paper, we try to resolve the following basic algorithmic conjecture:

Conjecture 3 Thompson sampling is an anytime 2-approximation to the optimal stochastic regret
policy OPT (D, T), for all priors D independent across arms, horizons T, and number of arms n.

In essence, we ask if the probability matching policy has the same approximation guarantee
even in the presence of uncertain information (priors) that is iteratively refined via Bayes’ rule.
This statement, however, is not a naive extension of the probability matching case (1" = 1). To
see this, consider the 7' = 1 case where (as we have seen) the conjecture is true and the guarantee
is in fact tight. The optimal policy in this case simply plays the arm that minimizes the current
probability (1 — g;;), of making a mistake. However, when the horizon becomes larger (T > 1), it
is easy to check that the myopic optimum is not an approximation algorithm.

1.2. Our Results and Techniques
We resolve Conjecture 3 for two canonical cases.

The Two-armed Bandit Problem. There are n = 2 arms with arbitrary priors D. Observe that
just the fact that there are two bandits does not give a 2 approximation.This is the canonical case
of the MAB problem that has been studied extensively in literature, starting with the original work
of Thompson Thompson (1933) and Robbins Robbins (1952). In fact, different policies diverge
in their empirical behavior even in this case Garivier and Cappé (2011); Kaufmann et al. (2012);
Chapelle and Li (2011), and most bandit heuristics are evaluated in this setting.

Bernoulli Point Priors. In this setting, we restrict attention to a specific class of priors. We assume
D;(6;) = 0, is a deterministic distribution. The prior D; is over two values: #; = a; with probability
pi, and 6; = 0 otherwise. We assume that a; > ags > - -+ > a, > 0, and p,, = 1. (The case when D;
is a general two-valued distribution reduces to this case.) The first play of arm ¢ resolves its reward
0; to either a; or 0, and subsequent plays yield exactly this reward. This is the simplest non-trivial
setting where we observe a trade-off between exploration and exploitation; furthermore, classical
frequentist analysis (see Section 1.3) do not yield relevant bounds for point priors. For this canonical
case, we again show that TS is a 2 approximation for all n, 7. We present a 4-approximation proof
in Section 4, and show the tight 2-approximation proof in Section B.
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The choice of these two canonical cases are motivated by the fact that two arm bandit problem
has a rich history and that Bernoulli priors highlight the difference with respect to the existing
frequentist literature which we discuss in Section 1.3.

1.2.1. ANALYSIS ROADMAP AND TECHNIQUES

The analysis is surprisingly non-trivial because we are comparing a myopic policy 7'S against an
exponential size dynamic programming (DP) optimum, which quite likely has no simple charac-
terization even for two arms. Analyses for greedy policies in decision theoretic problems typically
uses LP-based bounds (e.g., Goel et al. (2009); Guha et al. (2010); Dean et al. (2004)), and our
problem does not seem to admit a tractable LP relaxation. In fact, one of our main contributions is
in developing new analysis techniques that directly compare against the DP optimum.

Denote optimal decision policy P* for the input D and T’; call its value O PT. We wish to show
TS < 20PT. Note that as time progresses, the information sets of 7'S and O PT" diverge since they
play different arms, which complicates a direct analysis. In Section 2, we reduce the approximation
guarantee of (c + 1) to showing the following property of 7'S: For any arm %, consider the policy
T'S[i, T] that plays arm ¢ at the first time step, and then executes 7'S for the remaining 7' — 1 time
steps. Let T'S[T’] denote the stochastic regret of TS executed for 7" steps. Then, for all 7 > 1 and
1 <7 < n, we have:

TS[T)—TS[i,T] < (1 —q) (1)

where ¢; = Prg.p[k(0) = i]. To develop intuition, suppose ¢ = 1 and arm ¢ is the “best” arm.
Then expected regret 7'S[T'] incurs in not playing arm ¢ at the first step is roughly 1 — ¢;. The
above precondition suggests that the only loss that 7°S[T’] incurs over 7'S[i, T'], and this includes
the advantage 7'S[i, T'| obtains in knowing the value of arm 7 at future time steps.

The rest of the paper involves proving the precondition for ¢ = 1, for the two cases outlined
above. We establish this by coupling the executions of 7'S[i, T and T'S[T’]. However, just as with
comparing TS with O PT directly, the immediate difficulty is that 7'S[i, T'| has different informa-
tion at the second step compared to 7'S[T’] since they have played different arms at the first step.
Despite this, we show an inductive coupling in Section 3 for the case of two arms (n = 2) via an
interchange argument on the plays. For the case when D is drawn from the family of Bernoulli point
priors (Section 4), we exhibit a careful coupling between the two executions over a subset of the
arms. We show that these two executions have “almost” the same information in terms of arms they
have played and observed. We combine this coupling with establishing the martingale structure of
a suitably defined potential function, and finally use Doob’s optional stopping theorem to establish
that the difference in regret between the two executions is bounded. However, a basic argument
only yields a 4 approximation. Showing a tight 2 approximation (Section B) requires a more careful
analysis of the states introduced by the coupling. The analysis requires expressing the difference of
TS[T)—T5S[i, T) into several sub-functions, each of which is a sub-martingale or super-martingale.

At a high level, the difficulty in our proofs (and in resolving Conjecture 3) stems from the
relation of Precondition (1) to the value of information: Conditioned on playing arm ¢ once and
knowing its reward, does the regret of 7'S[T’] only decrease? Such a statement is clearly true of
optimal policies via Jensen’s inequality, but such statements need not hold for sub-optimal policies
like TS. We are not aware of any prior work on proving such inequalities for sub-optimal policies.
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1.3. Comparison with Frequentist Analysis

Despite its practical success, progress on understanding the theoretical properties of Thompson
Sampling has only recently begun to be made. A sequence of recent papers Kaufmann et al. (2012);
Agrawal and Goyal (2012b,a); Bubeck and Liu (2013); Russo and Van-Roy (2013); Gopalan et al.
(2014) have proposed a frequentist explanation for why this policy works well in practice. In the
frequentist setting, there is no prior distribution D. Instead, we assume the parameters 0 are ad-
versarially chosen. Recall that k(@) is the arm with largest expected reward — if a policy knew 6,
it would play this arm every time step. For any other arm i # k(0), the regret of this arm is the
number of times this arm is played by the constructed policy. zero for a policy that knows ).

Culminating a line of research, the work of Gopalan et al. (2014) shows that as long as the priors
satisfy certain properties, then regardless of the exact choice of prior, Thompson Sampling achieves
frequentist regret that, as 7' — oo, matches an information theoretic asymptotic lower bound es-
tablished by Lai and Robbins Lai and Robbins (1985) (see also Lai (1987); Burnetas and Katehakis
(1996)). To compete against the the asymptotic Lai-Robbins bound, most frequentist algorithms
proceed by constructing high-probability upper-confidence (Chernoff-type) bounds (UCB) on the
mean rewards of the arms given the observations so far, and play the arm with the highest UCB.
A UCB constructed by maximizing KL-divergence provides the optimal bound Lai and Robbins
(1985); Burnetas and Katehakis (1996); Garivier and Cappé (2011); Gopalan et al. (2014), and the
frequentist analyses show that TS mimics the behavior of such a policy.

Our approach is a significant deviation, and can be viewed as an alternative style of analysis.
We view Thompson Sampling as a stochastic decision policy and ask whether it uses the given
prior information efficiently, and what objective it is trying to approximate. We indeed find such an
objective in stochastic regret — in contrast with the Lai-Robbins bound that only holds asymptoti-
cally in T" Garivier and Cappé (2011), the dynamic program provides a benchmark for any 7. We
provide evidence of a different fundamental property of Thompson sampling in how it uses prior
information in order to compete continuously with the optimal stochastic regret policy. In fact, we
show such an analysis even for cases (point priors) where the classical frequentist approach Gopalan
et al. (2014) does not yield relevant bounds. Finally, our analysis for the two-arm case provides (in
hindsight) a much simpler argument than the frequentist analysis.

2. Dynamic Programming and Precondition (1)

Let D denote the prior distribution over the arms. Denote a generic action and reward at time ¢
by oy = (at,7¢), where a; € {1,2,...,n} and r; is the observed reward from this play. Let
oy = 0109 - - - 0¢—1 denote a sequence of actions and corresponding rewards till time ¢. At time ¢,
any decision policy’s state is encoded by some o;. Define

gi(o) = Pr[k(6) =i | D, 0]

as the probability arm 7 has the maximum mean reward given the state o, and the prior D. This
probability can be computed by updating the prior D to the posterior D (o) using Bayes’ rule, and
computing the probability that i has the maximum mean when 6 is drawn from D(o). Similarly, let
D;(0o) denote the posterior distribution over parameter 6; given the state o

Let OPT[o,t] denote the regret of the optimal decision policy conditioned on having state o
of size T' — t, with a horizon of ¢ time steps to go. This policy has the choice of playing one of n
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arms; if it plays arm 4, the regret incurred by this play is 1 — ¢;(o°) and the policy observes a reward
r drawn from D;(6;), where the parameter §; ~ D; (o). For notational convenience, we denote this
draw as r ~ D;(o). The optimal policy is now the solution to the following dynamic program.

OPT[o,#] = min (1 (o) + Byop, () [OPT[(o - (i,7)) , £ — 1])) )

=1
The base case when ¢ = 1 is simply: OPT'[o,1] = min}" (1 — gi(o)).
We first present an important property of g;; the proof follows almost by definition.
Lemma 4 (Martingale Property) Foralli,j € {1,2,...,n} and all o we have:
Qj(O') = ETNDi(G) [qj (U : (Za T))]

Consider the Thompson Sampling policy. Faced with state o and a remaining horizon of ¢ > 1
steps, the policy plays arm 4 with probability ¢;(o ), and hence we have:

TSl 1] = 3 ai(0) x (1~ 6(0) + By, (o) [TS[(@ - (i.7)) .1 — 1])
=1

with the base case being T'S[o, 1] = Y1 | ¢i(o) x (1 — gi(o)).
Let T'S[i, o, t] denote the regret of the policy that plays arm 4 at the first time step, and subse-
quently executes Thompson Sampling for the remaining ¢ — 1 time steps. We have:

TS[i,o,t]=1—qi(o) + E, p,(0) [TS[(o - (i,7)),t —1]]

so that we have: T'S[o,t] = > " | ¢i(o)TS[i, o, 1].
The next lemma reduces the approximation guarantee to a property of the function 7'S. The
statement holds for any policy. The proof (in Appendix A) follows by induction on Equation (2).

Lemma 5 Given a prior D, horizon T, and a policy P with value function V, suppose that for all
T>t>1,allo(of sizeT —1t), andall 1 < i < n we have:

V[th] < V[Za O',t] + C(l - Qi(a)) (3)

Suppose further that V{o,1] < (c+1)OPT|o,1]. Then for allt < T and o of size T — t, we have
V]e,t] < (¢ +1)OPT|[o,t].

For the Thompson Sampling policy, it is easy to show that 7'S[o, 1| < 20PT[o, 1]: Fix some
o, and let p; = g;(o). Note that » . p; = 1. Let ¢* = argmin,(1 — p;). Then, OPT =1 — p;~, and
TS =pi+(1 = pir) + 252 Pi(1 = pj) < 1= pi= + >, 4+ pj = 2(1 — pi=). Therefore, to show
TS is a 2 approximation, it suffices to establish precondition (3) when ¢ = 1.

3. Two-armed Bandits: A 2-Approximation Analysis

The proof of the precondition (3) for n = 2 arms and ¢ = 1 uses induction over the remaining
horizon. This will show that Thompson sampling is a 2 approximation for arbitrary priors D, when
there are n = 2 arms. Denote the two arms by {a, b}. The following lemma presents an equivalent
characterization of precondition (3).
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Lemma 6 For the case of n = 2 arms denoted {a, b}, we have:
Vo,t: TS[o,t]| <TS[z,o0,t|+1—q,(0) Yo = {a,b} < |T'S[a,0,t|-TS[b,o,t]| <1

Proof Fix some o, t, and omit these from the notation. Suppose 7'S < T'S[a] + 1 — q,. Expanding
TS = q,TS[a] + qT'S[b], and observing that g, + ¢, = 1, we obtain T'S[b] — T'S[a] < 1. Con-
versely, if T'S[a] < 1+ T'S[b], then T'S = ¢, T'S[a] + ¢T'S[b] < T'S[b] + 1 — gp. Reversing the
roles of a and b completes the proof. |

Assume w.l.0.g. that the current state corresponds to o = ¢; we omit this state in the notation when
obvious. Let o,(r) denote the state if arm a is played and r is observed; let o4 (r, s) denote the
state if arm a is played and r observed, followed by b played and s observed. By induction, assume
precondition (3) (and its consequence via Lemma 6) is true for horizons less than ¢. Consider
playing arm « first. Note that g, + g, = 1 for all states. We have:

TSla,p,t] = 1—qq+E,wp, [TS[oa(r),t —1]
< 1-q+E.p,[1- qb(aa( )) + TS[b,0a(r),t —1]]
= 1—qa+Ep, [20a(0a(r)) + Egup,(ou(r) [T [oas(r, 5), t — 2]]]
= 1+ qa+Erwp, [Esopy(ou(r) [TS [oab(r, 5), t — 2]]]

Here, the first inequality follows from the inductive hypothesis applied with ¢ = b; the following
equality applies because g, + g, = 1 for all states; and the final equality holds by the Martingale
property of g, (Lemma 4). Similarly, if arm b is played first (using the obvious change in notation):

TS, éf] = 1—qy+Byp, [TS[oy(s),t — 1]
o+ Eoun, [qa(05()TS[a, 0y(s), ¢ — 1] + a5(0(s))TS[b, ou(s), £ — 1]]

qa + Esup, [T'S[a,0p(s),t — 1] — qp(0p(9))]

da — @ + Esup, [T'S[a, op(s),t — 1]]

da — @ + Esopy [1 = 4a(0a(5)) + Erp, (04(s)) [T'S[00a(s,7), t — 2]]]

Ga— @ + @ + Esop, [Erap, (0y(5)) [TS[00a(s,7),t — 2]]]

= o+ Erp, [Esup,(oair) [T [0as(r,5),t — 2]]]

v

Here, the first inequality follows by the inductive hypothesis combined with Lemma 6. The next
equality and the penultimate one follow from the martingale property (Lemma 4), and the final
equality follows since the plays of the arms are independent, so that the final states are statisti-
cally identical whether arm « is played first and then arm b, or the other way around. This shows
TS[a,¢,t] — TS[b,¢,t] < 1. Switching the roles of a and b in the above argument shows that
|T'S[a, ¢,t] — T'S[b, ¢,t]| < 1. Combining this with Lemma 6, precondition (3) follows.

We note that the above proof of 2 approximation does not need the prior D to be a product
distribution over D, and Dy; it only needs that the plays are ¢.¢.d. for each arm.

4. Bernoulli Point Priors: A 4-Approximation Analysis

In this section, we consider the case when D = X7 x X9 x - -+ x X, where each Xj is a Bernoulli
distribution that takes on value a; > 0 with probability p;, and O otherwise. The priors for different
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arms are independent. We will use the notation X; = B(a;,p;). In this setting, the distribution
D;(6;) = 6; is deterministic, and 6; ~ X;. Therefore, the first time arm 1 is played, the reward of
the play (6; = a; or 6; = 0) resolves the arm, and subsequent plays yield exactly this reward.

At ahigh level, we first define a potential function in Section 4.1 that combined with the regret of
TS, defines a martingale. Subsequently, in Section 4.2, we exhibit a coupling between the executions
of T'S[t] and T'S[i, t + 1]. We argue about the change in potential functions via the coupling, and
use Doob’s optional stopping theorem to bound the difference in regret between the two executions.
This will establish precondition (3) when ¢ = 3, implying a 4-approximation. Using a more intricate
analysis, we improve this to a 2-approximation in Section B. Some of the the proofs in this section
are relegated to Appendix A.

In order to make Thompson Sampling well-defined, we will restrict attention to canonical
Bernoulli distributions:

Definition 7 Given Bernoulli distributions X1, Xo, ..., X,, define them to be canonical if the dis-
tributions are X; = B(p;,a;) where a1 > as -+ a, > 0and p, = 1.

Definition 8 Given a set of canonical distributions, let q; be the probability that the variable X; is
the true maximum. Therefore, ¢; = [ | j <i(1 =pj)pi.

2
Lemma 9 Given any canonical set of distributions, we have 1+, ¢ — 23", % = 0. Therefore

4 1
wehave:Z(}q;'—q?) =3 1_2%2 .
K3 .
K3

i#En
4.1. The Potential Function

We now define a potential function, and argue that when combined with the regret of Thompson
sampling till time ¢, it defines a martingale. Consider the execution of the Thompson sampling
policy. At time ¢, the policy has some random state o; we omit explicitly mentioning the state since
we are conditioning on reaching it. Let g;; denote the probability that arm 7 is the maximum. Define
the quantity p;; as follows: If arm ¢ has never been played, it is p;; if arm ¢ has been played and the
observed outcome is a;, then p;; = 1; else (if arm 7 has been played and the observed outcome is 0
then) p;s = 0. Let Sy denote the set of arms with ¢;; > 0; TS only plays one of the arms in S; at
time ¢. In the remaining discussion, we restrict to these arms unless otherwise stated.
Definition 10 Define the potential function ®[t] as ®[t] = 3, q, LL.

Note that there can be only one arm in S; with p;; = 1 — we term this the backup arm and denote
it as b;. It is the arm with lowest index that has been played and observed to have a value > 0, i.e.,
by = max{j|j € S¢}. Forany arm i € S; \ {b;}, observe that this arm has not been played so far,

j>i,je8; it

qit
so that Dit (I—past)

Definition 11 For the Thompson sampling policy, let the random variable R denote the total regret
incurred up to, but not including, the time step t. Therefore, R1 = 0.

Lemma 12 For the TS policy, let Ay = ®[t| — E [®[t + 1]|Arm i is played at time t]. If i € S¢ \
{b¢}, then Ay = W, and if i = by then Ay = 0.



GUHA MUNAGALA

Lemma 13 For the Thompson sampling policy, Q; = R, + 2®|[t] is a martingale sequence.

Proof At time ¢, Thompson sampling plays ¢ € S; with probability g;;. Suppose it plays i # b;.
Then p;; = p;, so that with p;, the policy observes X; = a; and Ryy1 — Ry = (1 — gj441)) Where
i(t+1) = qupi- With probability (1 — p;), the policy observes X; = 0, so that Ryy1 — Ry = 1.
Therefore the expected increase in R; is 1 — ¢;z. By Lemma 12, ®; decreases in expectation by

2u(1-P)) Therefore:
i ' :

git ( 'pl):1+Qit_ q‘zt:1+qit_ q‘zt

Di 7 Dit

E [Qi1) — Qi|Qt,i # by played] = 1 — gz — 2

Now consider the case ¢ = b, is played, so that X; = a; is known even before the play. In this case
Ri+1 — Re =1 — g4, and @ is unchanged. Since p;; = 1, we have:

2q;t

Dit

E [Qut1) — Qi|Qu,i = by played] =1 — gy = 1+ qi —

Since Thompson sampling plays arm ¢ with probability g;;, we have

>:1+Zq§t—22q2’2ﬁ:0
%

p Dit

2q;
E[Qui1) — Q] = ZQit (1 + Git — p?:

where the last equality follows from Lemma 9. |

4.2. Coupling 7'S[t] and T'S[i,t + 1]

We now proceed to establish precondition (3) when ¢ = 3, which will show that Thompson sampling
is a 4-approximation. Recall that 7'S[t — 1] is Thompson sampling with a horizon of ¢t — 1 steps;
the random variable R; is the regret on some sample path of this policy. Similarly, 7'S|i, t] is the
policy that plays arm ¢ at the first step, and executes Thompson sampling for the next ¢ — 1 steps.

Definition 14 Denote the regret of T'S[i, t] as Riy1[i]. Let R{,[i] be the regret of T'S[i, t] exclud-
ing the regret from step 1.

To compare T'S[t + 1] = E[R42] and T'S[i, t + 1] = E [Ry2[i]] we follow a two step approach:

(I) We define a natural coupling that allows us to compare E [R; 1] (denoting the first ¢ plays of
TS[t + 1)) and E [R{%,[i]] which excludes the regret of the first play of T'S[i, ¢ + 1].

(I) We then relate the regret of the first play of 7'S[i, ¢ + 1] to the last play of T'S[t + 1].

Recall the definition of ®[t'] from Def. 10. Analogously define @4, ¢'] for the policy that plays arm
1 at the first step, and subsequently executes the Thompson sampling policy. The following ensues
from Lemma 13 and Doob’s optional stopping theorem.

Corollary 15 (a) 2E [®[t + 1]]4+E [Re41] = 20[1]; (b) 2E [®[i, ¢ + 2]]+E [R$%,[i]] = 2E [®[i,2]).

10



THOMPSON SAMPLING

Note E [R1] = 0 and E [R§*[i]] = 0. We now define a coupling between the information sets
insteps 1,...,t of T'S[t + 1] and those of steps 2, ...,t+ 1 of T'S[i, ¢ + 1]. In particular, we show
an execution of T'S[i, t + 1] (call it T'S[i, ¢ 4 1]) at time #’ + 1 based on the execution of T'S[t + 1]
at time ¢'. This will define the coupling. Initially 7 is declared SPECIAL and the coupling is (), 0).
Define an event COLLAPSE to be initially false.

Invariant. At a general point in time ', suppose s is the SPECIAL arm. Then we maintain the
invariant that T'S[i, t + 1] and T'S[t] differ only in the knowledge of the value of arm s. T'S[i, t + 1]
would have played s and knows X;. T'S[t] has not played s and does not know X;. Therefore
pstr = ps below. If X; = ag, then T'S[t] might have information about arms j > s.

The coupling at time ¢’ is given below. We only perform this if COLLAPSE is false; otherwise
the coupling will be trivial.

(a) Given a current states (o, o) for T'S[t] at time ¢’ and T'S[i, ¢ + 1] at time ¢/ + 1, first execute the
next play of 7'S[t] conditioned on o. Suppose this is for arm j. Therefore o — o o j.
(b) If j < sthenseto’ — o’ o j.
(c) If j > s where s is SPECIAL:
(1) If X, = a, then fS[z’,t + 1] plays s; thatis 0’ — ¢’ o s.
(2) If X, = 0and j > s then T'S[i,t + 1] plays j; that is o’ — ¢’ 0 j.
(3) If X, =0and j = sthenlet A,y = Zj,>s ;v Where g;rp is the probability TS[t] would
have played j'. Note that Ay = %t (1 — p,). Then T'S[i,t + 1] plays a 5/ > s with

Ps
probability qu't:; set o/ — ¢’ o j' and j’ is now SPECIAL.
st

(d) IfT'S[t] played anarm j < s and observed X; = a; then set COLLAPSE as true: T'S(t], TS [i, t+
1] have the same information and identical executions subsequently.

Lemma 16 The executions of TS[i,t 4 1], TS[i,t + 1] are statistically identical.

Proof We will show that any state ¢’ is arrived with the same probability by 7'S[i, ¢ + 1] and
T'S[i,t+ 1]. The proof is by induction on ¢’ = |o’|. The claim is trivially true for |o’| = ¢’ = 0. We
now observe that TS[i, ¢’ 4+ 1] and T'S[t'] differ only the knowledge of the state of the distribution
with index s. Therefore the probability of playing an arm with index j < s is identical for both
processes, and this is identical to the probability that T'S[i, t + 1] with state o’ plays this arm — this
proves Step (b) is statistically identical.

Consider now the case where T'S[t] plays j > s. If X; = a, then T'S[¢, ' + 1] cannot plays j.
But the probability of playing s by T'S[i, ¢’ + 1]is >_._, g, and Step (c1) shows that T'S[i, t + 1]
plays s with the same probability.

If on the other hand, X; = 0, then the probability that 7'S[i, ' + 1] plays j > sis gy /(1 — ps).
Now T'S[t'] plays j with probability ;¢ in Step (c2). However T'S[t'] plays s with probability gi;/
in Step (c3); and therefore T'S[i, ¢ + 1] plays j with total probability

q;t’ ( qst'Ps ) q;t’
g +qs 37— =qjrr | 1 + =
! ° Ast’ ¢ (1 _ps) (1 _ps)

j<s

The probabilities of all plays are therefore identical between T'S[i, t + 1] and T'S[i, ¢t + 1]. |

11
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Lemma 17 Foranyt, E[®[t]] — E[®[i, ¢t + 1]] > 0.

Proof We will prove this via the coupling. Consider any sample path in T'S[t]. In the event
COLLAPSE is true, we have ®[t] = ®[i, ¢ + 1]. Else suppose s was the last special element; note
that 7°S[t] does not know the state of arm s, and we will take expectation over this unknown state.
Both the expressions ®[t] and ®[i, ¢ + 1] agree on the contributions of all arms j < s.

Let the contribution from {j|j < s} to ®[i,t + 1] be A[i] and to ®[t] be A. If X, = a,,
then A[i] = £ since that is the probability that X is the maximum, and from j < s, the con-

tribution is 0. Here, g;; refers to the probability that 4 is the maximum in T'S[t]. If X, = 0, then

Ali] = 1%% (A - %) since the processes have the same information except for the state of X.

Therefore Ex, [Afi]] = A — % +gst < A. Thus E [®[t] — @i, t + 1]] =Ex, [A —A[i]] >0. &

Lemma 18 E [Rt+2[7’]] —E [Rt-‘r?] + 3(1 - QZI) > 0.

Proof We first prove that(E [Ryi2[i] — R{%5[i]]) — (E[Rit2 — Reg1]) = —1 + gi1. To see this,
consider two cases. If arm i is the maximum, then 7'S[t] has g;; > ;1 for all ¢, and plays ¢ with
probability at least ¢;; each step. In this case, the first term is zero, and the second term is at most
1 — ¢;1. Otherwise, if arm ¢ is not the maximum, the first term is 1 and dominates the second term.
In either case, the inequality is true. Now from Corollary 15 and Lemma 17:

E [Ri}sli]] —E[Repa] = 2E[®[i,2]] — 2@[1] + 2E [®[t + 1] — 2E [®[i, ¢ + 2]]
> 2E[®[:,2]] — 2®[1] = —M > —2(1—gi1)
bi
The lemma now follows from summing up the last two inequalities. |

The next theorem is now immediate. An improved statement is presented in Appendix B.

Theorem 19 Thompson sampling is a 4 approximation to the optimal stochastic regret for Bernoulli
point priors.

5. Conclusion

Resolving Conjecture 3 for any number of arms and arbitrary priors is a tantalizing open question.
We posit the conjecture based on fairly extensive simulations of TS for n > 2 arms and general
point priors. Analytically, we can show that if TS has increasing value of information, meaning that
the regret of TS only decreases in expectation if provided more refined information about a prior (in
a certain specific sense), then the conjecture is true for n arms and any priors. We omit the details,
but note that this property of TS seems intuitively correct.

We highlight where our specific approaches break down. We can formulate an inductive hy-
pothesis similar to that in Section 3 for n arms; however, this ends up being too weak to perform
induction on. It is not clear what a stronger hypothesis should be. Similarly, though we can account
for the regret as a martingale even for general (non-Bernoulli) point priors, the coupling method
in Section 4 falls apart. (However, a martingale argument suffices to show a 2 approximation for
the infinite horizon case with general point priors.) We therefore believe that resolving the general
conjecture requires developing techniques that go well beyond what we have presented here.

12
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Appendix A. Omitted Proofs
A.1l. Proof of Lemma 5

Proof We prove this by induction over the remaining horizon ¢; the base case follows by assump-
tion. Suppose the claim is true for horizon ¢ — 1 and all o. Then for horizon ¢ and o, we have:

Vie,t] < Vl]i,o,t]+c(l - (o)) Vi
(c+1)(1 = qi(a)) + Epup, (o) V(o - (i,7)),t = 1]] \)
< (C + 1) ((1 - QZ( )) + ETNDi(U) [OPT[(U : (i, 7’)) 7t - 1]]) Vi
< (e+)min (1 - g:(9)) + Epop, o) [OPT((o - (i,7)) , t = 1]])
= (c+ )OPT[ t]

Here, the first inequality follows from assumption and the second inequality from the inductive
hypothesis. This completes the proof. |
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A.2. Proof of Lemma 9

Proof We prove this by induction on n. This is trivially true for one distribution. It is easy to see
that it holds for n = 2 since ¢1 = p1,¢2 = (1 — p1) and (note py = 1):

14+pi4+(1—p)?—=2p1 =201 —p1)? =1+4pf —(1—p1)* —2p1 =0

Now assuming that the claim is true for any n — 1 distributions, consider combining the first 2 arms
into a single arm with probability p = pj + (1 — p1)p2. This is another canonical distribution and the
identity holds. Now observe that in the modified setting (using the primed notation) ¢} = p} = p
and so the contribution of this variable to the identity is:

(0;)?
(1) -2~ = p*—2p=p7 +p° —2pp+p] —2p1 — 2[p — p1 — p1p + Pi)

1 pll
2 2 2 2
p (p—p1) a4
= pi+p-m)P -2t -2 =g by -2 22
b1 Tp1 D1 b2
1
since g1 = p1 and g2 = p — p1. The lemma follows. |

A.3. Proof of Lemma 12

Proof If i = b, then playing ¢ does not change the state of any arm. Therefore ®[t 4+ 1] = ®]t].
Otherwise, suppose arm i € S; \ {b;} is played. Observe that for j < 7, ¢j41y) = gjr. Arm i is
observed to have value a; with probability p; and 0 otherwise. In the former case, note that all 7 > 3
drop out of S¢y1. Since g;(441) = qit/pi and p;;11) = 1, we have

E [®[t + 1]|X; = a;] Zqﬁ - Zqﬂt 7 - T
]>z ]>z 7>t p]t

In the latter case (X; = 0 is observed), ¢ drops out of S;1. In this case for j > ¢, we have
dit+1) = ¢;t/(1 — p;) and Pj(t+1) = pjt- Therefore the change in this case is:

E[@]t+1]|X; = 0] - o) = = Y- U 4 37 s )

> Djt > p]t(l - pz)

Adding Equation 4 multiplied by p; and Equation 5 by 1 — p;, the lemma follows. |

Appendix B. Bernoulli Point Priors: A Tight 2-Approximation Analysis

In this section we improve Theorem 19 to 2-approximation result in Theorem 30. Note that this is
tight as shown by the example in Section 1. We prove

E[Ritoli]] — E[Rit2] + (1 —¢i) 2 0

which is precondition (1) in the notation of Section 4, instead of proving E [Ry42[i]] — E [Riy2] +
3(1 — gi1) > 0 as in Lemma 18. Towards this end, observe that the notion of the coupling defined
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in Section 4.2 is dependent on the special element s and the element i. That facet of the dependence
has to be reflected in any tight analysis. The simplistic potential ®[t] does not suffice any more.

The overall approach: We define a submartingale DIFF with initial mean O (and therefore in
expectation nondecreasing) that relates E [R¢41] and E [R¢%,[i]]. The submartingale definition
will now explicitly involve the element s — but note that we are only making the analysis dependent
on s, the algorithm remains unchanged. Note that IE [R,;] corresponds to the expected regret of
TS[t] and E [R¢%,[i]] corresponds to the expected regret of T'S[i, ¢ + 1] excluding the first step.

e We use three different submartingale functions DIFF, LOW, and HIGH.

The function LOW corresponds to the function DIFF when the special element is observed
to have an outcome 0 (hence the name). The function HIGH corresponds to DIFF when the
special element is observed to have an outcome as. The subprocess HIGH acts as an absorbing
subprocess — when we switch to this mode then we remain in that mode. The submartingale
DIFF switches to HIGH at most once. The subprocess LOW models the behavior before this
switch (note that the special element as defined by the coupling keeps changing). Although
out target is the function DIFF, the two functions LOw, HIGH simplify the proof considerably.

These functions now depend on a 4-tuple (7, s, t,t') where i, s are as defined in the coupling, ¢
is the current time and ¢’ is the starting point where the pair (4, s) became relevant. Intuitively,
we are analysing a branching process where from the state (4, s) of the coupling we can go to
the state (i, j').

e As expected, with three functions we would need three different potentials.

Expected (difference of) regret
© u; u;
Potential ® u Scaled Potential
O O u; Time
Ug ! 0
OUS y
)
0 0
Index of distributions Index of distributions
° !
VS
v,
o O
o o,
v; !
(a) Potentials (b) Potential x probability (c) Overall process

Figure 1: The potential function of the subprocesses. The upward movement in (c) is the transition
DIFF (or Low, except the time 0) to HIGH. The point is that if the initial arm ¢ had
X; = 0 then the process T'S[t]| — T'S[i,t + 1] is negative in the first step itself and no
subsequent step where 7'S[i, t 4+ 1] knows the special element to be X; = a; helps in
recovery (of crossing the horizontal line). This assertion holds recursively, if X; = 0 then
the difference only increases.
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Y (t' 4+ 1, s) : where s is a special element which is known to T'S[i, ¢ + 1] but not to 7'S|t]
when we are about to make the ¢'-th play for 7'S[t]. Initially s = 7 but that changes as the
process continues (see Definition 20).

M : which corresponds to the events where 7'S[i, ¢ + 1] has outplayed 7'S[t] when the
maximum element is j (see Definition 21).

W+ which corresponds to the event that X; became the unknown distribution and the
previous unknown distribution X, was observed to be 0 (see Definition 22).

In figure 1; the different subfigures correspond to the knowledge of the special element — X, = ag
is marked as shaded and Xy = 0 is marked solid. The value of this W} is accounted appropriately
such that it balances out the possible contribution of Mj;. Without further ado, we define the three
potential functions.

Definition 20 Given a coupling (0,0’) as defined in Section 4.2, where the special element is s
at time t corresponding to T'S[i,t + 1] and T'S[t]; at time t T'S[t| defines {qi1},{pit}. Given such
{qit}, {pit} if s has not been observed before then define

0 if pspr = 1 at time t’ when s was declared special
Y(t+1,s) =4 LBl grx, =g,
— st Otherwise

Pst

Definition 21 Given a coupling (0,0") as defined in Section 4.2; define M to be the indicator
event which is a conjunction of (i) at the (t — 1) step the special element is s; (ii) we play (3, s)
on (0,0') where j > s at the (t — 1) step; and (iii) X is the maximum. Observe that Mg; # 0
implies Xy = as. Note M1 = 0 because we are not accounting for plays in 0" step. Moreover
condition (ii) implies that no COLLAPSE has happened.

a5t (1—pj)
Pt Dj
conjunction of the following happens: (i) at the start of the (t — 1)th step the special element is s;
(ii) we play (s, j) on (0,0") where j > s at the (t — 1) step; which implies j is the new special
element and (iii) X; = a; and j has not been played by o before; that is; pj; = p;. Observe that
Wt # 0 implies X; = 0. Note W.1 = 0 because we are not accounting for plays in 0t step.

Definition 22 Given a coupling (o,0") as defined in Section 4.2; let W, = when the

Definition 23  Define HIGH' (i, 5,1, ') = R{%,[i] — RiF[i] — Re + Re + 3 Sti_y My and
HIGH(i, s, t,t') = HIGH' (i, s, t,t') + T(t + 1, ).

Lemma 24 Conditioned on X = as, s becoming a special element at time t', HIGH' (i, s, t,t') is
a submartingale for t > t' under the coupling (o,0"). Moreover E[Y(t +2,s)] = Y(t + 1, s) and
therefore HIGH(i, s, t,t') is also a submartingale for t > t' under the coupling (o, o).

Proof Suppose the next play in 0,0’ are u, v respectively. There are two cases to consider and

in each case we show that E(, .y [HIGH'(i,s,t + 1,t')] > HIGH'(i, s,t,t'). We then show that
E[Y(s,t 4+ 2)] = T(s,t+ 1) proving the second part of the lemma.
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(1) Suppose u < v and v = s. In this case R;11 — Ry = 1. Observe that using the definition of
M(¢41) as an indicator variable:

iroli] — R [0 +ZM t+1) | = (Reg1 —Re) =0

In this case E, ) [HIGH' (4,5, + 1,t')] > HIGH'(4, 5,,1').

(2) Suppose u = v and v < s. In this case Rif,[i] — RfY [i] = Riy1 — Ry and M1y = 0
by deﬁmtlon. Recall that the definition only counts the events (j,s) with j > s. Therefore
E(p,¢) [HIGH'] (7, 5,t + 1,')] > HIGH' (i, 5,t,1') in this case as well.

Therefore the first part of the lemma follows. If ps = 1 when s was declared special then Y(s) = 0
throughout and we have nothing to prove. Now in case (1) we have Y (¢t + 2,s) = Y(t + 1,5)
since u < s. In case (2), if u = v > s then observe that E[Y (¢t +2,s)] = Y(¢ + 1,s). This
follows because with probability p, we have Y (¢ 4 2, s) = 0 and with probability 1 — p, we have
T(t+2,s)=7"(t+1,5)/(1 — p,). Finally in case (2) is b = ¢ = s then observe that:

T(t+2,8) _ qs(t+1) (1 _ps> _ (QSt/pst) (1 _ps) _ T(t+178)

Ps(t+1) Ps 1 Ds

since qg(i41) = gst /pst and Ps(t+1) = 1. Therefore lemma follows. |

Definition 25 Let LOW (i, 5,t,t') = R{E  [i] = RE[i(] + (¢ +1,8) = Re+Ry =, Sty W,

Lemma 26 Conditioned on X; = 0, s being a special element at time t', LOW(i, s,t,t') is a
submartingale for t > t' under the coupling (o, c").

Proof Suppose the next play in o, 0’ are u, v respectively. Again there are two cases to consider
and in each we show that E(,, ,y [LOW(i, s, 4 1,t')] > Low(i, s, t,t').

(1) Suppose u = v. In this case R;7,[i] — R7Y,[i] = R4y1 — Ry. If u < s then we could not have
played u before and so p,; = p,,. If X;, = 0 then we have Y(t + 2, s) = m Otherwise,
if X, # 0 then Y(t + 2, s) = 0 since gg(;11) = 0. Therefore Ex, [Y(t +2,s T T(t+1,s).
If w > sthen Y(t 4+ 2,s) = Y(t + 1, s). Therefore irrespective of u > s or u < s it follows
that By, o) [LOW (7, 5,¢ + 1,¢")] > LOW(i, s,,t').

(2) The only other case is u < v and u = s. Observe that since Xy = 0 we have (R¢11 — R¢) =1
Now v will be the new special element at time ¢ + 1. Now

E [RE7o[i]] — RET1[i] 4 quer1) — (Rig1 — Re) =0

where ¢, (;41) = qut/(1 — ps) is the probability that X, is the maximum since we already know
X, = 0. We now consider the two subcases that (i) X, has not been observed before and (ii)
X, has been observed before.

Consider the subcase (i) that X, was not observed before. If X,, = O then Y (t+2,v) = — %(;7:1)
and W41y = 0. Note T(t +1,5) = q*’ . Therefore;
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E [RfTali] — ReT1[i] + T(E+2,0) = Wyuyn] — (Repr — Re) = Y(t+1,5)
QU(t—H) gst

= + = - (6)
DPv Ps Goit+1)

If Xy, = ay then Y(t +2,v) = Wy q ) = %(1%@ and so:

[Rt+2H Rifali] + Tt +2,v) — Wt+1] —(Rig1—Re) = YT(t+1,5s)
qs
= ;7: — Qu(et1) %)

Therefore, taking the linear combination of the last two equations we get:

E [Rifoli] = R[] + Tt +2,0) = Wyi1)] — (Res1 — Re) = T(t+ 1,)

Qu(t+1 q Qu(t+1 q
—ED (1 =) + B gy = - I ®)
Do Ds DPv Ds

R v
Now £ = =05 305 @it = Xjos Gje+1): And 0 = 3755 gj(r41)- Therefore the last

equation rewrites to

E [Ryfoli] = R1[i] + (¢ +2,0) = Wy 1)) — (Resr — Re) = T(t+1,5)

= D Gy 20

v<j<s

Therefore the lemma is true for this subcase (i) because W, 1) = 0 for j # v.

Now consider the subcase (ii) that v had been observed before — this implies that p,;41) = 1
and X, = a,. However Y (t + 2,v) = W, ;1) = 0 in this subcase and it follows that:

E [Rifali] — RE ] + Tt +2,0) = Wygin)] — (Repr — Re) = T(t + 1,5) = Lt

S

Again W,y = 0 for j # v. Therefore E(, . [LOW(i, s,t + 1,t)] > LOW(3, 5,¢,1') in all of
case (2) as well.

The lemma follows. [ ]

Based on the last two lemmas, we immediately conclude the following (we use a new variable ¢ for
notational convenience):

Corollary 27 Let

DIFF(i, s, T, t") = REY, [i] — REF[i] + Y(E+1,5) — Rt+Rt/+ZZ i — W)

,] t= tl

Then DIFE(i, s, t, ') is a submartingale and in particular DIFF(i,14,t, 1) is a submartingale.
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Proof Follows from the observation that(i) Xs = as implies DIFF(i, s, ¢, t') = HIGH(i, s, t,t’) and
all W;;» = 0 along with the conditioning in the statement of Lemma 24 and (ii) Xs = 0 implies
DIFF(i, s, t,t") = HIGH(4, 5, t,t’) and all Ml;»» = 0 along with the conditioning in Lemma 26. W

Lemma 28 E [R{7,[i]] — E[Rey1] + (1 ) (ga — Pr[2;]) > 0 where Z; is the event that j is
the maximum and there has been no COLLAPSE over the entire horizon of t steps.

Proof Using Corollary 27 and Doob’s Optional Stopping Theorem on DIFF(i,4,t,1) for t =t + 1.
Note that the stopping time is a fixed horizon 7' = ¢ + 1 and does not depend on the knowledge of
the maximum arm. We immediately get:

t+1
E | Rl — Rer + T(E+2,5)+ > > (Myjy —Wyy) | > E [Dree(i,4,1,1)] = 0
j t'=1

The last part follows from the fact E [Y(2,7)] = 0. Now, using the same observation, we note
that E [Y (¢ + 2, s)] = 0 where s is the final special element. Thus:

t+1
E |R{To[i] — Rig1 + Z Z v —Wip)| >0 ©

7 t'=1

For any j, let the first time for a play when j declared special be ¢(j). Note ¢(j) is a random
variable except for j = i when ¢(i) = 1. In the following we show that

t+1

1 — .

E Z MLy | t(j) is defined for j | < < pj) (th(j) —Pr [ZJ])
Dj

t'=t(5)

Observe that My # 0 implies that we have not yet had a COLLAPSE. Let g(j) be the expected
number of plays of type (j', j) starting from ¢(j) before COLLAPSE or end of horizon given that j

is maximum. Therefore:
t+1
Z My | = 9(4)aje¢5)

t'=t(j)

For any ¢ > ¢(j) the probability mass >,/ qj = %‘(1 — pj) till we either had a collapse or
end of horizon. Therefore the number of times we see any ;' > j before we see j (conditioned
on j being the maximum) i

J
COLLAPSE over the entire horizon of ¢ steps then;

1—p. 1—p,;
<pJ) = g(j) +Pr[Z;|j is the maximum] ( p;)
pj pj
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based on the infinite horizon — since the expected number of occurrences of j’ before j is unchanged
if there has been no collapse. As a consequence, multiplying by ¢4 (;) and removing the conditioning
on j being maximum we have:

41
.. . 1—p; 1—p;
[ Z th’] = 4jt(j) (1 — Pr(Z;]jis the max1mum]) <pj) < (gt — Pr(2;]) (pj>
j J

t'=t(j)

For j # i, observe that E [th(j)] = qj;—;;“ (1;fj> - pj from definition 21. Therefore

t+1
Z My | — Jt(a)] 0

t'=t(j)

and as a consequence E [Zi,ﬂl (th/ — th/)] < 0 for any j # i. Therefore Equation!9 is
transformed into:

t+1

lRﬁz ) — Rit1 + Z it — Wiy ] >0 (10)
=1

At the same time since W;; = 0 for all ¢ and ¢(7) = 1 and we get

E lf (M — WW)] = (g1 — Pr[Z)) <1 -pi>

t'=1 pi

which when used in Equation 10 proves the lemma. |

Lemma 29 E [Rsli]] — E [Rits] + (1 — 1) > 0.
Proof Observe that if 7 is not the maximum then conditioned on that event,

(E[Resalil] - E [RiFoli]]) — (E[Riso] —E[Reta]) >0 (11)

If ¢ is the maximum, which happens with probability g;; then if there has been a COLLAPSE
then ¢;(;11) > gin /pi. Otherwise i(t+1) = gi1- Recall (see Lemma 28) that Z; is the event that 7 is
the maximum and there has been no collapse. Thus conditioned on 7 being the maximum:

(E[Rigalill - E[RiIo[]) — (E[Rite] — E[Reyi])
> -1+ qil (1 — Pr[Z;|i is maximum]) + ¢;1 Pr [Z;]i is maximum]

g1 gi(1—pi)
Di Di

= -1+ Pr [Z;i is maximum] (12)

Therefore removing the conditioning, using Equations 11 and 12, and the fact that the probabil-
ity of ¢ being the maximum is g;; we get:

2 . oy,
(E[Resald] ~ E [REH]) - (E[Ress] - ERen) > —gu+ 22—~ 0= Pprz) 13
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From Lemma 28 we have

B[R] - BlRen] > - (22 (g ~ Brl2)])

Summing up we get

. 1-— i 12 1— i ]P’I“ Z'é
E [Rt+2[z]] —-E [Rt+2] > - ( p'p ) Qi1 — qi1 + Q71 <(ppm> (1 - %1)
> —qi(l—%‘l) > —(1—qan)
Di
which proves the lemma. n

Theorem 30 Thompson sampling is a 2 approximation of the regret of the optimum finite horizon
problem for Bernoulli point priors.
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