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Abstract
We give the first algorithm for Matrix Completion that achieves running time and sample com-
plexity that is polynomial in the rank of the unknown target matrix, linear in the dimension of
the matrix, and logarithmic in the condition number of the matrix. To the best of our knowledge,
all previous algorithms either incurred a quadratic dependence on the condition number of the un-
known matrix or a quadratic dependence on the dimension of the matrix. Our algorithm is based
on a novel extension of Alternating Minimization which we show has theoretical guarantees under
standard assumptions even in the presence of noise.

1. Introduction

Matrix Completion is the problem of recovering an unknown real-valued low-rank matrix from a
possibly noisy subsample of its entries. The problem has received a tremendous amount of attention
in signal processing and machine learning partly due to its wide applicability to recommender sys-
tems. A beautiful line of work showed that a particular convex program—known as nuclear norm
minimization—achieves strong recovery guarantees under certain reasonable feasibility assump-
tions Candès and Recht (2009); Candès and Tao (2010); Recht et al. (2010); Recht (2011). Nuclear
norm minimization boils down to solving a semidefinite program and therefore can be solved in
polynomial time in the dimension of the matrix. Unfortunately, the approach is not immediately
practical due to the large polynomial dependence on the dimension of the matrix. An ongoing re-
search effort aims to design large-scale algorithms for nuclear norm minimization Ji and Ye (2009);
Mazumder et al. (2010); Jaggi and Sulovský (2010); Avron et al. (2012); Hsieh and Olsen (2014).
Such fast solvers, generally speaking, involve heuristics that improve empirical performance but
may no longer preserve the strong theoretical guarantees of the nuclear norm approach.

A successful scalable algorithmic alternative to Nuclear Norm Minimization is based on Al-
ternating Minimization Bell and Koren (2007); Haldar and Hernando (2009); Koren et al. (2009).
Alternating Minimization aims to recover the unknown low-rank matrix by alternatingly optimizing
over one of two factors in a purported low-rank decomposition. Each update is a simple least squares
regression problem that can be solved very efficiently. As pointed out in Hsieh and Olsen (2014),
even state of the art nuclear norm solvers often cannot compete with Alternating Minimization with
regards to scalability. A shortcoming of Alternating Minimization is that formal guarantees are
less developed than for Nuclear Norm Minimization. Only recently has there been progress in this
direction Keshavan (2012); Jain et al. (2013); Gunasekar et al. (2013); Hardt (2013b).

Unfortunately, despite this recent progress all known convergence bounds for Alternating Min-
imization have at least a quadratic dependence on the condition number of the matrix. Here, the
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condition number refers to the ratio of the first to the k-th singular value of the matrix, where k
is the target rank of the decomposition. This dependence on the condition number can be a seri-
ous shortcoming. After all, Matrix Completion rests on the assumption that the unknown matrix is
approximately low-rank and hence we should expect its singular values to decay rapidly. Indeed,
strongly decaying singular values are a typical feature of large real-world matrices.

The dependence on the condition number in Alternating Minimization is not a mere artifact of
the analysis. It arises naturally with the use of the Singular Value Decomposition (SVD). Alternating
Minimization is typically intialized with a decomposition based on a truncated SVD of the partial
input matrix. Such an approach must incur a polynomial dependence on the condition number.
Many other approaches also crucially rely on the SVD as a sub-routine, e.g., Jain et al. (2010);
Keshavan et al. (2010a,b), as well as most fast solvers for the nuclear norm. In fact, there appears
to be a kind of dichotomy in the current literature on Matrix Completion: either the algorithm is not
fast and has at least a quadratic dependence on the dimension of the matrix in its running time, or
it is not well-conditioned and has at least a quadratic dependence on the condition number in the
sample complexity. We emphasize that here we focus on formal guarantees rather than observed
empirical performance, which may be better on certain instances.

Main Problem: Is there a sub-quadratic time algorithm for Matrix Completion
with a sub-linear dependence on the condition number?

In fact, eliminating the polynomial dependence on the condition number for Alternating Minimiza-
tion was posed as an open problem by Jain, Netrapalli and Sanghavi Jain et al. (2013).

In this work, we resolve the question in the affirmative. Specifically, we design a new variant
of Alternating Minimization that achieves a logarithmic dependence on the condition number while
retaining the fast running time of the standard Alternating Minimization framework. This is an ex-
ponential improvement in the condition number compared with all subquadratic time algorithms for
Matrix Completion that we are aware of. Our algorithm works even in the noisy Matrix Completion
setting and under standard assumptions—specifically, the same assumptions that support theoretical
results for the nuclear norm. That is, we assume that the first k singular vector of the matrix span
an incoherent subspace and that each entry of the matrix is revealed independently with a certain
probability. While strong, these assumptions led to an interesting theory of Matrix Completion and
have become a de facto standard when comparing theoretical guarantees.

1.1. Our Results

For the sake of exposition we begin by explaining our results in the exact Matrix Completion setting,
even though our results here are a direct consequence of our theorem for the noisy case. In the exact
problem the goal is to recover an unknown rank k matrix M from a subsample Ω ⊂ [n]× [n] of its
entries where each entry is included independently with probability p. We assume that the unknown
matrix M = UΛUT is a symmetric n × n matrix with nonzero singular values σ1 ≥ · · · ≥ σk >
0. Following Hardt (2013b), our result generalizes straightforwardly to rectangular matrices. To
state our result we need to define the coherence of the subspace spanned by U. Intuitively, the
coherence controls how large the projection is of any standard basis vector onto the space spanned
by U. Formally, for a n × k matrix U with orthonormal columns, the coherence of U is µ(U) =
maxi∈[n]

n
k ‖e

T
i U‖22 , where e1, . . . , en is the standard basis of Rn.
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We show that our algorithm outputs a low-rank factorization XY T such that with high proba-
bility ‖M −XY T ‖2 ≤ ε ‖M‖ provided that the expected size of Ω satisfies

pn2 = O

(
nkcµ(U)2 log

(
σ1

σk

)
log2

(n
ε

))
. (1)

Here, the exponent c > 0 is bounded by an absolute constant. While we did not focus on minimizing
the exponent, our results imply that the value of c can be chosen smaller if the singular values of M
are well-separated. The formal statement follows from Theorem 1. Note that the dependence on the
error ε is only poly-logarithmic. This linear convergence rate makes near exact recovery feasible
with a small number of steps. We also show that the running time of our algorithm is bounded by
Õ(poly(k)pn2), which is nearly linear in the number of revealed entries except for a polynomial
overhead in k. For small values of k and µ(U), the total running time is nearly linear in n.

Noisy Matrix Completion. We now discuss our more general result that applies to the noisy or
robust Matrix Completion problem. Here, the unknown matrix is only close to low-rank, typically
in Frobenius norm. Our results apply to any matrix of the form

A = M +N = UΛUT +N, (2)

where M = UΛUT is a matrix of rank k as before and N = (I − UUT )A is the part of A not
captured by the dominant singular vectors. We note that N can be an arbitrary deterministic matrix.
The assumption that we will make is that N satisfies the following incoherence conditions:

max
i∈[n]

∥∥eTi N∥∥2

2
≤ µN

n
·min

{
‖N‖2F , σ

2
k

}
and max

i,j∈N
|Nij | ≤

µN ‖N‖F
n

. (3)

Recall that ei denotes the i-th standard basis vector so that
∥∥eTi N∥∥2

is the Euclidean norm of the
i-th row of N. The conditions state no entry of N should be too large compared to the norm of the
corresponding row in N, and no row of N should be too large compared to σk. Our bounds will be
in terms of a combined coherence parameter µ∗ satisfying

µ∗ ≥ max {µ(U), µN} . (4)

We show that our algorithm outputs a rank k factorization XY T such that with high probability
‖A−XY T ‖ ≤ ε ‖M‖+ (1 + o(1))‖N‖, where ‖·‖ denotes the spectral norm. It follows from our
argument that we can have the same guaranteee in Frobenius norm as well. To achieve the above
bound we show in Theorem 1 that it is sufficient to have an expected sample size

pn2 = O

(
n · poly(k/γk)(µ

∗)2 log

(
σ1

σk

)(
log2

(n
ε

)
+

(
‖N‖F
ε ‖M‖F

)2
))

. (5)

Here, γk = 1 − σk+1/σk indicates the separation between the singular values σk and σk+1. The
theorem is a strict generalization of the noise-free case, which we recover by setting N = 0 and
hence γk = 1. Compared to our noise-free bound above, there are two new parameters that enter the
sample complexity: γk and ‖N‖F /ε‖M‖F . To interpret this difference, suppose that that A has a
good low-rank approximation in Frobenius norm and that σk and σk+1 are well-sepearted: formally,
‖N‖F ≤ ε‖A‖F for ε ≤ 1/2 and γk = Ω(1). Then the bound above implies that our algorithm then
finds a good rank k approximation with at mostO(poly(k) log(σ1/σk)(µ

∗)2n) samples, recovering
the noise-free bound up to a costant factor.

For an extended discussion of related work see Section 2.1. We proceed in the next section with
a detailed proof overview and a description of our notation.
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2. Overview

As the proof of our main theorem is somewhat complex we will begin with an extensive informal
overview of the argument. In order to understand our main algorithm, it is necessary to understand
the basic Alternating Minimization algorithm first.

Alternating Least Squares. Given a subsample Ω of entries drawn from an unknown matrix A,
Alternating Minimization starts from a poor approximation X0Y

T
0 to the target matrix and itera-

tively refines the approximation by fixing one of the factors and minimizing a certain objective over
the other factor. Here, X0, Y0 each have k columns where k is the target rank of the factorization.
The least squares objective is the typical choice. In this case, at step ` we solve the optimization
problem

X` = arg min
X

∑
(i,j)∈Ω

[
Aij − (XY T

`−1)ij
]2
.

This optimization step is then repeated with X` fixed in order to determine Y`. Since we assume
without loss of generality that A is symmetric these two steps can be combined.Previous work
exploited that Alternating Least Squares update can be interpreted as a noisy power method update
step. That is, Y` = AX`−1+G` for a noise matrixG`. In this view, the convergence of the algorithm
can be controlled by ‖G`‖, the spectral norm of the noise matrix. To a rough approximation, this
spectral norm initially behaves like O(σ1/

√
pn), ignoring factors of k and µ(U). Since we would

like to discover singular vectors corresponding to singular values of magnitude σk, we need that
the error term satisfies ‖G`‖ � σk: otherwise we cannot rule out that the noise term wipes out
any correlation between X and the k-th singular vector. In order to achieve this, we would need to
set pn = O((σ1/σk)

2) and this is where a quadratic dependence on the condition number arises.
This is not the only reason for this dependence: Alternating Minimization seems to exhibit a linear
convergence rate only once X` is already “somewhat close” to the desired subspace U. This is why
typically the algorithm is initialized with a truncated SVD of the matrix PΩ(A) where PΩ is the
projection onto the subsample Ω. We again face the issue that ‖A − PΩ(A)‖ behaves roughly like
O(σ1/

√
pn) and so we run into the same problem here as well.

A natural idea to fix these problems is a deflation approach. If it so happens that σ1 � σk, then
there must be an r < k such that σ1 ≈ σr � σk. In this case, we can try to first run Alternating
Minimization with r vectors instead of k vectors. This results in a rank r factorization XY T .
We then subtract this matrix off of the original matrix and continue with A′ = A − XY T . This
approach was in particular suggested by Jain et al. Jain et al. (2013) to eliminate the condition
number dependence. Unfortunately, as we will see next, this approach runs into serious issues.

Why standard deflation does not work. Given any algorithm NOISYMC for noisy matrix com-
pletion, whose performance depends on the condition number ofA, we may hope to use NOISYMC
in a black-box way to obtain a deflation-based algorithm which does not depend on the condition
number, as follows. Suppose that we know that the spectrum of A comes in blocks,

σ1 = σ2 = . . . = σr1 � σr1+1 = σr1+2 = · · · = σr2 � σr2+1 = · · ·

and so on. We could imagine running NOISYMC on PΩ(A) with target rank r1, to obtain an
estimate M (1). Then we may run NOISYMC again on PΩ(A−M (1)) = PΩ(A)− PΩ(M (1)) with
target rank r2− r1, to obtain M (2), and so on. At the end of the day, we would hope to approximate
A ≈ M (1) +M (2) + · · · . Because we are focusing only on a given “flat” part of the spectrum at a
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time, the dependence of NOISYMC on the condition number should not matter. A major problem
with this approach is that the error builds up rather quickly. More precisely, any matrix completion
algorithm run on A with target rank r1 must have error on the order of σr1+1 since this is the
spectral norm of the “noise part” that prevents the algorithm from converging further. Therefore,
the matrix A −M (1) might now have 2r1 problematic singular vectors corresponding to relatively
large singular values, namely those vectors arising from the residuals of the first r1 singular vectors,
as well as those arising from the approximation error. This multiplicative blow-up makes it difficult
to ensure convergence.

Soft deflation. The above intuition may make a “deflation”-based argument seem hopeless. We
instead use an approach that looks similar to deflation but makes an important departure from it. In-
tuitively, our algorithm is a single execution of Alternating Minimization. However, we dynamically
grow the number of vectors that Alternating Minimization maintains until we’ve reached k vectors.
At that point we let the algorithm run to convergence. More precisely, the algorithm proceeds in at
most k epochs. Each epoch roughly proceeds as follows:

Inductive Hypothesis: At the beginning of epoch t, the algorithm has a rank rt−1 factorization
Xt−1Y

T
t−1 that has converged to within error σrt−1+1/100. At this point, the (rt−1 + 1)-th

singular vector prevents further convergence.

Gap finding: What can we say about the matrix At = A−Xt−1Y
T
t−1 at this point? We know that

the first rt−1 singular vectors ofA are removed from the top of the spectrum ofAt.Moreover,
each of the remaining singular vectors inA is preserverd so long as the corresponding singular
value is greater than σrt−1+1/10. This follows from perturbation bounds and we ignore a
polynomial loss in k at this point. Importantly, the top of the spectrum of At corresponds is
correlated with the next block of singular vectors in A. This motivates the next step in epoch
t, which is to compute the top k − rt−1 singular vectors of At up to an approximation error
of σrt−1+1/10. Among these singular vectors we now identify a gap in singular values, that
is we look for a number dt such that σrt−1+dt ≤ σrt−1+1/2.

Alternating Least Squares: At this point we have identified a new block of dt singular vectors and
we arrange them into an orthognormal matrix Pt ∈ Rn×dt . We can now argue that the matrix
W = [Xt−1|Pt] is close (in principal angle) to the first rt = rt−1 + dt singular vectors of A.
What this means is that W is a good initializer for the Alternating Minimization algorithm
which we now run on W until it converges to a rank rt factorization XtY

T
t that satisfies the

induction hypothesis of the next epoch.

We call this algorithm SOFTDEFLATE. The crucial difference to the deflation approach is that we
always run Alternating Minimization on a subsampling PΩ(A) of the original matrix A. We only
ever compute a deflated matrix PΩ(A−XY T ) for the purpose of initializing the next epoch of the
algorithm. This prevents the error accumulation present in the basic deflation approach.

This simple description glosses over many details and there are a few challenges to be overcome
in order to make the idea work. For example, we have not said how to determine the appropriate
“gaps” dt. This requires a little bit of care. Indeed, these gaps might be quite small: if the (additive)
gap between σr and σr+1 is on the order of, say, log2(k)

k σr, for all r ≤ k, then the condition number
of the matrix may be super-polynomial in k, a price we are not willing to pay. Thus, we need to
be able to identify gaps between σr and σr+1 which are on the order of σr/k. To do this, we must
make sure that our estimates of the singular values of A−Xt−1Y

T
t−1 are sufficiently precise.
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Ensuring Coherence. Another major issue that such an algorithm faces is that of coherence.
As mentioned above, incoherence is a standard (and necessary) requirement of matrix completion
algorithms, and so in order to pursue the strategy outlined above, we need to be sure that the esti-
mates Xt−1 stay incoherent. For our first “rough estimation” step, our algorithm carefully truncates
(entrywise) its estimates, in order to preserve the incoherence conditions, without introducing too
much error. We note that we cannot reuse the truncation analysis of Jain et al. Jain et al. (2013)
for this step, as it incurred a dependence on the condition number. Coherence in the Alternating
Minimization step is handled by the algorithm and analysis of Hardt (2013b), upon which we build.

2.1. Further Discussion of Related Work

Our work is most closely related to recent works on convergence bound for Alternating Minimiza-
tion Keshavan (2012); Jain et al. (2013); Gunasekar et al. (2013); Hardt (2013a). Our bounds are in
general incomparable. We achieve an exponential improvement in the condition number compared
to all previous works, while losing polynomial factors in k. Our algorithm and analysis crucially
builds on Hardt (2013b). In particular we use the version and analysis of Alternating Minimiza-
tion derived in that work more or less as a black box. We note that the analyses of Alternating
Minimization in other previous works would not be sufficiently strong to be used in our algorithm.
In particular, the use of noise addition to ensure coherence already gets rid of one source of the
condition number that all previous papers incur.

We are not aware of any fast nuclear norm solver with theoretical guarantees that do not depend
polynomially on the condition number. The work of Keshavan et al. Keshavan et al. (2010a,b) gives
another alternative to nuclear norm minimization that has theoretical guarantees. However, these
bounds have a quartic dependence on the condition number. There are a number of fast algorithms
for matrix completion based on either (Stochastic) Gradient Descent Recht and Ré (2013) or (On-
line) Frank-Wolfe Jaggi and Sulovský (2010); Hazan and Kale (2012). However, the theoretical
guarantees for these algorithms are typically in terms of the error on the observed entries, rather
than on the error between the recovered matrix and the unknown matrix itself. Further, these algo-
rithms typically have polynomial, rather than logarithmic, dependence on the accuracy parameter ε.
Since setting ε ≈ σk/σ1 is required in order to accurately recover the first k singular vectors of A,
a polynomial dependence in ε implies a polynomial dependence on the condition number.

2.2. Notation

For a matrix A, ‖A‖ denotes the spectral norm, and ‖A‖F the Frobenius norm. We will also use
‖A‖∞ = maxi,j |Ai,j | to mean the entry-wise `∞ norm. For a vector v, ‖v‖2 denotes the `2 norm.
Throughout, C,C0, C1, C2, . . . will denote absolute constants, and C may change from instance to
instance. We also use standard asymptotic notation O(·) and Ω(·), and we occasionally use f . g
(resp. &) to mean f = O(g) (resp. f = Ω(g)) to remove notational clutter. Here, the asymptotics
are taken as k, n → ∞. For a matrix X ∈ Rn×k, R(X) denotes the span of the columns of X ,
and ΠX denotes the orthogonal projection onto R(X). Similarly, ΠX⊥ denotes the projection onto
R(X)⊥. For a set random Ω ⊂ [n] × [n] and a matrix A ∈ Rn×n, we define the (normalized)
projection operator PΩ as

PΩ(A) :=
n2

E|Ω|
∑

(i,j)∈Ω

Ai,jeie
T
j
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to the be matrix A, restricted to the entries indexed by Ω and renormalized. Our algorithm, and
its proof, will involve choosing a sequence of integers r1 < · · · < rt ≤ k, which will mark the
significant “gaps” in the spectrum of A. Given such a sequence, we will decompose A as

A = M (≤t) +Nt = M (1) +M (2) + · · ·+M (t) +Nt, (6)

where M (≤t) has the spectral decomposition M (≤t) = U (≤t)Λ(≤t)(U
(≤t))T and Λ(≤t) contains the

eigenvalues corresponding to singular values σ1 ≥ · · · ≥ σrt . We may decomposeM (≤t) as the sum
of M (j) for j = 1 . . . t, where each M (j) has the spectral decomposition M (j) = U (j)Λj

(
U (j)

)T
corresponding to the singular values σrj−1+1, . . . , σrj . Similarly, the matrix Nt may be written as
Nt = (Vt)Λ(>t)(Vt)

T , and contains the singular values σrt+1, . . . , σn. Eventually, our algorithm
will stop at some maximum t = T , for which rt = k, and we will haveA = M+N = M (≤T )+NT

as in (2). We will use the notation U (≤j) to denote the concatenation U (≤j) = [U (1)|U (2)| · · · |U (j)].
Observe that this is consistent with the definition of U (≤t) above. Additionally, for a matrix X ∈
Rn×rt , we will writeX = [X(1)|X(2)| · · · |X(t)], whereX(j) contains the rj−1 +1, . . . , rj columns
of X , and we will write X(≤j) = [X(1)|X(2)| · · · |X(j)]. Occasionally, we will wish to use notation
like U (≤r) to denote the first r columns (rather than the first rr columns). This will be pointed out
when it occurs. For an index r ≤ n, we quantify the gap between σr and σr+1 by

γr := 1− σr+1

σr
. (7)

and we will define

γ := min

{
γr : r ∈ [n], γr ≥

1

4k

}
. (8)

By definition, we always have γ ≥ 1/4k; for some matrices A, it may be much larger, and this will
lead to improved bounds. Our analysis will also depend on the “final” gap quantified by γk, whether
or not it is larger than 1/4k. To this end, we define

γ∗ := min {γ, γk} . (9)

3. Algorithms and Results

In Algorithm 1 we present our main algorithm SOFTDEFLATE. It uses several subroutines that are
presented in Section 3.1.

3.1. Overview of Subroutines

SOFTDEFLATE uses a number of subroutines that we outline here before explicitly presenting them:

• S-M-ALTLS (Algorithm 2) is the main Alternating Least Squares procedure that was given
and analyzed in Hardt (2013b). We use this algorithm and its analysis. S-M-ALTLS by itself
has a quadratic dependence on the condition number which is why we can only use it as a
subroutine.

• SMOOTHQR (Algorithm 3) is a subroutine of S-M-ALTLS which is used to control the co-
herence of intermediate solutions arising in S-M-ALTLS. Again, we reuse the analysis of
SMOOTHQR from Hardt (2013b). SMOOTHQR orthonormalizes its input matrix after adding
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Input: Target dimension k; Observed set of indices Ω ⊆ [n] × [n] of an unknown symmetric
matrix A ∈ Rn×n with entries PΩ(A); Accuracy parameter ε; Noise parameter ∆ with
‖A−Ak‖F ≤ ∆; Coherence parameter µ∗, satisfying (4), and a parameter µ0; Probabilities
p0 and pt, p′t for t = 1, . . . , k; Number of iterations Lt ∈ N, for t = 1, . . . , k runs of S-M-
ALTLS, and a parameter smax ∈ N for S-M-ALTLS, and a number of iterations L for runs
of SUBSIT.

1 Let p =
∑

t(pt + p′t).
2 Break Ω randomly into 2k+ 1 sets, Ω0 and Ω1,Ω

′
1, . . . ,Ωk,Ω

′
k, so that E|Ωt| = pt

p |Ω| and E|Ω′t| =
p′t
p |Ω| (See Section D).

3 s0 ← ‖PΩ0(A)‖ // Estimate σ1(A)

4 Initialize X0 = Y0 = 0, r0 = 0
5 for t = 1 . . . k do
6 τt ← µ∗

npt
(2kst−1 + ∆)

7 Tt ← TRUNCATE
(
PΩt(A)− PΩt(Xt−1Y

T
t−1), τt

)
// TRUNCATE(M, c) truncates M so that

|Mij | ≤ c
8 Ũt, σ̃ ← SUBSIT(Tt, k − rt−1, L) // Estimate the top k − rt−1 spectrum of Tt.
9 If σ̃1 < 10εs0 then return Xt−1, Yt−1

10 dt ← min
{
i ≤ k − rt−1 : σi+1(T̃t) ≤

(
1− 1

4k

)
σi(T̃t)

}
∪ {k − rr−1}

11 rt ← rt−1 + dt // rt is an estimate of the next “gap” in the spectrum of A
12 st ← σ̃dt // st is an estimate of σrt(A)

13 Q̃t ←
(
Ũt

)(≤dt)
// Keep the first dt columns of Ũt

14 Qt ← TRUNCATE

(
Q̃tB, 8

√
µ∗log(n)

n

)
// where B ∈ Rn×n is a random orthonormal matrix.

15 Wt ← QR([Xt−1 | Qt]) // Wt is a rough estimate of U (≤t)

16 µt ←
(√
µ0 + (t− 1)

√
µ∗k

)2
17 (Xt, Yt) ← S-M-ALTLS(A,Ω′t, R0 = Wt, L = Lt, smax = smax, k = rt, ζ = εs0k

−5, µ =
µt) // Xt is a good estimate of U (≤t)

18 If rt ≥ k then return(Xt, Yt)

19 end
Output: Pair of matrices (X,Y ).

Algorithm 1: SOFTDEFLATE: Approximates an approximately low-rank matrix from a few entries.
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a Gaussian noise matrix. This step allows tight control of the coherence of the resulting ma-
trix. We defer the description of SMOOTHQR to Section B where we need it for the first
time.

• SUBSIT is a standard textbook version of the Subspace Iteration algorithm (Power Method).
We use this algorithm as a fast way to approximate the top singular vectors of a matrix arising
in SOFTDEFLATE. We use only standard properties of SUBSIT in our analysis. For this reason
we defer the description and analysis of SUBSIT to Section E.3.

Input: Number of iterations L ∈ N, parameter smax ∈ N, target dimension k, observed set of
indices Ω ⊆ [n] × [n] of an unknown symmetric matrix A ∈ Rn×n with entries PΩ(A),
initial orthonormal matrix R0 ∈ Rn×k, and parameters ζ, µ

20 Break Ω randomly into sets Ω1, . . . ,ΩL with equal expected sizes. (See Section D).
21 for ` = 1 to L do
22 Break Ω` randomly into subsets Ω

(1)
` , . . . ,Ω

(T )
` with equal expected sizes.

23 for s = 1 to smax do
24 S

(s)
` ← arg minS∈Rn×k

∥∥PΩ`
(A−R`−1S

T )
∥∥2

F

25 end
26 S` ← medians(S

(s)
` ) // The median is applied entry-wise.

27 R` ← SMOOTHQR(S`, ζ, µ)

28 end
Output: Pair of matrices (RL−1, SL)

Algorithm 2: S-M-ALTLS(PΩ(A),Ω, R0, L, smax, k, ζ, µ) (Smoothed-Median-Alternating Least
Squares)

3.2. Statement of the main theorem

Our main theorem is that, when the number of samples is poly(k)n, SOFTDEFLATE returns a good
estimate of A, with at most logarithmic dependence on the condition number.

Theorem 1 There is a constant C so that the following holds. Let A ∈ Rn×n, k ≤ n, and write
A = M+N , whereM is the best rank-k approximation toA. Let γ, γ∗ be as in (8), (9). Choose pa-

rameters for Algorithm 1 so that ε > 0; µ∗ satisfies (4); µ0 ≥ C
(γ∗)2

(
µ∗
(
k +

(
k4∆
εσ1

)2
)

+ log(n)

)
;

∆ ≥ ‖N‖F ; Lt ≥ C
γ∗ log

(
kσrt

σrt+1+εσ1

)
, and L ≥ Ck7/2 log(n); and smax ≥ C log(n). There is a

choice of pt, p′t (given in the proof below) so that

p =
∑

pt+
∑

p′t ≤ C
k9

(γ∗)3n
log

(
k · σ1

σk + εσ1

)(
1 +

(
∆

ε ‖M‖

)2
)

(µ0 + µ∗k log(n)) log2(n)

so that the following holds. Suppose that each element of [n] × [n] is included in Ω independently
with probability p. Then the matrices X,Y returned by SOFTDEFLATE satisfy with probability at
least 1− 1/n,

∥∥A−XY T
∥∥ ≤ (1 + o(1)) ‖N‖+ ε ‖M‖ .

9
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Remark 2 (Error guarantee) The guarantee of
∥∥A−XY T

∥∥ ≤ (1 + o(1)) ‖N‖+ ε ‖M‖ is what
naturally falls out of our analysis: the natural value for the o(1) term is polynomially small in k.
It is not hard to see in the proof that we may make this term as small as we like, say, (1 + α) ‖N‖,
by paying a logarithmic penalty log(1/α) in the choice of p. It is also not hard to see that we may
have a similar conclusion for the Frobenius norm.

Remark 3 (Obtaining the parameters) As written, then algorithm requires the user to know sev-
eral parameters which depend on the unknown matrix A. For some parameters, these require-
ments are innocuous. For example, to obtain p′t or Lt, the user is required to have a bound on
log(σrt/σrt+1). Clearly, a bound on the condition number of A will suffice, but more importantly,
the estimates st which appear in Algorithm 1 may be used as proxies for σrt , and so the parameters
p′t can actually be determined relatively precisely on the fly. For other parameters, like µ∗ or k, we
assume that the user has a good estimate from other sources. While this is standard in the Matrix
Completion literature, we acknowledge that these values may be difficult to come by.

3.3. Running Time

The running time of SOFTDEFLATE is linear in n, polynomial in k, and logarithmic in the condition
number σ1/σk of A. Indeed, the outer loop performs at most k epochs, and the nontrivial oper-
ations in each epoch are S-M-ALTLS, QR, and SUBSIT. All of the other operations (truncation,
concatenation) are done on matrices which are either n× k (requiring at most nk operations) or on
the subsampled matrices PΩt(A), requiring on the order of pn2 operations.

Running SUBSIT requires L = O(k7/2 log(n)) iterations; each iteration includes multiplication
by a sparse matrix, followed by QR. The matrix multiplication takes time on the order of

ptn
2 = n poly(k) log(n)

(
1 +

∆

εσ1

)
,

the number of nonzero entries of A, and QR takes time O(k2n). Each time S-M-ALTLS is run,
it takes Lt iterations, and we will show (following the analysis of Hardt (2013b)) that it requires
poly(k)n log(n) log(n/ε) operations per iteration. Thus, given the choice of Lt in Theorem 1, the
total running time of SOFTDEFLATE on the order of

Õ

(
n · poly(k) ·

(
1 +

∆

εσ1

)
· log

(
σ1

σk + εσ1

))
,

where the Õ hides logarithmic factors in n.

4. Proof of Main Theorem

In this section, we prove Theorem 1. The proof proceeds by maintaining a few inductive hypotheses,
given below, at each epoch. When the algorithm terminates, we will show that the fact that these hy-
potheses still hold imply the desired results. Suppose that at the beginning of step t of Algorithm 1,
we have identified some indices r1, . . . , rt−1, and recovered estimatesXt−1, Yt−1 which capture the
singular values σ1, . . . , σrt−1 and the corresponding singular vectors. The goals of the current step
of Algorithm 1 are then to (a) identify the next index rt which exhibits a large “gap” in the spectrum,

10
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and (b) estimate the singular values σrt−1+1, . . . , σrt and the corresponding singular vectors. Let-
ting rt be the index obtained by Algorithm 1, we will decomposeA = M (<t) +Nt−1 = M (≤t) +Nt

as in (6). As in Section D, we treat the Ωt and Ω′t as independent random sets, with each entry in-
cluded with probability pt or p′t, respectively. We will keep track of the principal angles between
the subspaces R(((≤j)Xt−1)) and R(((≤j)U)). More precisely, for matrices A,B ∈ Rn×rj with
orthogonal columns, we define sin θ(A,B) :=

∥∥(A⊥)TB
∥∥ .

We will maintain the following inductive hypotheses. At the beginning of epoch t of SOFTDE-
FLATE, we assert

σrj sin θ(Xt−1
(≤j), U (≤j)) ≤ 1

k4

(
σrt−1+1 + ε ‖M‖

)
∀j ≤ t− 1 (H1)

and ∥∥∥M (<t) −Xt−1Y
T
t−1

∥∥∥ ≤ σrt−1+1 + ε ‖M‖
C0k3

(H2)

for some sufficiently large constant C0 determined by the proof. We also maintain that the current
estimate Xt−1 is incoherent:

max
i∈[n]

∥∥eTi Xt−1

∥∥
2
≤
√
k

n

(√
µ0(1 + C5/k)t−1 + (t− 1)16

√
µ∗ log(n)

)
=:

√
kµt−1

n
(H3)

for a constant C5. Above, equation (H3) defines µt−1. Observe that when t = 1, everything in sight
is zero and the hypotheses (H1), (H2),(H3) are satisfied. Finally, we assume that the estimate st−1

of σrt−1+1 is good.
1

2
σrt−1+1 ≤ st−1 ≤ 2σrt−1+1 (H4)

The base case for (H4) is handled by the choice of s0 in Algorithm 1. Indeed, Lemma 21 in the
appendix implies that as long as

p0 &
µ∗ log(n)

(√
k + ∆

σ1

)2

n
, (10)

then with probability 1− 1/poly(n),

1

2
σ1 ≤ ‖PΩ0(A)‖ ≤ 2σ1.

and so (H4) is satisfied. Now, suppose that the inductive hypotheses (H1), (H2), (H3), and (H4)
hold. We break up the inner loop of SOFTDEFLATE into two main steps. In the first step, lines 6 to
15 in Algorithm 1, the goal is to obtain an estimate rt of the next “gap,” as well as an estimate Wt

of the subspace U (≤t). We analyze this step in Lemma 4 below.

Lemma 4 There exists a constants C,C1 so that the following holds. Suppose that

pt ≥
C(µ∗)2 log(n)

(
k2 +

(
∆

ε‖M‖

)2
)

nε2
0

,

where ε0 ≤ 1
4C1k5/2

. Further assume that the inductive hypotheses (H1), (H2), (H3), and (H4) hold.
Then with probability at least 1 − 1/n2 over the choice of Ωt and the randomness in SUBSIT, one
of the following statements must hold:

11
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(a) Algorithm 1 terminates at line 9, and returnsXt−1, Yt−1 so that
∥∥A−Xt−1Y

T
t−1

∥∥ ≤ Cε ‖M‖
(b) Algorithm 1 does not terminate at line 9, and the following conditions hold. First, The error

level ε has not yet been reached:

ε ‖M‖ ≤ σrt−1+1 . (11)

Second, the index rt recovered obeys

σrt+1

σrt
≤ 1− γ and

σrt−1+1

σrt
≤ e . (12)

Third, the matrix Wt has orthonormal columns, and satisfies

sin θ(Wt, U
(≤t)) ≤ 1

k
and max

i

∥∥eTi Wt

∥∥
2
≤
√
kµt
n
, (13)

where µt is defined as in (H3). Fourth, the estimate st satisfies (H4).

The proof of Lemma 4 is given in Section A. In the second part of SOFTDEFLATE, lines 16 to
17 in Algorithm 1, we run S-M-ALTLS, initialized with the subspace Wt returned by the first part
of the algorithm. Lemma 5 below shows that S-M-ALTLS improves the estimate Wt to the desired
accuracy, so that we may move on to the next iteration of SOFTDEFLATE.

Lemma 5 Assume that the conclusion (b) of Lemma 4 holds, as well as the inductive hypotheses
(H1), (H2), (H3), and (H4) . There is a constant C so that the following holds. Let γ∗ be as in (9).
Suppose that

µt ≥
C

(γ∗)2

(
µ∗

(
k +

(
k4∆

εσ1

)2
)

+ log(n)

)
and p′t ≥

CLtsmax · k9µt log(n)

(
k +

(
∆

ε‖M‖

)2
)

(γ∗)2n

where Lt ≥ C
γ∗ log

(
kσrt

σrt+1+ε‖M‖

)
and smax ≥ C log(n). Then after Lt steps of S-M-ALTLS with

the initial matrix Wt, and parameters µt, ε, with probability at least 1 − 1/n2, over the choice of
Ω′t, the inductive hypotheses (H1), (H2), and (H3) hold for t.

The proof of Lemma 5 is addressed in Section B. Theorem 1 now follows using 4 and 5. First, we
choose µ0 as in the statement of Theorem 1. Because µt ≥ µ0 for all t = 1, . . . , T , this implies
that µt satisfies the requirements of Lemma 5. Then, the hypotheses of Lemma 5 are implied by the
conclusions of the favorable case of Lemma 4. Now, a union bound over at most k epochs of SOFT-
DEFLATE ensures that with probability at least 1−2k/n2 ≥ 1−1/n, the conclusions of both lemmas
hold every round that their hypotheses hold. If SOFTDEFLATE terminates with the guarantees (a) of
Lemma 4, then

∥∥A−XTY
T
T

∥∥ ≤ Cε ‖M‖ . On the other hand, if (b) holds, then Lemma 4 implies
(H4) and the hypotheses of Lemma 5, and then Lemma 5 implies that with probability 1 − 1/n2,
the remaining inductive hypotheses (H1), (H2), and (H3) for the next round. Thus, if the situation
(a) above never occurs, then the hypotheses (and the conclusions) of Lemma 5 hold until SOFTDE-
FLATE terminates because rt = k. In either case,

∥∥A−XtY
T
T

∥∥ ≤ ‖N‖(1 + 1
C0k3

)
+ Cε ‖M‖ .

Finally, the bound on p follows by adding the bound on p0 in (10) with the bounds on pt and p′t from
Lemmas 4 and 5. This completes the proof of Theorem 1.
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Appendix A. Proof of Lemma 4

In this section, we prove Lemma 4, which shows that either Algorithm 1 hits the precision parameter
ε and returns, or else produces an estimate Wt for U (≤t) that is close enough to run S-M-ALTLS
on. There are several rounds of approximations between the beginning of iteration t and the output
Wt. For the reader’s convenience, we include an informal synopsis of the notation in Figure 1. We
will first argue that the matrix Nt−1 is close to the truncated, subsampled, noisy estimate Tt.

Lemma 6 Let Tt be as in Algorithm 1, and choose any constantC1 > 0. Suppose that the inductive
hypotheses (H2) and (H4) hold. Suppose that pt is as in the statement of Lemma 4. Then, for a
sufficiently large choice of C0 in the hypothesis (H2) (depending only on C1), with probability at
least 1− 1/n2,

‖Tt −Nt−1‖ ≤
σrt−1+1 + ε ‖M‖

2C1k5/2
.
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A−Xt−1Y
T
t−1

Nt−1

Tt Ũt, (σ̃1, . . . , σ̃k−rt)

σ1(Tt), . . . , σk−rt(Tt)

Q̃t

Qt

Qt

Wt

Return!

≈ If σ̃1 is smalltruncate,
subsample SUBSIT

Use σ̃i to
estimate the
next gap rt,

and take the top
dt vectors of

Ũt

rotate,
truncate

Q
R
([X

t−
1 |Q

t ])

actual spectrum take the top dt
singular
vectors

Figure 1: Schematic of the first part of SOFTDEFLATE. The top line indicates how Wt is formed from the
matrix Tt. We will show that Qt approximates U (t), the next chunk of singular vectors in Nt−1, and this will
imply by induction that Wt approximates U (≤t). The second line in the figure indicates some notation which
will be useful for our analysis, but which is not used by the algorithm.

Proof Write

A−Xt−1Y
T
t−1 = Nt−1 +

(
M (<t) −Xt−1Y

T
t−1

)
=: Nt−1 + Et−1 =: Ñt−1.

Let T denote the TRUNCATE operator. As in Algorithm 1, consider

Tt = T (PΩt(Ñt−1), τt) = PΩt

(
T (Ñt−1, ptτt)

)
,

where as in Line 6, τt = µ∗

npt
(2kst−1 + ∆) . Above, use used that the sampling operation PΩt and

the truncate operator T commute after adjusting for the normalization factor p−1
t in the definition

of PΩt . Because Nt−1 is incoherent, each of its entries is small. More precisely, by the incoherence
implication (37) along with the guarantee (H4) on st−1, we have

‖Nt−1‖∞ ≤
µ∗

n

(
kσrt−1+1 + ∆

)
≤ µ∗

n
(2kst−1 + ∆) = ptτt.

Thus, each entry of Ñt−1 = Nt−1 + Et−1 is the sum of something smaller than ptτt from Nt−1,
and an error term from Et−1, and so truncating entrywise to ptτt can only remove mass from the
contribution of Et−1. This implies that for all i, j,∣∣∣Ñt−1 − T (Ñt−1, ptτt)

∣∣∣
i,j
≤ |Et−1|i,j ,

and so using (H2),∥∥∥Ñt−1 − T (Ñt−1, ptτt)
∥∥∥
F
≤ ‖Et−1‖F ≤

√
2k

(σrt−1+1 + ε ‖M‖)
C0k3

=

√
2(σrt−1+1 + ε ‖M‖)

C0k5/2
.

(14)
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Above, we used the fact thatEt−1 = M (<t)−Xt−1Y
T
t−1 has rank at most 2k, and hence ‖Et−1‖F ≤√

2k ‖Et−1‖. Next, we bound the difference between Tt and T (Ñt−1, ptτt). Lemma 21 in the
appendix bounds the effect of subsampling in operator norm. It implies that with probability 1 −
1/poly(n) over the choice of Ωt, we have∥∥∥T (Ñt−1, ptτt)− Tt

∥∥∥ =
∥∥∥T (Ñt−1, ptτt)− PΩ(T (Ñt−1, ptτt))

∥∥∥
.

√√√√maxi

∥∥∥eTi T (Ñt−1, ptτt)
∥∥∥2

2
log(n)

pt
+

∥∥∥T (Ñt−1, ptτt)
∥∥∥
∞

log(n)

pt

≤

√
n(ptτt)2 log(n)

pt
+

(ptτt) log(n)

pt

≤

(√
log(n)

ptn
+

log(n)

ptn

)(
µ∗(4kσrt−1+1 + ∆)

)
,

using the fact that

ptτt =
µ∗

n
(2kst−1 + ∆) ≤ µ∗

n

(
4kσrt−1+1 + ∆

)
by (H4). Thus, our choice of pt implies that∥∥∥T (Ñt−1, pτt)− Tt

∥∥∥ ≤ ε0

(
σrt−1+1 + ε ‖M‖

)
. (15)

Together with (14) we conclude that

‖Nt−1 − Tt‖ ≤
∥∥∥Nt−1 − Ñt−1

∥∥∥+
∥∥∥Ñt−1 − T (Ñt−1, pτt)

∥∥∥+
∥∥∥T (Ñt−1, pτt)− Tt

∥∥∥
≤ ε0

(
σrt−1+1 + ε ‖M‖

)
+

2
√

2(σrt−1+1 + ε ‖M‖)
C0k5/2

.

The choice of ε0 and a sufficient choice of C0 (depending only on C1) completes the proof.

Suppose for the rest of the proof that the conclusion of Lemma 6 holds. The first thing SOFT-
DEFLATE does after computing Tt is to obtain estimates Ũt and σ̃1, . . . , σ̃k−rt for the top singular
values and vectors of Tt. These estimates are recovered by SUBSIT in Line 8 of Algorithm 1. We
first wish to show that the estimated singular values are close to the actual singular values of Tt.
For this, we will invoke Theorem 19 in the appendix, which implies that as long as the number of
iterations L of SUBSIT satisfies

L ≥ Ck7/2 log(n),

for a sufficiently large constant C, then with probability 1− 1/poly(n), we have

|σj(Tt)− σ̃j | ≤
‖Tt‖

2C1k5/2
for all j. (16)

Above, we took a union bound over all j. Again, we condition on this event occuring. Thus, with
our choice of L, the estimates σ̃j are indeed close to the singular values σj(Tt), which by Lemma 6
are with high probability close to the singular values σrt−1+j of Nt−1 itself.
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Before we consider the next step (to Q̃t) in Figure 1, consider the case when Algorithm 1 returns
at line 9. Then σ̃1 ≤ 10εs0 ≤ 20εσ1, and so using (16) above we find that ‖Tt‖ ≤ 21εσ1. Then by
Lemma 6,

σrt−1+1 = ‖Nt−1‖ ≤ ‖Tt‖+ ‖Nt−1 − Tt‖ ≤ 21εσ1 +
σrt−1+1 + εσ1

2C1k5/2
.

Thus, for sufficiently large C1, we conclude σrt−1+1 ≤ 22εσ1. In this case, we are done:∥∥A−Xt−1Y
T
t−1

∥∥ ≤ ∥∥∥M (<t) −Xt−1Y
T
t−1

∥∥∥+ ‖Nt−1‖

≤
σrt−1+1 + ε ‖M‖

C0k3
+ σrt−1+1

≤ 23εσ1.

and case (a) of the conclusion holds, as long as Lemma 6 does.
On the other hand, suppose that Algorithm 1 does not return at line 9 (and continue to assume

that Lemma 6 holds). As above, (16) implies that since σ̃1 ≥ 10ε, we must have

‖Tt‖ ≥
5εσ1

1− 1
2C1k5/2

.

Then by Lemma 6,

σrt−1+1 ≥
5εσ1

1− 1
2C1k5/2

−
σrt−1+1 + εσ1

2C1k5/2
,

which implies that
εσ1 < σrt−1+1. (17)

This establishes the conclusion (11). With (17), Lemma 6 and (16) together imply that

∀r ≤ n, |σr − σ̃r−rt−1 | ≤ ‖Nt−1 − Tt‖+ |σr−rt−1(Tt)− σ̃r−rt−1 | ≤
σrt−1+1

C1k5/2
. (18)

Above, we use Lemma 16 in the appendix in the first inequality.
We now show that the choice of dt in Line 10 of Algorithm 1 accurately identifies a “gap” in

the spectrum.

Lemma 7 Suppose that the hypotheses and conclusions of Lemma 6 hold, and in particular that
(18) holds. Then the value rt = rt−1 + dt obtained in Line 10 of Algorithm 1 satisfies:

σrt+1

σrt
≤ 1− γ and

σrt−1+1

σrt
≤ e.

Proof Let d∗t be the “correct” choice of dt; that is, d∗t be the smallest positive integer d ≤ k − rt−1

so that
1−

σrt−1+d+1

σrt−1+d
≥ 1− 1

k
,

or let d∗t = d− rt−1 if such an index does not exist. Write r∗t = rt−1 + d∗t . By definition, because
d∗t is the smallest such d (or smaller than any such d in the case that r∗t = k), we have

σrt−1+1

σr∗t
≤
(

1 +
1

k

)d∗t
≤ e. (19)
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Thus, (18) reads
|σ̃j − σrt−1+j | ≤

σrt−1+1

C1k5/2
≤

eσr∗t
C1k5/2

. (20)

Suppose that, for some j ≤ d∗t , we have

σrt−1+j+1

σrt−1+j
≥ 1− 1

4k
.

Then, using (20),

σ̃j+1

σ̃j
≥
σrt−1+j+1 −

eσr∗t
C1k5/2

σrt−1+j +
eσr∗t
C1k5/2

≥
σrt−1+j+1

(
1− e

C1k5/2

)
σrt−1+j

(
1 + e

C1k5/2

) ≥ 1− 1

2k
,

assuming C1 is sufficiently large. In Algorithm 1, we choose dt in Line 10 so that there is no j < dt
with

σ̃j+1

σ̃j
≤ 1− 1

2k
.

Thus, if there were a big gap, the algorithm would have found it: more precisely, using the definition
of γ, we have

σrt+1

σrt
< 1− 1

4k
≤ 1− γ.

This establishes the first conclusion of the lemma. Now, a similar analysis as above shows that if
for any j ≤ d∗t we have

σrt−1+j+1

σrt−1+j
≤ 1− 1

k
,

then
σ̃j+1

σ̃j
≤ 1− 1

2k
,

assuming C1 is sufficiently large. That is, our algorithm will always find a small gap, if it exists. In
particular, if r∗t < k, we have

σr∗t +1

σr∗t
≤ 1− 1

k

and hence dt ≤ d∗t . On the other hand, if r∗t = k, then we must have dt = d∗t . In either case,
dt ≤ d∗t , and so

σrt−1+1

σrt
≤
σrt−1+1

σr∗t
≤
(

1 +
1

k

)d∗t
≤ e.

This completes the proof of Lemma 7.

Now, we are in a position to verify the inductive hypothesis (H4) for the next round, in the favorable
case that Lemma 6 holds. By definition, we have st = σ̃dt , and (18), followed by Lemma 7 implies
that

|σrt − st| ≤
σrt−1+1

C1k2
≤ eσrt
C1k5/2

.

In particular, (
1− 2e

C1k5/2

)
σrt ≤ st ≤

(
1 +

2e

C1k5/2

)
σrt ,

18



FAST MATRIX COMPLETION WITHOUT THE CONDITION NUMBER

establishing (H4) for st.
Now that we know that the “gap” structure of the singular values of Nt−1 is reflected by the

estimates σ̃j , we will show that the top singular vectors are also well-approximated by the estimates
Q̃t. Recall from Algorithm 1 that Q̃t ∈ Rn×dt denotes the first dt columns of Ũt, which are
estimates of the top singular vectors of Tt. Let Qt denote the (actual) top dt singular vectors of Tt.
We will first show that Qt is close to U (t), and then that Qt is also close to Q̃t.

Lemma 8 Suppose that the conclusions of Lemma 6 and Lemma 7 hold, and that (17) holds. Then

sin θ(U (t), Qt) ≤
4e

C1k3/2
.

Proof We will use a sin θ theorem (Theorem 17, due to Wedin, in the appendix) to control the
perturbation of the subspaces. Theorem 17 implies

sin θ(U (t), Qt) ≤
‖Tt −Nt−1‖
|σdt(Tt)− σrt+1|

Theorem 17

≤ 2eσrt
C1k5/2 |σdt(Tt)− σrt+1|

By Lemmas 6 and 7, and (17)

≤ 2eσrt

C1k5/2
(
σrt

(
1− 2e

C1k5/2

)
− σrt+1

) By (18) and Lemma 7

≤ eσrt

C1k5/2
(
σrt

(
1− 2e

C1k5/2

)
− σrt(1− γ)

) By Lemma 7

≤ 4e

C1k3/2
.

Now, we show that Qt is close to Q̃t.

Lemma 9 Suppose that the conclusions of Lemma 6 and Lemma 7 hold, and that (17) holds. Then
with probability 1− 1/n2,

sin θ(Qt, Q̃t) ≤
1

poly(n)
.

Proof By (16), Lemma 6, and Lemma 7, a similar computation as in the proof of Lemma 8 shows
that

σdt+1(Tt)

σdt(Tt)
≤
(
σ̃dt+1

σ̃dt

)(
1 +

8e

C1k5/2

)
≤
(

1− 1

4k

)(
1 +

8e

C1k5/2

)
≤ 1− 1

k

using the choice of dt in the second-to-last line. Thus, by Theorem 19 in the appendix, and the
choice of L & k log(n) in SUBSIT, we have with probability 1− 1/poly(n) that

sin θ(Qt, Q̃t) ≤ poly(n)

(
1− 1

2k

)L
≤ 1

poly(n)
.
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Together, Lemmas 8 and 9 imply that, when Lemma 6 and the favorable case for SUBSIT hold,

sin θ(U (t), Q̃t) ≤
8e

C1k3/2
.

Finally, this implies, via Lemma 18 in the appendix, that there is some unitary matrixO ∈ Rk×k
so that ∥∥∥U (t)O − Q̃t

∥∥∥ ≤ 16e

C1k3/2
,

and using the fact that U (t) and Q̃t have rank at most k, we have that∥∥∥U (t)O − Q̃t
∥∥∥
F
≤ 16

√
2e

C1k
. (21)

As in Algorithm 1, let B be a random orthogonal matrix, and let Qt be the truncation

Qt = TRUNCATE

(
Q̃tB, 8

√
µ∗log(n)

n

)
.

The reason for the random rotation is that while U (t)O is reasonably incoherent (because U (t) is),
U (t)OB is, with high probability, even more incoherent. More precisely, as in Hardt (2013b), we
have

P

{∥∥∥U (t)OB
∥∥∥
∞
> 8

√
µ∗ log(n)

n

}
≤ 1

n2
, (22)

where the probability is over the choice of B. Suppose that the favorable case in (22) occurs, so
that

∥∥U (t)OB
∥∥
∞ ≤ 8

√
µ∗ log(n)/n. In the Frobenius norm, Qt is the projection of Q̃t onto the

(entrywise) `∞-ball of radius 8
√
µ∗log(n)/n in Rn×dt . Thus,∥∥∥Qt − Q̃tB∥∥∥

F
≤
∥∥∥X − Q̃tB∥∥∥

F

for any X in this scaled `∞-ball, and in particular∥∥∥Qt − Q̃tB∥∥∥
F
≤
∥∥∥U (t)OB − Q̃tB

∥∥∥
F
.

Thus, (21) implies that∥∥∥U (t)OB −Qt
∥∥∥
F
≤
∥∥∥U (t)OB − Q̃tB

∥∥∥
F

+
∥∥∥Q̃tB −Qt∥∥∥

F

≤ 2
∥∥∥U (t)OB − Q̃tB

∥∥∥
F

= 2
∥∥∥U (t)O − Q̃t

∥∥∥
F
≤ 32

√
2e

C1k
. (23)

Next, we consider the matrix Wt = QR([Xt−1|Qt]). Because Xt−1 has orthonormal columns, this
matrix has the form Wt = [Xt−1|Pt], where Pt ∈ Rn×dt has orthonormal columns, Pt ⊥ Xt−1,
and

R(Pt) = R((I −Xt−1X
T
t−1)Qt) = R(Zt),
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where we define Zt := (I −Xt−1X
T
t−1)Qt to be the projection of Qt ontoR(Xt−1)⊥. Because Qt

is close to U (t)OB, and Xt−1 is close to U (<t), Zt is close to U (t)OB. More precisely,∥∥∥Zt − U (t)OB
∥∥∥ ≤ ∥∥∥(I −Xt−1X

T
t−1)(Qt − U (t)OB)

∥∥∥+
∥∥∥Xt−1X

T
t−1U

(t)OB
∥∥∥ by the triangle inequality

≤
∥∥∥Q− U (t)OB

∥∥∥
F

+ sin θ(Xt−1, U
(<t))

≤ 32
√

2e

C1k
+

1

k4

(
σrt−1+1 + ε ‖M‖

σrt−1

)
by (23) and (H2)

≤ 32
√

2e

C1k
+

1

k4

(
2σrt−1+1

σrt−1

)
by (17)

≤ 64
√

2e

C1k
for sufficiently large k.

Further, the Gram-Schmidt process gives a decomposition

PtR = Zt,

where the triangular matrix R has the same spectrum as Zt. In particular,∥∥R−1
∥∥ =

1

σmin(Zt)
≤ 1∥∥U (t)

∥∥− 64
√

2e
C1k

≤ 2

for sufficiently large C1. Thus,

sin θ(U (≤t), Pt) =
∥∥∥(U

(≤t)
⊥ )TPt

∥∥∥
=
∥∥∥(U

(≤t)
⊥ )TZtR

−1
∥∥∥

≤ 2
∥∥∥(U

(≤t)
⊥ )TZt

∥∥∥
≤ 2

∥∥∥(U
(≤t)
⊥ )TU (t)OB

∥∥∥+ 2
∥∥∥(U

(≤t)
⊥ )T (Zt − U (t)OB)

∥∥∥
= 2

∥∥∥(U
(≤t)
⊥ )T (Zt − U (t)OB)

∥∥∥
≤ 128

√
2e

C1k
, (24)

where above we used that (U
(≤t)
⊥ )TU (t) = 0. Next,

max
i

∥∥eTi Pt∥∥2
≤ max

i

∥∥eTi Zt∥∥2

∥∥R−1
∥∥

≤ 2

(
max
i

∥∥eTi Qt∥∥2
+ max

i

∥∥eTi Xt−1X
T
t−1Qt

∥∥
2

)
≤ 2

(
max
i

∥∥eTi Qt∥∥2
+ max

i

∥∥eTi Xt−1

∥∥
2

(∥∥∥XT
t−1U

(t)OB
∥∥∥+

∥∥∥XT
t−1(U (t)OB −Qt)

∥∥∥))
≤ 2

(
max
i

∥∥eTi Qt∥∥2
+ max

i

∥∥eTi Xt−1

∥∥
2

(∥∥∥XT
t−1U

(t)
∥∥∥+

∥∥∥U (t)OB −Qt
∥∥∥))

≤ 16

√
kµ∗ log(n)

n
+ 2

√
kµt−1

n

(
2

k4
+

32
√

2e

C1k

)
,

21



HARDT WOOTTERS

where we have used the definition of Qt, the incoherence of Xt−1, and the computations above in
the final line. Thus,

max
i

∥∥eTi Pt∥∥2
≤
√
k

n

(
16
√
µ∗ log(n) +

C5
√
µt−1

k

)
(25)

for some constant C5. Thus, when the conclusions of Lemma 6 hold, Pt is both close to U (t) and
incoherent. By induction, the same is true for Wt. Indeed, if t = 1, then Pt = Wt, and we are done.
If t ≥ 2, then we have

sin θ(Wt, U
(≤t)) ≤ sin θ(Xt−1, U

(≤t−1)) + sin θ(Pt, U
(t)).

Then, the inductive hypothesis (H1) and our conclusion (24) imply that

sin θ(Wt, U
(≤t)) ≤ 1

k

for suitably large C0, C1. Finally, (25), along with the inductive hypothesis (H3) implies that

max
i

∥∥eTi Wt

∥∥
2
≤ max

i

∥∥eTi Xt−1

∥∥
2

+ max
i

∥∥eTi Pt∥∥2

≤
√
k

n

(
√
µt−1

(
1 +

C5

k

)
+ 16

√
µ∗ log(n)

)
≤
√
kµt
n
.

We remark that this last computation is the only reason we need sin θ(Pt, U
(t)) . 1/k, rather than

bounded by 1/4; eventually, we will iterate and have

√
µT ≤

√
µ0

(
1 +

C5

k

)T
+ 16T

√
µ∗ log(n) ≤ eC5

√
µ0 + 16T

√
µ∗ log(n),

and we need that
(
1 + C5

k

)T ≤ eC5 is bounded by a constant (rather than exponential in T ).
Finally, we have shown that with probability 1 − 1/n2 (that is, in the case that Lemma 6 holds

and SUBSIT works), all of the conclusions of Lemma 4 hold as well. This completes the proof of
Lemma 4.

Appendix B. Proof of Lemma 5

In the proof of Lemma 5 we will need an explicit description of the subroutine SMOOTHQR that we
include in Algorithm 3.

Input: Matrix S ∈ Rn×k, parameters µ, ζ > 0.
29 X ← QR(S), H ← 0 σ ← ζ‖S‖/n. while µ(R) > µ and σ ≤ ‖S‖ do
30 R← QR(S +H) where H ∼ N(0, σ2/n) σ ← 2σ
31 end

Output: Matrix R
Algorithm 3: SMOOTHQR (S, ζ, µ) (Smooth Orthonormalization)
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To prove Lemma 5, we will induct on the iteration ` in S-M-ALTLS (Algorithm 2). Let R`
denote the approximation in iteration `. Thus, R0 = Xt−1. Above, we are suppressing the depen-
dence of R` on the epoch number t, and in general, for this section we will drop the subscripts t
when there is no ambiguity. We’ll use the shorthand

Θj
` = θ(R`

(≤j), U (≤j))

and
Ej` = (I −R`(≤j)(R`(≤j))T )U (≤j),

so that
∥∥∥Ej`∥∥∥ = sin(Θj

`).Recall the definition (9) that γ∗ = min {γ, γk} . Notice that this choice
ensures that γ∗ ≤ γrj for all choices of j, including the case of j = t, in the final epoch of
SOFTDEFLATE, when rt = k.

We will maintain the following inductive hypothesis:

σrj tan Θj
` ≤ max

{(
2eσrt
k

)
exp(−γ∗`/2),

σrt+1 + ε ‖M‖
2eC0k4

}
=: ν` ∀j ≤ t. (J1)

Above, the tangent of the principal angle obeys

∥∥∥Ej`∥∥∥ ≤ tan Θj
` =

∥∥∥Ej`−1

∥∥∥√
1−

∥∥∥Ej`−1

∥∥∥2
≤ 2

∥∥∥Ej`−1

∥∥∥ , (26)

whenever
∥∥∥Ej`−1

∥∥∥ ≤ 1/4. We will also maintain the inductive hypothesis

max
i

∥∥eTi R`∥∥2
≤
√
kµt
n
. (J2)

To establish the base case of (J1) for j = t, we have

σrt sin θ(Wt, U
(≤t)) ≤ σrt

k
,

by conclusion (13) of Lemma 4, and hence by (26),

σrt tan θ(Wt, U
(≤t)) ≤ 2σrt

k
.

If t = 1, then Wt = R0, and we are done with the base case for (J1); if t ≥ 2, then for j ≤ t − 1,
we have

R0
(≤j) = Xt−1

(≤j).

Thus, for j ≤ t− 1, (J1) is implied by (26) again, along with the fact that

σrj sin θ(Xt−1
(≤j), U (≤j)) ≤ 1

k4

(
σrt−1+1 + ε ‖M‖

)
≤ eσrt + ε ‖M‖

k4
≤ 2eσrt

k4
,

which is the (outer) inductive hypothesis (H1), followed by the conclusions (11) and (12) from
Lemma 4. This establishes the base case for (J1). The base case for (J2) follows from the conclusion
(13) of Lemma 4 directly.
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Input: Number of iterations L ∈ N, symmetric matrix A ∈ Rn×n, initial matrix R0 ∈ Rn×r.
32 for ` = 1, . . . , L do
33 S` ← AR`−1 + G̃`
34 R` ← QR(S`)

35 end
Output: Pair of matrices (RL, SL)

Algorithm 4: NSI(A,R0, L) (Noisy Subspace Iteration)

Having established (J1), (J2) for ` = 0, we now suppose that they hold for ` − 1 and consider
step `. Notice that, by running SMOOTHQR with parameter µ = µt, we automatically ensure (J2)
for the next round of induction, and so our next goal is to establish (J1). For this, we need to go
deeper into the workings of S-M-ALTLS. The analysis of S-M-ALTLS in Hardt (2013b) is based
on an analysis of NSI, given in Algorithm 4. We may view S-M-ALTLS as a special case of
NSI. More precisely, let H` be the noise matrix added from SMOOTHQR in the `’th iteration of
S-M-ALTLS, and define G(s)

` to be

G
(s)
` = argminS∈Rn×r

∥∥∥P
Ω

(s)
`

(A−R`−1S
T )
∥∥∥2

F
−AR`−1, (27)

and let
G` = medians(G

(s)
` ).

Then we may write R`, the `’th iterate in S-M-ALTLS, as

R` = SMOOTHQR(AR`−1 +G`) = QR(AR`−1 +G` +H`) =: QR(AR`−1 + G̃`) .

That is, R` is also the `’th iterate in NSI, when the noise matrices are G̃` = G` +H`. We will take
this view going forward, and analyze S-M-ALTLS as a special case of NSI. We have the following
theorem, which is given in (Hardt, 2013b, Lemma 3.4).

Theorem 10 Let G̃` = G` +H` be as above. Let j ≤ t and suppose that
∥∥∥Ej`−1

∥∥∥ ≤ 1
4 and that∥∥∥G̃`∥∥∥ ≤ σrjγrj

32
.

Then the next iterate R` of NSI satisfies

tan θ(U (≤j), R`−1) ≤ max

8
∥∥∥G̃`∥∥∥
σrjγrj

, tan θ(U (≤j), R`−1) exp(−γrj/2)

 .

To use Theorem 10, we must understand the noise matrices G̃` = G` +H`. We begin with G`.

Lemma 11 (Noise term G` in NSI) There is a constant C so that the following holds. Fix ` and
suppose that (J2) holds for ` − 1: that is, µ(R`−1) ≤ µt. Let 0 < δ < 1/2, and suppose that the
samples Ω′t for S-M-ALTLS are sampled independently with probability

p′t ≥ CLtsmax
kµt log(n)

δ2n
,
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where Lt is the number of iterations of S-M-ALTLS, and smax ≥ C log(n) is the number of trials
each iteration of S-M-ALTLS performs before taking a median. Then with probability at least
1− 1/n5 over the choice of Ω′t, the noise matrix G` satisfies

‖G`‖F ≤ δ

‖Nt‖F +

n∑
j=1

∥∥∥Ej`−1

∥∥∥∥∥∥M (j)
∥∥∥
F

 =: ω`−1

and for all i ∈ [n],

∥∥eTi G`∥∥2
≤ δ

∥∥eTi Nt

∥∥
2

+
n∑
j=1

∥∥∥Ej`−1

∥∥∥∥∥∥eTi M (j)
∥∥∥

2

 =: ω
(i)
`−1 .

The proof of Lemma 11 is similar to the analysis in Hardt (2013b). For completeness, we include
the proof in Appendix C. Using the inductive hypothesis (J1), and the fact that

∥∥M (j)
∥∥
F
≤
√
kσrj

,

ω`−1 ≤ δ

∑
j

∥∥∥Ej`−1

∥∥∥(√kσrj)+
√
kσrt+1 + ∆

 ≤ δ (t√kν`−1 +
√
kσrt+1 + ∆

)
.

We will choose

δ =
γ∗

4eC0C3k4
min

{
1√
k
,
ε ‖M‖

∆

}
, (28)

for a constant C3 to be chosen sufficiently large. Observe that with this choice of δ, the requirement
on p′t in Lemma 11 is implied by the requirement on p′t in the statement in Lemma 5. Then the
choice of δ implies

‖G`‖F ≤ ω`−1 ≤
γ∗

4eC0C3k4
(tν`−1 + σrt+1 + ε ‖M‖) ≤ γ∗4eC0

43C0C3
ν`−1 ≤

γ∗

C3
ν`−1. (29)

Now, we turn to the noise term H` added by SMOOTHQR. For a matrix G ∈ Rn×k (not neces-
sarily orthonormal), we will define

ρ(A) :=
n

k
max
i∈[n]

∥∥eTi G∥∥2

2
.

Our analysis of H` relies on the following lemma from Hardt (2013b).

Lemma 12 (Lemma 5.4 in Hardt (2013b)) Let τ > 0 and suppose that rt = o(n/ log(n)). There
is an absolute constant C so that the following claim holds. Let G ∈ Rn×rt , and let R ∈ Rn×rt be
an orthonormal matrix, and let ν ∈ R so that ν ≥ max ‖G‖ , ‖NtR‖. Assume that

µt ≥ 2µ(U) +
C

τ2

(
ρ(G) + µ(U)

∥∥(U (≤t))TG
∥∥2

+ ρ(NtR)

ν2
+ log(n)

)
.

Then, for every ζ ≤ τν satisfying log(n/ζ) ≤ n, we have with probability at least 1 − 1/n4 that
the algorithm SMOOTHQR (AR + G, ζ, µt) terminates in log(n/ζ) iterations, and the output R′

satisfies µ(R′) ≤ µt. Further, the final noise matrix H added by SMOOTHQR satisfies ‖H‖ ≤ τν.
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We will apply Lemma 12 to our situation.

Lemma 13 (Noise term H` in NSI added by SMOOTHQR) Suppose that k = o(n/ log(n)). There
is a constant C2 so that the following holds. Suppose that

µt ≥
C2

(γ∗)2

(
µ∗

(
k +

(
k4 ‖N‖F
ε ‖M‖

)2
)

+ log(n)

)
.

Suppose that the favorable conclusion of Lemma 11 occurs. Choose ζ = εs0k
−5, as in Algorithm

1. Then, with probability at least 1 − 1/n4 over the randomness of SMOOTHQR, the output R` of
SMOOTHQR(AR`−1 +G`, ζ, µt) satisfies

µ(R`) ≤ µt,

and the number of iterations is O(log(n/(ε ‖M‖))). Further, the noise matrix H` satisfies

‖H`‖ ≤
γ∗ν`−1

C3
.

Proof We apply Lemma 12 with G = G`, R = R`−1, and ν = ν`, and

τ =
γ∗

C3
. (30)

First, we observe that the choice of ζ = εs0k
−5 ≤ ε ‖M‖ γ∗k−4 ≤ τν`−1 indeed satisfies the

requirements of Lemma 12. Next, we verify that max{‖G`‖ , ‖NtR`−1‖} ≤ ν`−1. Indeed, from
(29),

‖G`‖ ≤ ω`−1 ≤
γ∗

C3
ν`−1 ≤ ν`−1.

Further, we have
‖NtR`−1‖ ≤ σrtsin θ(U (≤t), R`−1) ≤ ν`−1

by the inductive hypothesis (J1) for j = t.
Next, we compute the parameters that show up in Lemma 12. From Lemma 11, we have

ρ(G`) ≤
n

rt
max
i

(
ω

(i)
`−1

)2

and
µ(U)

∥∥∥U (≤t)G`

∥∥∥2
≤ ‖G`‖2 ≤ µ∗ω2

`−1.
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We also have

ρ(NtR`−1) =
n

rt
max
i

∥∥eTi NtR`−1

∥∥2

2

≤ n

rt

(
max
i

∥∥∥eTi U (t:k)
∥∥∥

2
σrt

∥∥∥(U (t:k))TR`−1

∥∥∥
2

+ max
i

∥∥eTi N∥∥2
‖R`−1‖2

)2

≤ n

rt

(√
kµ(U)

n
σrt
∥∥Et`−1

∥∥+

√
µN ‖N‖F

n

)2

≤ 2µ∗

(
k

rt
σ2
rt

∥∥Et`−1

∥∥2
+
‖N‖2F
rt

)

≤ 2µ∗

(
kν2

`−1

rt
+
‖N‖2F
rt

)
,

where we have used the inductive hypothesis (J1) in the final line. Then, the requirement of Lemma
12 on µt reads

µt ≥ 2µ∗ +
C

τ2

 n
rt

maxi

(
ω

(i)
`−1

)2
+ µ∗ω2

`−1 + 2µ∗
(
k
rt
ν2
`−1 +

‖N‖2F
rt

)
ν2
`−1

+ log(n)

 .

We have, for all i,

ω
(i)
`−1

ω`−1
=

∥∥eTi Nt

∥∥
2

+
∑t

j=1

∥∥∥Ej`−1

∥∥∥∥∥eTi M (j)
∥∥

2

‖Nt‖F +
∑t

j=1

∥∥∥Ej`−1

∥∥∥∥∥M (j)
∥∥
F

≤
σrt
√

∆2µ∗/n +
∑t

j=1

∥∥∥Ej`−1

∥∥∥σrj√kµ∗/n

‖Nt‖F +
∑t

j=1

∥∥∥Ej`−1

∥∥∥∥∥M (j)
∥∥
F

≤
‖Nt‖F

√
∆2µ∗/n +

∑t
j=1

∥∥∥Ej`−1

∥∥∥∥∥M (j)
∥∥
F

√
kµ∗/n

‖Nt‖F +
∑t

j=1

∥∥∥Ej`−1

∥∥∥∥∥M (j)
∥∥
F

=

√
µ∗

n

(√
k + ∆

)
.
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We may simplify and bound the requirement on µt as

2µ∗ +
C

τ2

 n
rt

maxi

(
ω

(i)
`−1

)2
+ µ∗ω2

`−1 + 2µ∗
(
k
rt
ν2
`−1 +

‖N‖2F
rt

)
ν2
`−1

+ log(n)


≤ 2µ∗ +

C

τ2

 n
rt

maxi

(
ω

(i)
`−1

)2
(γ∗)2

C2
3ω

2
`−1

+
µ∗ (γ∗)2 ω2

`−1

C2
3ω

2
`−1

+
2µ∗

(
k
rt
ν2
`−1 +

‖N‖2F
rt

)
ν2
`−1

+ log(n)


using ν`−1 ≥ C3ω`−1/γ

∗, by (29)

≤ 2µ∗ +
C

τ2

(
k+∆2

rt
µ∗(γ∗)2

C2
3

+
µ∗ (γ∗)2

C2
3

+ 2µ∗

(
k

rt
+
‖N‖2F
rtν2

`−1

)
+ log(n)

)
by the bound on ω(i)

`−1/ω`, above

≤ C ′µ∗

(γ∗)2

(
k

rt
+
‖N‖2F
ν2
`−1

)
+
C2

3 log(n)

(γ∗)2
by the definition of τ and gathering terms

≤ C2µ
∗

(γ∗)2

(
k

rt
+
k8 ‖N‖2F
ε2 ‖M‖2

)
+
C2

3 log(n)

(γ∗)2
by the fact that ν`−1 ≥

ε ‖M‖
2eC0k4

.

for some constant C2, which was the requirement in the statement of the lemma. Thus, as long as
the hypotheses of the current lemma hold, Lemma 12 implies that with probability at least 1−1/n4,

‖H`‖ ≤ τν`−1 =
γ∗ν`−1

C3
.

This completes the proof of Lemma 13.

Thus, using the inductive hypothesis (J2), Lemmas 11 and 13 imply that as long as the requirements
on p′t and µt in the statements of those lemmas are satisfied (which they are, by the choices in
Lemma 5), with probability at least 1− 2/n4 the noise matrices G̃` satisfy∥∥∥G̃`∥∥∥ ≤ ‖G`‖+ ‖H`‖ ≤ ω`−1 +

γ∗ν`−1

C3
≤ 2γ∗ν`−1

C3
,

using (29) in the final inequality. Now, we wish to apply Theorem 10. The hypothesis (J1), along
with the conclusion (11) from Lemma 4, immediately implies that∥∥Et`−1

∥∥ ≤ 1

k

for all j ≤ t, and so in particular the first requirement of Theorem 10 is satisfied. To satisfy the
second requirement of Theorem 10, we must show that∥∥∥G̃`∥∥∥ ≤ σrjγrj/32,

for which it suffices to show that
2γ∗ν`−1

C3
≤ σrjγrj/32. (31)
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From the definition of ν`−1, and the fact that γ∗ ≤ γrj , we see that (31) is satisfied for a sufficiently
large choice of C3. Then Theorem 10 implies that with probability at least 1 − 2/n4, for any fixed
j, we have

σrj tan Θj
` ≤ σrj max

8
∥∥∥G̃`∥∥∥
σrjγrj

, tan Θj
`−1 exp(−γrj/2)


≤ max

{
16ν`−1γ

∗

C3γrj
, ν`−1 exp(−γrj/2)

}
by (J1) and (29)

≤ ν`−1 exp(−γ∗/2)

≤ ν`

provided C3 is suitably large. A union bound over all j establishes (J1) for the next iteration of
S-M-ALTLS. After another union bound over

Lt =
C

γ∗
log

(
k · σrt

σrt+1 + ε ‖M‖

)
steps of S-M-ALTLS, for some constant C depending on C0, we conclude that with probability at
least 1− 1/n2, for all j,

σrj sin θ(R`−1
(≤j), U (≤j)) ≤ σrj tan θ(R`−1

(≤j), U (≤j)) ≤ σrt+1 + ε ‖M‖
2eC0k4

.

To establish the second conclusion, we note that we have already conditioned on the event that (29)
holds, and so we have∥∥∥M (≤t) −XtY

T
t

∥∥∥ =
∥∥∥ΠXNt + ΠX⊥M

(≤t) +Xt(AXt − Yt)T
∥∥∥

≤ ‖ΠXNt‖+
∥∥∥ΠX⊥M

(≤t)
∥∥∥+ ‖Xt(AXt − Yt)‖

≤ σrt+1sin θ(Xt, U
(≤t)) + e

t∑
j=1

σrj sin θ(Xt
(≤j), U (≤j)) + ‖GL‖

≤ keσrt+1 + ε ‖M‖
2eC0k4

+
γ∗

2eC0C3k4
(σrt+1 + ε ‖M‖) by (29) and the definition of νL

≤ σrt+1 + ε ‖M‖
C0k3

.

Above, we used the inequality

∥∥∥ΠX⊥M
(≤t)
∥∥∥ =

∥∥∥∥∥∥
t∑

j=1

ΠX⊥M
(j)

∥∥∥∥∥∥ ≤
t∑

j=1

∥∥∥ΠX⊥M
(j)
∥∥∥ ≤ t∑

j=1

σrj−1+1

∥∥∥ΠX⊥U
(j)
∥∥∥

≤
t∑

j=1

σrj−1+1

∥∥∥Π
X

(≤j)
⊥

U (≤j)
∥∥∥ ≤ t∑

j=1

eσrj sin θ(X
(≤j), U (≤j)),

using (12) in the final inequality. Finally, the third conclusion, that (H3) holds, follows from the
definition of SMOOTHQR.
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Appendix C. Proof of Lemma 11

In this section, we prove Lemma 11, which bounds the noise matrices G(s)
` and which we needed in

the proof of Lemma 5. The proof of Lemma 11 is similar to the analysis in Hardt (2013b), Lemmas
4.2 and 4.3. For completeness, we include the details here. As per Section D, we assume that sets
Ω

(s)
` are independent random sets, which include each index independently with probability

p′ :=
p′t

smaxLt
.

Consider each noise matrix G(s)
` , as in (27). In Lemma 4.2 in Hardt (2013b), an explicit expression

for G(s)
` is derived:

Proposition 14 Let G(s)
` be as in (27). Then we have

G
(s)
` = (G

(s)
` )M + (G

(s)
` )N ,

where
eTi (G

(s)
` )M = eTi Mt(I −R`−1R

T
`−1)P

(s)
i R`−1(B

(s)
i )−1.

and
eTi (G

(s)
` )N = eTi

(
NtP

(s)
i R`−1(B

(s)
i )−1 −NtR`−1

)
.

Above, P (s)
i is the projection onto the coordinates j so that (i, j) ∈ Ω

(s)
` , and

B
(s)
i = RT`−1P

(s)
i R`−1.

We first bound the expression for (G
(s)
` )M in terms of the decomposition in Proposition 14. Let

Dj
`−1 = (I −R`−1R

T
`−1)U (j).

Thus, Dj
`−1 is similar to Ej`−1, and more precisely we have∥∥∥Dj

`−1

∥∥∥ ≤ ∥∥∥Ej`−1

∥∥∥ . (32)

To see (32), observe that (dropping the ` subscripts for readability)∥∥Ej∥∥ = max
‖x‖2=1,‖y‖2=1

xTEjy

= max
x,y

xT
[

(R(j+1:t))TU (<j) (R(j+1:t))TU (j)

(R⊥)TU (<j) (R⊥)TU (j)

]
y

≥ max
x=(0,x′),y=(0,y′)

(x′)T (R⊥)TU (j)y′

=
∥∥Dj

∥∥
First, we observe that with very high probability, B(s)

i is close to the identity.
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Claim 1 There is a constant C so that the following holds. Suppose that p′ ≥ Ckµt log(n)/(nδ2).
Then

P
{
λmin(B

(s)
i ) ≤ 1− δ/2 or λmax(B

(s)
i ) ≥ 1 + δ/2

}
≤ 1/n5.

Proof We write

B
(s)
i = RT`−1P

(s)
i R`−1 =

n∑
r=1

1

p′
ξr(R

T
`−1er)(e

T
r R`−1),

where ξr is 1 with probability p′ and 0 otherwise. We apply the Matrix Chernoff bound (Lemma
22); we have ∥∥∥∥ 1

p′
ξr(R

T
`−1er)(e

T
r R`−1)

∥∥∥∥ ≤
∥∥eTr R`−1

∥∥2

2

p′
≤ µtk

np′
almost surely,

and λmin(EB(s)
i ) = λmax(EB(s)

i ) = 1. Then Lemma 22 implies that

P
{
λmin(B

(s)
i ) ≤ 1− δ/2 or λmax(B

(s)
i ) ≥ 1 + δ/2

}
≤ n exp(−δ2p′n/(8µtk))+n exp(−δ2p′n/(12µtk)).

The claim follows from the choice of p′.

Next, we will bound the other part of the expression for (G
(s)
` )M in Proposition 14.

Claim 2 There is a constant C so that the following holds. Suppose that p′ ≥ Cµtk
nδ2

. Then for each
s,

P

∥∥∥eTi Mt(I −R`−1R`−1)TP
(s)
i R`−1

∥∥∥
2
≥ δ

4

 t∑
j=1

∥∥∥eTi M (j)
∥∥∥

2

∥∥∥Ej`−1

∥∥∥
 ≤ 1

20
.

Proof We compute the expectation of
∥∥∥eTi Mt(I −R`−1R`−1)TP

(s)
i R`−1

∥∥∥
2

and use Markov’s in-

equality. For the proof of this claim, let Y = Mi(I −R`−1R
T
`−1).

E
∥∥∥eTi Y P (s)

i R`−1

∥∥∥2

2
= EeTi Y P

(s)
i R`−1R

T
`−1P

(s)
i Y T ei

= eTi Y E
(
P

(s)
i R`−1R

T
`−1P

(s)
i

)
Y T ei

= eTi Y

(
R`−1R

T
`−1 +

(
1

p′
− 1

)
diagr

(∥∥eTr R`−1

∥∥2

2

))
Y T ei

=
∥∥eTi Y R`−1

∥∥2

2
+

(
1

p′
− 1

) n∑
r=1

∥∥eTr R`−1

∥∥2

2
(Yi,r)

2

=

(
1

p′
− 1

) n∑
r=1

∥∥eTr R`−1

∥∥2

2
(Yi,r)

2

≤
∥∥eTi Y ∥∥2

2

(
1

p′
− 1

)(
µtk

n

)
≤
δ2
∥∥eTi Y ∥∥2

2

400
,
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using the fact that Y R`−1 = 0, and finally our choice of p′ (with an appropriately large constant C).
Now, using (32),

∥∥eTi Y ∥∥2
=
∥∥∥eTi U (≤t)Λ(t)U

(≤t)(I −R`−1R
T
`−1)

∥∥∥
2
≤

t∑
j=1

∥∥∥eTi M (j)
∥∥∥

2

∥∥∥Dj
`−1

∥∥∥ ≤ t∑
j=1

∥∥∥eTi M (j)
∥∥∥

2

∥∥∥Ej`−1

∥∥∥ .
Along with Markov’s inequality, this completes the proof.

Finally, we control the term (G
(s)
` )N .

Claim 3 There is a constant C so that the following holds. Suppose that p′ ≥ Ck log(n)µt/(δ
2n)

for a constant C. Then for each s ≤ T ,

P
{∥∥∥eTi (G

(s)
` )N

∥∥∥
2
≥ δ

4

∥∥eTi Nt

∥∥
2

}
≤ 1

15
.

Proof Using Proposition 14,

eTi (G
(s)
` )N = eTi

(
NtP

(s)
i R`−1

(
B

(s)
i

)−1
−NtR`−1

)
= eTi

(
NtP

(s)
i R`−1 −NtR`−1B

(s)
i

)
(B

(s)
i )−1

=
(
eTi Nt(P

(s)
i − I)R`−1 + eTi NtR`−1(I −B(s)

i )
)(

B
(s)
i

)−1

=: (y1 + y2)
(
B

(s)
i

)−1
.

We have already bounded
∥∥∥(B

(s)
i )−1

∥∥∥with high probability in Claim 1, when the bound on p′ holds,
and so we now bound ‖y1‖2 and ‖y2‖2 with decent probability. As we did in Claim 2, we compute
the expectation of ‖y1‖22 and use Markov’s inequality.

E ‖y1‖22 = E
∥∥∥eTi Nt

(
P

(s)
i − I

)
R`−1

∥∥∥2

2

= eTi NtE
[
(P

(s)
i − I)R`−1R

T
`−1(P

(s)
i − I)

]
NT
t ei

= eTi Nt

(
1

p′
− 1

)
diagr(

∥∥eTr R`−1

∥∥2

2
)NT

t ei

=

(
1

p′
− 1

) n∑
r=1

(Nt)
2
ir

∥∥eTr R`−1

∥∥2

2

≤
(
µtk

np′

)∥∥eTi Nt

∥∥2

2
.

Thus, by Markov’s inequality, we have

P

{
‖y1‖2 ≥ 20

√
µtk

np′
∥∥eTi Nt

∥∥
2

}
≤ 1

20
.
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Next, we turn our attention to the second term ‖y2‖2. We have

‖y2‖2 =
∥∥∥eTi (NtR`−1)

(
I −B(s)

i

)∥∥∥
2
≤
∥∥eTi NtR`−1

∥∥
2

∥∥∥I −B(s)
i

∥∥∥ .
By Claim 1, we established that with probability 1 − 1/n5,

∥∥∥I − (B
(s)
i )
∥∥∥ ≤ δ

2 , with our choice of

p′. Thus, with probability at least 1− 1/n5,

‖y2‖2 ≤ δ
∥∥eTi NtR`−1

∥∥
2
≤ δ

2

∥∥eTi Nt

∥∥
2
.

Altogether, we conclude that with probability at least 1− 1/20− 2/n5, we have∥∥∥eTi (G
(s)
` )N

∥∥∥
2
≤ (‖y1‖2 + ‖y2‖2)

∥∥∥(B
(s)
i )−1

∥∥∥ ≤ 3δ

4(1− δ/2)

∥∥eTi Nt

∥∥
2
≤ δ

∥∥eTi Nt

∥∥
2

as long as δ ≤ 1/2. This proves the claim.

Putting Claims 1, 2 and 3 together, along with the choice of p′t = Ltsmaxp
′, we conclude that,

for each s ∈ [T ] and for any δ < 1/2,

P

∥∥∥eTi G(s)
`

∥∥∥
2
≥ δ

4(1− δ/2)

∥∥eTi Nt

∥∥
2

+
t∑

j=1

∥∥∥eTi M (j)
∥∥∥

2

∥∥∥Ej`−1

∥∥∥
 ≤ 1

5
. (33)

This implies that ∥∥eTi G`∥∥2
=
∥∥∥eTi mediansG

(s)
`

∥∥∥
2

=
∥∥∥medians(e

T
i G

(s)
` )
∥∥∥

2

is small with exponentially large probability. Indeed, by Lemma 23,

P

∥∥eTi G`∥∥2
≥ δ

2(1− δ/2)

∥∥eTi Nt

∥∥
2

+
t∑

j=1

∥∥∥eTi M (j)
∥∥∥

2

∥∥∥Ej`−1

∥∥∥
 ≤ exp(−csmax),

for some constant c. By the choice of smax, the failure probability is at most 1/n6, and a union
bound over all i shows that, with probability at least 1− 1/n5,

∥∥eTi G`∥∥2
≤ δ

∥∥eTi Nt

∥∥
2

+

t∑
j=1

∥∥∥eTi M (j)
∥∥∥

2

∥∥∥Ej`−1

∥∥∥
 = ω

(i)
`−1. (34)

This was the second claim in Lemma 11. Now, we show that in the favorable case that (34) holds,
so does the first claim of Lemma 11, and this will complete the proof of the lemma. Suppose that
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(34) holds. Then

‖G`‖F =

√√√√ n∑
i=1

∥∥eTi G`∥∥2

2

≤

√√√√√ n∑
i=1

δ2

∥∥eTi Nt

∥∥
2

+

t∑
j=1

∥∥eTi M (j)
∥∥

2

∥∥∥Ej`−1

∥∥∥
2

≤ δ

√√√√ n∑
i=1

∥∥eTi Nt

∥∥2

2
+ δ

√√√√√ n∑
i=1

 t∑
j=1

∥∥eTi M (j)
∥∥

2

∥∥∥Ej`−1

∥∥∥
2

≤ δ ‖Nt‖F + δ

√√√√√ n∑
i=1

 t∑
j=1

∥∥eTi M (j)
∥∥

2

∥∥∥Ej`−1

∥∥∥
2

.

Notice that, for any real numbers (ai,j), i ∈ [n], j ∈ [t], and for any real number bj , j ∈ [t], we have n∑
i=1

 t∑
j=1

ai,jbj

21/2

= ‖Ab‖2 = max
‖z‖2=1

zTAb = max
‖z‖2=1

t∑
j=1

(zTAej)bj

≤
t∑

j=1

max
z(j)

((z(j))TAej)bj =

t∑
j=1

‖Aej‖2 bj =

t∑
j=1

(
n∑
i=1

a2
i,j

)1/2

bj .

Thus, we may bound the second term above by

δ

√√√√√ n∑
i=1

 t∑
j=1

∥∥eTi M (j)
∥∥

2

∥∥∥Ej`−1

∥∥∥
2

≤ δ
t∑

j=1

(
n∑
i=1

∥∥∥eTi M (j)
∥∥∥2

2

)1/2 ∥∥∥Ej`−1

∥∥∥
= δ

t∑
j=1

∥∥∥M (j)
∥∥∥
F

∥∥∥Ej`−1

∥∥∥ .
Altogether, we conclude that, in the favorable case the (34) holds,

‖G`‖F ≤ δ

‖Nt‖F +
t∑

j=1

∥∥∥M (j)
∥∥∥
F

∥∥∥Ej`−1

∥∥∥
 = ω`−1,

as desired. This completes the proof of Lemma 11.

Appendix D. Dividing up Ω

In the Matrix Completion literature, the most common assumption on the distribution of the set Ω
of observed entries is that each index (i, j) is included independently with some probability p. Call
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this distribution D(p). In order for our results to be comparable with existing results, this is the
model we adopt as well. However, for our analysis, it is much more convenient to imagine that Ω
is the union of several subsets Ωt, so that the Ωt themselves follow the distribution D(pt) (for some
probability pt, where

∑
t pt = p), and so that all of the Ωt are independent. Algorithmically, the

easiest thing to do to obtain subsets Ωt from Ω is to partition Ω into random subsets of equal size.
However, if we do this, the subsets Ωt will not follow the right distribution; in particular they will not
be independent. For theoretical completeness, we show in this section how to split up the set Ω in
the correct way. More precisely, given pt and p so that

∑
t pt = p, we show how to break Ω ∼ D(p)

into (possibly overlapping) subsets Ωt, so that the Ωt are independent and each Ωt ∼ D(pt).
Algorithm 5 contains the details. Observe that the first thing that Algorithm 5 does is throw

away samples from Ω. Thus, while this step is convenient for the analysis, and we include it for
theoretical completeness, in practice it may be uneccessary—especially if the assumption on the
distribution of Ω is an approximation to begin with.

Input: Parameters p1, . . . , pL, and a set Ω ⊂ [n] × [n] so that each index (i, j) is included in Ω
independently with probability p =

∑
` p`.

Output: Subset Ω1, . . . ,ΩL ⊂ Ω so that each index (i, j) is included in Ω` independently with
probability p`, and so that all of the ` are independent.

36 Choose

p′ = 1−
L∏
`=1

(1− p`).

Observe that p′ ≤ p.
37 Let Ω′ be a set that includes each element of Ω independently with probability p′/p.
38 return SUBSAMPLE( p1, . . . , pL, [n]× [n], Ω′ )

Algorithm 5: SPLITUP: Split a set of indices Ω (as in the input to Algorithm 1) into subsets
Ω1, . . . ,Ωt whose distributions are convenient for our analysis.

The correctness of Algorithm 5 follows from the following lemma, about the properties of
Algorithm 6.

Lemma 15 Pick p1, . . . , p` ∈ [0, 1], and suppose that Ω ⊂ U includes each u ∈ U indepen-
dently with probability p1 −

∏L
`=1(1 − p`). Then the sets Ω1, . . . ,ΩL returned by Algorithm 6

are distributed as follows. Each Ω` is independent, and includes each u ∈ U independently with
probability p`.

Proof Let D denote the distribution we would like to show that that Ω` follow; so we want to
show that the sets returned by Algorithm 6 are distributed according to D. Let PA {·} denote
the probability of an event occuring in Algorithm 6, and let and PD {·} denote the probability of
an event occuring under the target distribution D. Let Nu be the random variable that counts the
number of times u occurs between Ω1, . . . ,Ω`. Then observe that by definition,

qr = PD {Nu = r|Nu ≥ 1} ,

and
p = PD {Nu ≥ 1} .
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Input: Parameters p1, . . . , pL, a universe U , and a set Ω ⊂ U , so that each element u ∈ U is
included independently with probability p = 1−

∏L
`=1(1− p`).

Output: Set Ω1, . . . ,ΩL ⊂ U , so that each entry is included in Ω` idependendently with probability
p`, and so that Ω1, . . . ,ΩL are independent.

39 For r ∈ {1, . . . , L}, let

qr =
1

p

∑
S⊂U ,|S|=r

(∏
`∈S

p`

)∏
`6∈S

(1− p`)

 .

Then
∑L

r=1 qr = 1.
40 Initialize L empty sets Ω1, . . . ,ΩL.
41 for u ∈ Ω do
42 Draw r ∈ {1, . . . , L} with probability qr.
43 Draw a random set T ⊂ [L] of size r.
44 Add u to Ω` for each ` ∈ T .
45 end
46 return Ω1, . . . ,ΩL

Algorithm 6: SUBSAMPLE: Divide a random set Ω into L subsets Ω1, . . . ,ΩL

We aim to show PA {·} = PD {·}. First, fix u ∈ U , and fix any set S ⊂ [L], and consider the event

E(u, S) = (∀` ∈ S, u ∈ Ω`) ∧ (∀` 6∈ S, u 6∈ Ω`) .

We compute PA {E(u, S)}.

PA {E(u, S)} = PA {u ∈ Ω}
L∑
r=1

qrPA {The random set T of size r is precisely S}

= PD {Nu ≥ 1}
L∑
r=1

PD {Nu = r|Nu ≥ 1}P { A random subset of [L] size r is precisely S}

=
L∑
r=1

PD {Nu = r}P {A random subset of [L] of size r is precisely S}

=
L∑
r=1

PD {Nu = r}PD {E(u, S)|Nu = r}

= PD {E(u, S)} .

Next, we observe that for any fixed S, the events {E(u, S)}u∈U are independent under the distribu-
tion induced by Algorithm 6. This follows from the fact that in all of the random steps (including
the generation of Ω and within Algorithm 6), the u ∈ U are treated independently. Notice that these
events are also independent under D by definition.

Now, for any instantiation Ω′ = (Ω′1, . . . ,Ω
′
L) of the random variables (Ω1, . . . ,ΩL), consider

the event
E(Ω′) = ∀`,Ω` = Ω′`.
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We have

PA
{
E(Ω′)

}
= PA

{
∀u,E(u,

{
` : u ∈ Ω′`

}
)
}

=
∏
u∈U

PA
{
E(u,

{
` : u ∈ Ω′`

}
)
}

by independence in Alg. 6

=
∏
u∈U

PD
{
E(u,

{
` : u ∈ Ω′`

}
)
}

by the above derivation

= PD
{
E(Ω′)

}
by independence under D

Thus the probability of any outcome Ω′ is the same under D and under Algorithm 6, and this com-
pletes the proof of the lemma.

Appendix E. Useful statements

In this appendix, we collect a few useful statements upon which we rely.

E.1. Coherence bounds

First, we record some consequences of the bound (4) on the coherence of A. We always have

‖A‖∞ ≤ ‖M‖∞+‖N‖∞ ≤ max
i,j
|eTi UΛUU

T ej |+‖N‖∞ ≤ σ1
µ∗k

n
+
µ∗ ‖N‖F

n
≤ µ∗

n
(kσ1 + ∆) ,

(35)
and similarly

max
i

∥∥eTi A∥∥2
≤
√
µ∗

n

(√
kσ1 + ∆

)
. (36)

It will also be useful to notice that since
∥∥eTi U (>t)

∥∥
2
≤
∥∥eTi U∥∥2

, (4) implies that for all t,

‖Nt‖∞ ≤
∥∥∥M (>t)

∥∥∥
∞

+ ‖N‖∞ ≤
µ∗

n
(kσrt+1 + ∆) . (37)

E.2. Perturbation statements

Next, we will use the following lemma about perturbations of singular values, due to Weyl.

Lemma 16 Let N,E ∈ Rn×n, and let Ñ = N + E. Let σ1 ≥ σ2 ≥ · · · ≥ σn denote the singular
values of N , and similarly let σ̃i denote the singular values of Ñ . Then for all i, |σi − σ̃i| ≤ ‖E‖ .

In order to compare the singular vectors of a matrix A with those of a perturbed version Ã, we
will find the following theorem helpful. We recall that for subspaces U, V , sin θ(U, V ) refers to the
sine of the principal angle between U and V . (See Stewart and Sun (1990) for more on principal
angles).

Theorem 17 (Thm. 4.4 in Stewart and Sun (1990)) Suppose that A has the singular value de-
composition

A =
[
U1 U2

] [Σ1

Σ2

] [
V T

1

V T
2

]
,
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and let Ã = A+ E be a perturbed matrix with SVD

A =
[
Ũ1 Ũ2

] [Σ̃1

Σ̃2

] [
Ṽ T

1

Ṽ T
2

]
.

Let
R = AṼ1 − Ũ1Σ̃1 and S = AT Ũ1 − Ṽ1Σ̃1.

Suppose there are numbers α, δ > 0 so that σmin(Σ̃1) ≥ α+ δ and σmax(Σ2) ≤ α. Then,

max {sin Θ(U1, V1), sin Θ(U2, V2)} ≤ max {‖R‖ , ‖S‖}
δ

.

We will also use the fact that if the angle between (the subspaces spanned by) two matrices is
small, then there is some unitary transformation so that the two matrices are close.

Lemma 18 Let U, V ∈ Rn×k have orthonormal columns, and suppose that sin θ(U, V ) ≤ ε for
some ε < 1/2. Then there is some unitary matrix Q ∈ Rk×k so that ‖UQ− V ‖ ≤ 2ε.

Proof We have V = ΠUV + ΠU⊥V = U(UTV ) + ΠU⊥V. Since sin θ(U, V ) ≤ ε, we have
‖ΠU⊥V ‖ ≤ ε, and σk(UTV ) = cos θ(U, V ) ≥

√
1− ε2. Thus, we can write UTV = Q + E,

where ‖E‖ ≤ 1−
√

1− ε2. The claim follows from the triangle inequality.

E.3. Subspace Iteration

Our algorithm uses the following standard version of the well-known Subspace Iteration algorithm—
also known as Power Method.

Algorithm 7: SUBSIT (A, k, L) (Subspace Iteration)
Input: Matrix A, target rank k, number of iterations L

47 S0 ∈ Rn×k ← random matrix with orthogonal rows for ` = 1, . . . , L do
48 R` ← AS`−1 S` ← QR(R`)
49 end
50 for i = 1, . . . , k do
51 σ̃2

i ← (RL)Ti A
TA(RL)i // (RL)i is the i-th column of RL

52 end
53 return (RL, σ̃) Output: A matrix R ∈ Rn×k approximating the top k singular vectors of A, and

estimates σ̃1, . . . , σ̃k of the singular values.

We have the following theorem about the convergence of SUBSIT.

Theorem 19 Let A ∈ Rn×n be any matrix, with singular values σ1 ≥ σ2 ≥ · · · ≥ σn. Let RL ∈
Rn×k be the matrix with orthonormal columns returned after L iterations of SUBSIT (Algorithm
7) with target rank k. for some suitably small parameter γ < 1. Then the values σ̃i = (Ri)

TARi
satisfy

|σ̃i − σi| ≤ σi
(

1− (1− γ)k
)

+ 2nσ1 (1− γ)L .

In particular, if γ = o(1/k) and if L = C log(n)/γ then with probability 1− 1/poly(n),

|σ̃i − σi| .
σ1

n
+ σikγ . σ1kγ.
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Proof Let r1 ≤ r2 ≤ · · · ≤ rt be the indices r ≤ k so that σr+1/σr ≤ 1− γ. Notice that we may
assume without loss of generality that rt = k. Indeed, the result of running SUBSIT with target rank
k is the same as the result of running SUBSIT with a larger rank and restricting to the first k columns
of R`. Write A =

∑
j U

(j)ΣjV
(j), where Σj contains the singular values σrj+1, . . . , σrj+1 . Then

using (Stewart, 2001, Chapter 6, Thm 1.1) and deviation bounds for the principal angle between a
random subspace and fixed subspace, we have

Pr
{

sin θ
(
U (j), R

(j)
L

)
≤ Cnc (1− γ)L

}
≥ 1− 1/nc

′
.

Here, c′ can be made any constant by increasing c and C is an absolute constant. Fix i and let
xi = (RL)i denote the i − th column of RL. Suppose that i ∈ {rj + 1, . . . , rj+1}. Then, the
estimates σ̃i satisfy

σ̃i = xTi A
TAxi =

∥∥∥A(j)xi

∥∥∥
2

+
∑
s 6=j

∥∥∥A(s)xi

∥∥∥2

2
.

The second term satisfies∑
s 6=j

∥∥∥A(s)xi

∥∥∥2

2
≤ σ2

1 sin2 θ(U (s), R
(s)
L ) ≤ σ2

1n
2(1− γ)2L.

The first term has ∥∥∥A(j)xi

∥∥∥2

2
≤
∥∥∥A(j)

∥∥∥2
= σ2

rj+1

and ∥∥∥A(j)xi

∥∥∥2

2
≥ cos2 θ

(
U (s), R

(s)
L

)
· σmin(A(j)) ≥

(
1− n2(1− γ)2L

)
· σ2

rj .

By definition, as there are no significant gaps between σrj+1 and σrj , we have

σrj+1

σrj+1

≥ (1− γ)k,

and so this completes the proof after collecting terms.

E.4. Matrix concentration inequalities

We will repeatedly use the Matrix Bernstein and Matrix Chernoff inequalities; we use the versions
from Tropp (2012):

Lemma 20 [Matrix Bernstein Tropp (2012)] Consider a finite sequence {Zk} of independent, ran-
dom, d× d matrices. Assume that each matrix satisfies

EXk = 0, ‖Xk‖ ≤ R almost surely.

Define

σ2 := max

{∥∥∥∥∥∑
k

EXkX
T
k

∥∥∥∥∥ ,
∥∥∥∥∥∑

k

EXT
k Xk

∥∥∥∥∥
}
.

39



HARDT WOOTTERS

Then, for all t ≥ 0,

P

{∥∥∥∥∥∑
k

Xk

∥∥∥∥∥ ≥ t
}
≤ 2d exp

(
−t2/2

σ2 +R/3

)
.

One corollary of Lemma 20 is the following lemma about the concentration of the matrix
PΩ(A).

Lemma 21 Suppose that A ∈ Rn×n and let Ω ⊂ [n]× [n] be a random subset where each entry is
included independently with probability p. Then

P {‖PΩ(A)−A‖ > u} ≤ 2n exp

 −u2/2(
1
p − 1

)(
maxi

∥∥eTi A∥∥2

2
+ u

3 ‖A‖∞
)
 .

Proof Let ξij be independent Bernoulli-p random variables, which are 1 if (i, j) ∈ Ω and 0 other-
wise.

PΩ(A)−A =
∑
i,j

(
ξij
p
− 1

)
Ai,jeie

T
j ,

which is a sum of independent random matrices. Using the Matrix Bernstein inequality, Lemma 20,
we conclude that

P {‖PΩ(A)−A‖ > u} ≤ 2n exp

(
−u2/2

σ2 +Ru/3

)
,

where

σ2 =

∥∥∥∥∥∥E
∑
i,j

(
ξij
p
− 1

)2

A2
i,jeie

T
j eje

T
i

∥∥∥∥∥∥ =

(
1

p
− 1

)
max
i
‖Ai‖22

and ∥∥∥∥(ξijp − 1

)
Ai,jeie

T
j

∥∥∥∥ ≤ R =

(
1

p
− 1

)
‖A‖∞

almost surely. This concludes the proof.

Finally, we will use the Matrix Chernoff inequality.

Lemma 22 [Matrix Chernoff Tropp (2012)] Consider a finite sequence {Xk} of independent, self-
adjoint, d× d matrices. Assume that each Xk satisfies

Xk < 0, λmax(Xk) ≤ R almost surely.

Define

µmin := λmin

(∥∥∥∥∥∑
k

EXk

∥∥∥∥∥
)
, µmax := λmax

(∥∥∥∥∥∑
k

EXk

∥∥∥∥∥
)
.

Then for δ ∈ (0, 1),

P

{
λmin

(∑
k

Xk

)
≤ (1− δ)µmin

}
≤ d exp(−δ2µmin/2R)
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and

P

{
λmax

(∑
k

Xk

)
≥ (1 + δ)µmax

}
≤ d exp(−δ2µmax/3R).

E.5. Medians of vectors

For v ∈ Rk, let median(v) be the entry-wise median.

Lemma 23 Suppose that v(s), for s = 1, . . . , T are i.i.d. random vectors, so that for all s,

P
{∥∥∥v(s)

∥∥∥2

2
> α

}
≤ 1/5.

Then

P
{∥∥∥median(v(s))

∥∥∥2

2
> 4α

}
≤ exp(−Ω(T )).

Proof Let S ⊂ [T ] be the set of s so that
∥∥v(s)

∥∥2

2
≤ α. By a Chernoff bound,

P
{
|S| ≤ 3T

4

}
= P

{
T∑
s=1

1‖v(s)‖2
2
>α

>
T

4

}
≤ exp(−Ω(T )).

Suppose that the likely event occurs, so |S| > 3T/4. For j ∈ [k], let

Sj =
{
s ∈ S : (v

(s)
j )2 ≥ medians((v

(s)
j )2)

}
.

Because |S| > 3T/4, we have |Sj | ≥ T/4. Then

∥∥∥medians(v
(s)
j )
∥∥∥2

2
=

n∑
j=1

medians

(
(v

(s)
j )2

)
≤

n∑
j=1

1

|Sj |
∑
s∈Sj

(v
(s)
j )2

≤
n∑
j=1

4

T

∑
s∈Sj

(v
(s)
j )2 ≤

n∑
j=1

4

T

∑
s∈S

(v
(s)
j )2 ≤ 4

T

∑
s∈S

∥∥∥v(s)
∥∥∥2

2
≤ 4|S|α

T
≤ 4α.

This completes the proof.

41


	Introduction
	Our Results

	Overview
	Further Discussion of Related Work
	Notation

	Algorithms and Results
	Overview of Subroutines
	Statement of the main theorem
	Running Time

	Proof of Main Theorem
	Proof of Lemma ??
	Proof of Lemma ??
	Proof of Lemma ??
	Dividing up 
	Useful statements
	 Coherence bounds 
	 Perturbation statements
	Subspace Iteration
	Matrix concentration inequalities
	 Medians of vectors 


