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Abstract
We consider the problem of minimizing regret in the setting of advice-efficient multiarmed bandits
with expert advice. We give an algorithm for the setting of K arms and N experts out of which
we are allowed to query and use only M experts’ advice in each round, which has a regret bound1

of Õ
(√

min{K,M}N
M T

)
after T rounds. We also prove that any algorithm for this problem must

have expected regret at least Ω̃

(√
min{K,M}N

M T

)
, thus showing that our upper bound is nearly

tight. This solves the COLT 2013 open problem of Seldin et al. (2013).

1. Introduction

In many real world applications one is faced with the problem of choosing one of several actions:
for example, in healthcare, a choice of treatment; in financial domains, a choice of investment. Typ-
ically in such scenarios one may utilize the advice of several domain experts to make an informed
choice. Once an action is chosen, one obtains feedback for the action in terms of some loss (or re-
ward), but no feedback for other actions is obtained. This is repeated over several rounds. Repeated
decision-making in this context is modeled by the well-studied multiarmed bandits with expert ad-
vice problem (Auer et al., 2002). In this paper, we study an important practical consideration for this
setting: frequently there are costs associated with obtaining useful advice, and budget constraints
imply that only a few experts may be queried for advice. This constraint on the number of experts
that can be queried in any round is modeled by the advice-efficient setting of the multiarmed bandits
with expert advice problem, introduced by Seldin et al. (2013).

In this setting, in each round t = 1, 2, . . . , T , the learner is required to pull one arm At from
some set A of K arms. Simultaneously, an adversary sets losses `t(a) ∈ [0, 1] for each arm a ∈ A,
thus generating the loss vector `t ∈ RA. Assisting us in this task are N experts in the set H. Each
expert h can provide advice2 on which arm to pull in the form of a probability distribution ξht ∈ RA
on the set of arms. This advice gives the expert h an expected loss of ξht · `t in round t. The catch is
that we can only observe the advice of at most M experts of our choosing in each round. The goal
is to choose subsets of M experts in each round to query the advice of, and using their advice play
some arm At ∈ A (probabilistically, if desired) to minimize the expected regret with respect to the
∗ This work was done when the author was at IBM T. J. Watson Research Center.

1. Here, we use the Õ(·) and Ω̃(·) notation to suppress dependence on logarithmic factors in the problem parameters.
2. No assumptions are made on how this advice is chosen by the experts other in each round than that it is independent

of the losses of the arms chosen by the adversary in that round.
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loss of the best expert, where the regret is defined as:

RegretT :=

T∑
t=1

`t(At)−min
h∈H

T∑
t=1

ξht · `t.

In this paper we give an algorithm whose expected regret is bounded by√
2 min{K,M}N log(N)

M
T

after T rounds, based on the Multiplicative Weights (MW) forecaster for prediction with expert
advice (Littlestone and Warmuth, 1994). We can improve this upper bound using the PolyINF
forecaster of Audibert and Bubeck (2010) to

4

√
min{K,M}N log( 8M

min{K,M})

M
T.

This matches the regret of the best known algorithms for the special cases M = 1 and M = N , and
interpolates between them for intermediate values of M . This solves the COLT 2013 open problem
proposed by Seldin et al. (2013), and in fact gives a better regret bound than the bound conjectured

in (Seldin et al., 2013), which was O
(√

KN log(N)
M T

)
.

Furthermore, we also show that any algorithm for the problem must incur expected regret of

Ω

(√
min{K, M

log(K)
}N

M T

)
on some sequence of expert advice and arm losses, thus showing that our

upper bound is nearly tight: the ratio between the upper and lower bounds is always bounded by
O(max{

√
log(K),

√
log(M/K)}).

2. Preliminaries

For any event E, let I[E] be the indicator random variable set to 1 if E happens and 0 otherwise.
In any round t of the algorithm, let Prt[·] and Et[·] denote probability and expectation respectively
conditioned on all the randomness defined up to round t − 1. For two probability distributions P
and Q defined on the same space let KL(P ‖ Q) and dTV(P,Q) denote the KL-divergence and
total variation distance between the two distributions respectively. Let ‖ · ‖p denote the p-norm for
any p ≥ 1.

Without loss of generality, we may assume that each expert suggests exactly one arm to play in
any round; i.e. ξht (a) = 1 for exactly one arm a ∈ A and 0 for all other arms. Call such advice
vectors “pure”. To see this, for every expert h we can randomly round a general advice vector ξht
to a pure vector by sampling some arm ah ∼ ξht and constructing a new advice vector ξ̂ht by setting
ξ̂ht (ah) = 1 and ξ̂ht (a) = 0 for all a 6= ah. Note that E[ξ̂ht ] = ξht ; thus for any expert h, following
the randomly rounded advice ξ̂ht for t = 1, 2, . . . , T has the same expected cost as following the
advice ξht . Since this randomized rounding trick can be applied to the advice (algorithmically for
the observed advice, and conceptually for the unobserved advice), in the rest of the paper we assume
that all advice vectors are pure vectors; this helps us in getting a tighter bound on the regret. Let
aht denote the action chosen by expert h at time t, so that the loss of the expert can be rewritten as
ξht · `t = `t(a

h
t ).
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For any time period t and any set U ⊆ H, define the “active set of arms” to be the set of all arms
recommended by experts in U , i.e.

AUt = {a ∈ A : ∃h ∈ U s.t. aht = a}.

Note that since we are allowed to query at most M experts in any round, if U is the queried set of
experts in round t, then |AUt | ≤ min{K,M}; this leads to min{K,M} factor in the regret bound.
Define K ′ := min{K,M}, the effective number of arms.

Throughout the paper we also assume that N ≥ 2 and K ≥ 2: in the remaining cases we
trivially get 0 regret.

3. Algorithm

The algorithm, dubbed LEXP, works as follows. Assume for simplicity3 that M divides N , and in
the beginning, partition the N experts into R := N

M groups of size M arbitrarily. Run an algorithm
for prediction with expert advice (such as Multiplicative Weights (MW) forecaster of Littlestone
and Warmuth (1994), or the PolyINF forecaster of Audibert and Bubeck (2010)) on all the experts.
In each round, this base expert learning algorithm computes a distribution over the experts. Then
LEXP samples an expert from this distribution, and chooses the group of experts it belongs to to
query for advice, thus ensuring that at most M experts are queried in any round. It then plays the
action recommended by the chosen expert, and observes its loss. It then constructs unbiased loss
estimators for all experts using the observed loss and queried advice and passes these to the base
expert learning algorithm, which updates its distribution. The loss estimators are non-zero only
for experts in the chosen group; thus they can be computed for all experts and the algorithm is
well-defined. The pseudo-code follows.

4. Analysis

We first prove a number of utility lemmas. The first lemma shows that the loss estimators we con-
struct are unbiased for all experts with positive probability in the distribution (and an underestimate
in general):

Lemma 1 For all rounds t and all experts h, we have Et[Y h
t ] ≤ `t(a

h
t ) with equality holding if

qt(h) > 0.4 Thus, Et[qt(h)Y h
t ] = qt(h)`t(a

h
t ), and unconditionally, E[Y h

t ] ≤ `t(aht ).

Proof Let h ∈ Bi. For clarity, let a = aht . If Prt[i, a] > 0, then by the definition of the loss
estimator in (1), we have

Et[Y h
t ] = Et[ˆ̀it(a)] = Et

[
`t(a)

I[It = i, At = a]

Prt[i, a]

]
= `t(a)

Prt[i, a]

Prt[i, a]
= `t(a).

If Prt[i, a] = 0, then ˆ̀i
t(a) = 0, and so Et[ˆ̀it(a)] = 0 ≤ `t(a). Thus in either case, Et[Y h

t ] ≤ `t(a),
and Et[qt(h)Y h

t ] = qt(h)`t(a
h
t ). Finally, note that if qt(h) > 0, then Prt[i, a] > 0, so equality

holds.

3. The regret bounds only change by a small constant factor if M doesn’t divide N .
4. It is easy to see that both the MW and PolyINF forecasters always have positive probability on all experts, so if we

use one of these two expert learning algorithms, then all the inequalities in this lemma are actually equalities.
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Algorithm 1 Multiarmed Bandits with Limited Expert Advice Algorithm (LEXP).
1: Partition the N experts into R = N/M groups of M experts each arbitrarily. Call the groups
B1, B2, . . . , BR, and defineR := {1, 2, . . . , R}.

2: Run an algorithm for prediction with expert advice (such as MW or PolyINF) on all the experts.
3: for t = 1, 2, . . . , T do
4: Let qt be the distribution over experts generated by the base expert learning algoithm. Sample

an expert Ht ∼ qt, set It to be the index of the group to which Ht belongs.
5: Query the advice of all experts in BIt .
6: Play At = aHtt , and observe its loss `t(At).
7: For every group Bi and every arm a ∈ A, define the loss estimator given by

ˆ̀i
t(a) :=

{
`it(a) I[It=i,At=a]Prt[i,a]

if Prt[i, a] > 0

0 otherwise,
(1)

where Prt[i, a] =
∑

h∈Bi qt(h)ξht (a) is the probability of the event {It = i, At = a},
conditioned on all the randomness up to round t− 1.

8: For all experts h ∈ Bi, define the loss estimator Y h
t := ˆ̀i

t(a
h
t ), and pass them to the base

expert learning algorithm.
9: end for

The next lemma says that the algorithm’s expected loss in each round is the same as that of the
base expert learning algorithm:

Lemma 2 For all rounds t we have E[`t(At)] = E[
∑

h∈H qt(h)Y h
t ].

Proof We have

Et[`t(At)] = Et[`t(aHtt )] =
∑
h∈H

qt(h)`t(a
h
t ) = Et[

∑
h∈H

qt(h)Y h
t ],

by Lemma 1. Taking expectation over all the randomness up to time t− 1, the proof is complete.

The next lemma gives a bound on the variance of the estimated losses. We state this in slightly
more general terms than necessary to unify the analysis of the algorithms using the MW or PolyINF
forecasters as the expert learning algorithm.

Lemma 3 Fix any α ∈ [1, 2]. For all rounds t we have

E[
∑
h∈H

(qt(h))α(Y h
t )2] ≤ (RK ′)2−α.

Proof Let
S := {(i, a) ∈ R×A | Pr

t
[i, a] > 0}

be the set of all (group index, action) pairs that have positive probability in round t. Since in round
t, the algorithm only plays arms in ABItt , and for any group Bi, the set of active arms in round t,
ABit , has size at most K ′, we conclude that |S| ≤ RK ′.
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The pair (It, At) computed by the algorithm is in S. Conditioning on the value of (It, At), we
can upper bound

∑
h∈H(qt(h))α(Y h

t )2 as follows:∑
h∈H

(qt(h))α(Y h
t )2 =

∑
h∈BIt

(qt(h))α(ˆ̀It
t (aht ))2 (∵ Y h

t = 0 for all h /∈ BIt)

=
∑
h∈BIt

(qt(h))α
(
ξh(At) ·

`t(At)

Prt[It, At]

)2

(∵ ˆ̀It
t (a) = 0 for all a 6= At)

≤
∑
h∈BIt

(qt(h)ξh(At))
α

(
1

Prt[It, At]

)2

(∵ ξh(At), `t(At) ∈ [0, 1], α ≤ 2)

≤

 ∑
h∈BIt

qt(h)ξh(At)

α(
1

Prt[It, At]

)2

(∵ ‖ · ‖α ≤ ‖ · ‖1 since α ≥ 1)

= Pr
t

[It, At]
α−2, (2)

since Prt[It, At] =
∑

h∈BIt
qt(h)ξh(At). Next, we have

Et[
∑
h∈H

(qt(h))α(Y h
t )2] = Et[Et[

∑
h∈H

(qt(h))α(Y h
t )2 | (It, At)]

≤
∑

(It,At)∈S

Pr
t

[It, At] · Pr
t

[It, At]
α−2 (By (2))

=
∑

(It,At)∈S

Pr
t

[It, At]
α−1

≤

 ∑
(It,At)∈S

Pr
t

[It, At]

α−1

·

 ∑
(It,At)∈S

1

2−α

= |S|2−α

≤ (RK ′)2−α.

The penultimate inequality follows by applying Hölder’s inequality to the pair of dual norms ‖·‖ 1
α−1

and ‖ · ‖ 1
2−α

. Taking expectation over all the randomness up to time t− 1, the proof is complete.

4.1. Analysis using the MW forecaster

The MW forecaster for prediction with expert advice takes one parameter, η. It starts with q1 being
the uniform distribution over all experts, and for any t ≥ 1, constructs the distribution qt+1 using
the following update rule:

qt+1(h) := qt(h) exp(−ηY h
t )/Zt,

whereZt is the normalization constant required to make qt+1 a distribution, i.e.
∑

h∈H qt+1(h) = 1.

Theorem 1 Set η =

√
M log(N)
K′NT . Then the expected regret of the algorithm using the MW fore-

caster is bounded by
√

2K′N log(N)
M T .
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Proof The MW forecaster guarantees (see (Arora et al., 2012)) that as long as Y h
t ≥ 0 for all t, h,

we have for any expert h?

T∑
t=1

∑
h∈H

qt(h)Y h
t ≤

T∑
t=1

Y h?

t +
η

2

T∑
t=1

∑
h∈H

qt(h)(Y h
t )2 +

logN

η
. (3)

Now, we have for any expert h?

T∑
t=1

E[`t(At)] =
T∑
t=1

E[
∑
h∈H

qt(h)Y h
t ] (By Lemma 2)

≤
T∑
t=1

E[Y h?

t ] +
η

2

T∑
t=1

E[
∑
h∈H

qt(h)(Y h
t )2] +

logN

η
(By (3))

≤
T∑
t=1

`t(a
h?

t ) +
η

2
RK ′T +

logN

η

(By Lemma 1 and Lemma 3 with α = 1)

≤
T∑
t=1

`t(a
h?

t ) +

√
2K ′N log(N)

M
T,

using η =

√
2 log(N)
RK′T =

√
2M log(N)
K′NT .

4.2. Analysis using the PolyINF forecaster

The PolyINF forecaster for prediction with expert advice takes two parameters, η and c > 1. It
starts with q1 being the uniform distribution over all experts, and for any t ≥ 1, constructs the
distribution qt+1 as follows:

qt+1(h) =
1

[η(
∑t

τ=1 Y
h
τ + Ct+1)]c

where Ct+1 is a constant chosen so that qt+1 is a distribution, i.e.
∑

h∈H qt+1(h) = 1.

Theorem 2 Set c = log(8MK′ ) and η = 2N
1
2c [c(RK ′)1−

1
c T ]−

1
2 . Then the expected regret of the

algorithm using the PolyINF forecaster is bounded by 4

√
K′N log(

8M
K′ )

M T .

Proof Audibert et al. (2011) prove that for the PolyINF forecaster, as long as Y h
t ≥ 0 for all t, h,

we have for any expert h?:

T∑
t=1

∑
h∈H

qt(h)Y h
t ≤

T∑
t=1

Y h?

t +
cη

2

T∑
t=1

∑
h∈H

(qt(h))1+
1
c (Y h

t )2 +
cN

1
c

η(c− 1)
. (4)
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Now, we have for any expert h?

T∑
t=1

E[`t(At)] =
T∑
t=1

E[
∑
h∈H

qt(h)Y h
t ] (By Lemma 2)

≤
T∑
t=1

E[Y h?

t ] +
cη

2

T∑
t=1

E[
∑
h∈H

(qt(h))1+
1
c (Y h

t )2] +
2N

1
c

η
(By (4), using c ≥ 2)

≤
T∑
t=1

`t(a
h?

t ) +
cη

2
(RK ′)1−

1
c T +

2N
1
c

η

(By Lemma 1 and Lemma 3 with α = 1 + 1
c )

≤
T∑
t=1

`t(a
h?

t ) + 2

√
cRK ′

(
N
RK′

)1
c T ,

(Using η = 2N
1
2c [c(RK ′)1−

1
c T ]−

1
2 )

≤
T∑
t=1

`t(a
h?

t ) + 4

√
K ′N log(8MK′ )

M
T,

using c = log(8MK′ ) = log( 8N
RK′ ).

4.3. Extension to Changing Number of Queried Experts

The algorithm and its analysis extends easily to the situation where the number of experts queried is
not fixed but can change from round to round. Specifically, at time t, the learner is told the number
Mt of experts that can be queried in that round.

In this setting, consider the following variant of the algorithm. In each round t, the experts are
re-partitioned into as N/Mt groups5 of size Mt. The rest of the algorithm stays the same: viz. an
expert is chosen from the current probability distribution over the experts, and the group it belongs
to is chosen for querying for expert advice. The update to the distribution and the loss estimators
are the same as in Algorithm 1.

The analysis of Algorithm 1 relies on Lemmas 1, 2 and 3 all of which concern a specific round
t, and the re-partitioning doesn’t affect them. Thus, we easily obtain the following bound:

Theorem 3 In the setting where in each round t the number Mt of experts that can be queried in
that round is specified, the extension of Algorithm 1 which re-partitions the experts in each round
into Rt := N/Mt groups of size Mt, has the following regret bound. For every round t, let K ′t =

min{K,Mt} and t∗ = arg maxTt=1Mt. If the MW forecaster is used with η =

√
log(N)

N
∑T
t=1K

′
t/Mt

,

then the expected regret is bounded by
√∑T

t=1
2K′tN log(N)

Mt
. If the PolyINF forecaster is used with

c = log(8Mt∗
K′
t∗

) and η = 2N
1
2c [c

∑T
t=1(RtK

′
t)
1−1

c ]−
1
2 , then the expected regret is bounded by

4

√∑T
t=1

K′tN log(8Mt∗/K′t∗ )

Mt
.

5. Again, here we assume Mt divides N for convenience.
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5. Lower Bound

In this section, we show a lower bound on the regret of any algorithm for the multiarmed bandit
with limited expert advice setting which shows that our upper bound is nearly tight. To describe the
lower bound, consider the well-studied balls-into-bins process. Here M balls are tossed randomly
into K bins. In each toss a bin is chosen uniformly at random from the K bins independently
of other tosses. Define the function f(K,M) to be the expected number of balls in the bin with
the maximum number of balls. It is well-known (see, for example, Raab and Steger (1998)) that
f(K,M) = O(max{log(K), MK }).

With this definition, we can prove the following lower bound. Note that this lower bound doesn’t
follow from a similar lower bound in (Seldin et al., 2014) because in their setting the experts’ losses
can be all uncorrelated, whereas in our setting the experts’ losses are necessarily correlated because
there are only K arms.

Theorem 4 For any algorithm for the multiarmed bandit with limited expert advice setting, there
is a sequence of expert advice and losses for each arm so that the expected regret of the algorithm

is at least Ω
(√

N
f(K,M)T

)
= Ω

(√
min{K, M

log(K)
}N

M T

)
.

Proof The lower bound is based on standard information theoretic arguments (see, e.g. (Auer et al.,
2002)). Let B(p) be the Bernoulli distribution with parameter p, i.e. 1 is chosen with probability p
and 0 with probability 1− p.

In the following, we assume the online algorithm is deterministic: the extension to randomized
algorithms is easy by conditioning on the random seed of the algorithm, since the sequence of advice
and losses we construct do not depend on the algorithm.

Fix the parameter ε := 1
16

√
N

f(K,M)T . The expert advice and the losses of the arms are generated
randomly as follows.We defineN probability distributions over advice and losses, Ph for all h ∈ H.
Fix an h? ∈ H, and define Ph? as follows. In each round t, for all experts h ∈ H, we set their
advice to be a uniformly random arm in A. Recall that the arm chosen by expert h in round t is aht .
Conditioned on the choice of the arm ah

?

t , the loss of arm ah
?

t is chosen from B(12 − ε), and the loss
of all arms a 6= ah

?

t from B(12), independently. Unconditionally, the distribution of the loss of any
arm a at any time t is B(p) where p = 1

K ·
(
1
2 − ε

)
+ K−1

K · 12 = 1
2 −

ε
K . A similar calculation

shows that for all experts h 6= h?, the distribution of the loss of their chosen arm is B(p) and thus
has expectation p, and the expected loss of the arm chosen by h? is 1

2 − ε. Thus the best expert is
h?. Let Eh? denote expectation under Ph? .

Consider another probability distribution P0 over advice and losses: in all rounds t, all experts
choose their arms in A uniformly at random as before, and all arms have loss distributed as B(p).
Let E0 denote the expectation of random variables under P0.

Before round 1, we choose an expert h? ∈ H uniformly at random, and advice and losses are
then generated from Ph? . In round t, let St denote the set of M experts chosen by the algorithm to
query.

Lemma 4 below shows that if either of the events [h? /∈ St] or [h? ∈ St, At 6= ah
?

t ] happens,
the algorithm suffers an expected regret of at least ε/2. Define the random variables

Lh? =

T∑
t=1

I[h? ∈ St] and Nh? =

T∑
t=1

I[h? ∈ St, At = ah
?

t ].

8
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Then to get a lower bound on the expected regret we need to upper bound Eh? [Nh? ]. To do this, we
use arguments based on KL-divergence between the distributions Ph? and P0. Specifically, for all
t, let

Ht = 〈(G1, `1(A1)), (G2, `2(A2)), . . . , (Gt, `t(At))〉

denote the history up to time t; here, Gτ = {(h, ahτ ) | h ∈ Sτ} is the set of pairs of experts and their
advice for the experts queried at time τ . For convenience, we define H0 = {}, the empty set. Note
that since the algorithm is assumed to be deterministic,Nh? is a deterministic function of the history
HT . Thus to upper bound Eh? [Nh? ] we compute an upper bound on KL(P0(HT ) ‖ Ph?(HT )).
Lemma 5 below shows that

KL(P0(HT ) ‖ Ph?(HT )) ≤ 6ε2E0[Nh? ] +
4ε2

K2
E0[Lh? ].

Thus, by Pinsker’s inequality, we get

dTV(P0(HT ),Ph?(HT )) ≤
√

1
2KL(P0(HT ) ‖ Ph?(HT )) ≤

√
3ε2E0[Nh? ] +

2ε2

K2
E0[Lh? ].

Since Nh? ∈ [0, T ], this implies that

Eh? [Nh? ] ≤ E0[Nh? ] + T

√
3ε2E0[Nh? ] +

2ε2

K2
E0[Lh? ].

By Jensen’s inequality applied to the concave square root function, we get

1

N

∑
h?∈H

Eh? [Nh? ] ≤
1

N

∑
h?∈H

E0[Nh? ] + T

√√√√3ε2

[
1

N

∑
h?∈H

E0[Nh? ]

]
+

2ε2

K2

[
1

N

∑
h?∈H

E0[Lh? ]

]

≤ f(K,M)

N
T + T

√
3ε2

f(K,M)

N
T + 2ε2

M

K2N
T (5)

≤ 3T

4
+ 2εT

√
f(K,M)

N
T. (6)

Inequality (5) follows from Lemma 6 below using

∑
h?∈H

E0[Lh? ] =

T∑
t=1

∑
h?∈H

P0[h
? ∈ St] =

T∑
t=1

E0[|St|] ≤ MT

and∑
h?∈H

E0[Nh? ] =
T∑
t=1

∑
h?∈H

P0[h
? ∈ St, At = ah

?

t ] ≤
T∑
t=1

E0[f(K, |St|)] ≤ f(K,M)T. (7)

To obtain inequality (6), we upper bound 2ε2 M
K2N

T by ε2 f(K,M)
N T because f(K,M) is at least the

expected number of balls in each bin, which equals M
K , and so f(K,M) ≥ 2M

K2 for K ≥ 2. As
for the f(K,M)

N T term, we bound it using the fact that f(K,M) ≤ f(2, N) for K ≥ 2 (since f is
clearly monotonically decreasing in the first argument and monotonically increasing in the second),
and f(2, N) ≤ N+

√
N

2 ≤ 3N
4 for N ≥ 2.

9
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Now, taking expectation over the choice of the expert h?, the expected regret of the algorithm is
at least

1

N

∑
h?∈H

ε

2
(T − Eh? [Nh? ]) ≥

ε

8
T − ε2T

√
f(K,M)

N
T

=
1

256

√
N

f(K,M)
T = Ω


√

min{K, M
log(K)}N
M

T

 ,

using the setting ε = 1
16

√
N

f(K,M)T and the fact that f(K,M) = O(max{log(K), MK }).

Lemma 4 Suppose h? is the expert chosen in the beginning and advice and losses are then gen-
erated from Ph? . Then in any round t, if either of the events [h? /∈ St] or [h? ∈ St, At 6= ah

?

t ]
happens, the algorithm suffers an expected regret of at least ε/2.

Proof First, recall that the expert h? always incurs an expected loss of 1
2 − ε in each round t.

Now if h? /∈ St, then the losses of the arms are independent of the advice of the experts in St,
and hence their distribution conditioned on the advice of experts in St is B(p). Thus, the distribution
of the chosen arm At is also B(p), which implies that the algorithm suffers an expected regret of
p− (12 − ε) = ε(1− 1/K) ≥ ε/2.

If h? ∈ St but At 6= ah
?

t , then the distribution of the loss of At, conditioned on the ad-
vice of the experts in St, is B(12). This implies that the algorithm suffers an expected regret of
1
2 − (12 − ε) = ε ≥ ε/2.

Lemma 5 We have

KL(P0(HT ) ‖ Ph?(HT )) ≤ 6ε2E0[Nh? ] +
4ε2

K2
E0[Lh? ].

Proof We have

KL(P0(HT ) ‖ Ph?(HT )) =

T∑
t=1

KL(P0((Gt, `t(At))|Ht−1) ‖ Ph?((Gt, `t(At))|Ht−1)) (8)

=

T∑
t=1

[KL(P0(`t(At)|Ht−1, Gt) ‖ Ph?(`t(At)|Ht−1, Gt))

+ KL(P0(Gt|Ht−1) ‖ Ph?(Gt|Ht−1))] (9)

=
T∑
t=1

KL(P0(`t(At)|Ht−1, Gt) ‖ Ph?(`t(At)|Ht−1, Gt)) (10)

=
T∑
t=1

P0[h
? ∈ St, At = ah

?

t ]KL(B(p) ‖ B(12 − ε))

+ P0[h
? ∈ St, At 6= ah

?

t ]KL(B(p) ‖ B(12))

+ P0[h
? /∈ St]KL(B(p) ‖ B(p)) (11)

10
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≤
T∑
t=1

P0[h
? ∈ St, At = ah

?

t ] · 6ε2 + P0[h
? ∈ St, At 6= ah

?

t ] · 4ε2

K2
(12)

≤
T∑
t=1

6ε2P0[h
? ∈ St, At = ah

?

t ] +
4ε2

K2
P0[h

? ∈ St]

= 6ε2E0[Nh? ] +
4ε2

K2
E0[Lh? ].

Equalities (8) and (9) follow from the chain rule for relative entropy. Equality (10) follows because
the distribution of Gt conditioned on Ht−1 is identical in P0 and Ph? . Equality (11) follows under
P0, the loss of the chosen arm always follows B(p), and under Ph? , if h? /∈ St, then the loss of
the chosen arm follows B(p), if h? ∈ St and At = ah

?

t , then the loss of the chosen arm follows
B(12 − ε), and if h? ∈ St and At 6= ah

?

t , then the loss of the chosen arm follows B(12). Finally,
inequality (12) follows using standard calculations for KL-divergence between Bernoulli random
variables.

Recall that f(K,M) is the expected number of balls in the bin with the maximum balls in a
M -balls-into-K-bins process.

Lemma 6 For all t, we have∑
h?∈H

P0[h
? ∈ St] = E0[|St|] and

∑
h?∈H

P0[h
? ∈ St, At = ah

?

t ] ≤ E0[f(K, |St|)].

Proof First, we have

∑
h?∈H

P0[h
? ∈ St] = E0

[∑
h?∈H

I[h? ∈ St]

]
= E0[|St|].

Next, we have

∑
h?∈H

P0[h
? ∈ St, At = ah

?

t ] = E0

[∑
h?∈H

I[h? ∈ St, At = ah
?

t ]

]
= E0

[
|{h? ∈ St : At = ah

?

t }|
]

≤ E0

[
max
a∈A
{|{h? ∈ St : a = ah

?

t }|}
]

= E0

[
E0

[
max
a∈A
{|{h? ∈ St : a = ah

?

t }|} | St
]]

= E0[f(K, |St|)].

The penultimate equality follows because conditioning on the choice of St, the random variable
maxa∈A{|{h? ∈ St : a = ah

?

t }|} is completely determined by the choice of the arms recommended
by the experts h? ∈ St. Since these arms are chosen uniformly at random fromA independently for
each expert h? ∈ St, we can think of the |St| experts in St as “balls” and the K arms inA as “bins”
in a balls-into-bins process. Then the random variable of interest is exactly the number of balls in
the bin with maximum number of balls. The expectation of this random variable is f(K, |St|).

11
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5.1. Extension to Global Limit on Queries

In certain situations a global limit on the number of queries made to experts over the entire run of
the algorithm, rather than a per-round limit, is more natural. Then the analysis of Theorem 4 can be
extended easily to give the following theorem (proved in Appendix A):

Theorem 5 In the setting of the multiarmed bandits with limited expert advice problem where there
is a global limit of MT queries to experts over the T rounds, for any algorithm, there is a sequence
of expert advice and losses for each arm so that the expected regret of the algorithm is at least

Ω

(√
min{K, M

log(K)
}N

M T

)
.

This shows that the up to logarithmic factors, the optimal allocation of queries over the rounds is
the uniform allocation of M queries per round.

5.2. Extension to Changing Number of Queried Experts

The lower bound also extends to the setting of Section 4.3 where in each round t, the learner is
told the number of experts that can be queried, Mt. The analysis is basically the same with a few
modifications to handle the changing number of experts to be queried. In Appendix A, we prove the
following theorem:

Theorem 6 For any algorithm working in the setting where the algorithm is told the number of
experts Mt that can be queried in each round t, there is a sequence of expert advice and losses

for each arm so that the expected regret of the algorithm is at least Ω
(√∑T

t=1
N

f(K,Mt)

)
=

Ω

(√∑T
t=1

min{K, Mt
log(K)

}N
Mt

)
.

6. Conclusions

In this paper, we presented near-optimal algorithms for the multiarmed bandits with limited expert
advice problem, solving the COLT 2013 open problem of Seldin et al. (2013). The upper bound
uses a novel grouping idea combined with a standard experts learning algorithm, whereas the lower
bound uses an information-theoretic approach and a connection to the classic ball-into-bins problem
to get a nearly-tight dependence on the problem parameters. The binning strategy might be useful
in other contexts such as settings where there may be non-uniform cost associated with the advice
for each expert. An interesting open question is to close the sub-logarithmic gap between the upper
and lower bounds.
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Jean-Yves Audibert, Sébastien Bubeck, and Gábor Lugosi. Minimax policies for combinatorial
prediction games. Journal of Machine Learning Research - Proceedings Track, 19:107–132,
2011.
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Appendix A. Proofs of Extensions to Lower Bounds

In this section, we provide missing proofs for extensions to lower bounds on the regret.

A.1. Global Limit on Queries: Proof of Theorem 5.

First, note that since f(K,M) = O(max{log(K), MK }), we have that f(K,M) ≤ g(K,M) :=
c(log(K) + M

K ) for some constant c. Note that g is linear in its second argument M (as opposed to
f ) so it is easier to manipulate.

We use the exact same construction of expert advice and losses as in the proof of Theorem 4,
with the choice of ε = 1

16

√
N

g(K,M)T . The only change that needs to be made to the proof is in
inequality (7), which now becomes

∑
h?∈H

E0[Nh? ] ≤
T∑
t=1

E0[f(K, |St|)] ≤
T∑
t=1

E0[g(K, |St|)] = E0

[
T∑
t=1

g(K, |St|)

]
≤ g(K,M)T.

Since, as proved in the paragraph after inequality (7), we have f(K,M) ≤ 3N
4 for all M ≤ N , we

also have that ∑
h?∈H

E0[Nh? ] ≤
T∑
t=1

E0[f(K, |St|)] ≤
3N

4
T.

Using these two bounds, we can now derive the following analogue of inequality (6):

1

N

∑
h?∈H

Eh? [Nh? ] ≤
3T

4
+ 2εT

√
g(K,M)

N
T.

The rest of the analysis goes through just as before, and yields a regret lower bound of 1
256

√
N

g(K,M)T =

Ω

(√
min{K, M

log(K)
}N

M T

)
.

A.2. Changing Number of Queried Experts: Proof of Theorem 6.

We use the essentially the same construction as in the proof of Theorem 4 but with one important
twist: the ε controlling the loss of the best expert changes in each round. Specifically, in round t,
we set

εt =
N/f(K,Mt)

16
√∑T

τ=1
N/f(K,Mτ )

and the loss of the arm ah
?

t is chosen from B(12 − εt). The losses of all other arms a 6= ah
?

t are
chosen from B(12) as before.

We now turn to the analysis. First, we note that since Lemma 4 gives a lower bound on expected
regret in specific rounds, summing over all rounds, we conclude that the expected regret of the
algorithm is at least

T∑
t=1

εt
2

(1− I[h? ∈ St, At = ah
?

t ]).

14
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Thus, define the random variable

Gh? =
T∑
t=1

εt
2
I[h? ∈ St, At = ah

?

t ].

To get a lower bound on regret, we need to upper bound this random variable. Next, because εt
changes in different rounds, we need to consider slightly different random variables:

L′h? =

T∑
t=1

ε2t I[h? ∈ St] and N ′h? =
T∑
t=1

ε2t I[h? ∈ St, At = ah
?

t ].

With this definition, the statement of Lemma 5 extends easily to the following:

KL(P0(HT ) ‖ Ph?(HT )) ≤ 6E0[N
′
h? ] +

4

K2
E0[L

′
h? ].

Define U =
∑T

t=1
εt
2 . Continuing the analysis as in the proof of Theorem 4, using Pinsker’s in-

equality, the fact that Gh? ∈ [0, U ], and Jensen’s inequality applied to the concave square root
function to conclude that

1

N

∑
h?∈H

Eh? [Gh? ] ≤
1

N

∑
h?∈H

E0[Gh? ] + U

√√√√3

[
1

N

∑
h?∈H

E0[N ′h? ]

]
+

2

K2

[
1

N

∑
h?∈H

E0[L′h? ]

]

≤
T∑
t=1

εt
2
· f(K,Mt)

N
+ U

√√√√ T∑
t=1

3ε2t
f(K,Mt)

N
+

T∑
t=1

2ε2t
M

K2N
(13)

≤ 3U

4
+ 2U

√√√√ T∑
t=1

ε2t
f(K,Mt)

N
. (14)

Inequality (13) follows from Lemma 6 using the following bounds:

∑
h?∈H

E0[L
′
h? ] =

T∑
t=1

∑
h?∈H

ε2tP0[h
? ∈ St] =

T∑
t=1

ε2tE0[|St|] ≤
T∑
t=1

ε2tMt,

∑
h?∈H

E0[N
′
h? ] =

T∑
t=1

∑
h?∈H

ε2tP0[h
? ∈ St, At = ah

?

t ] ≤
T∑
t=1

ε2tE0[f(K, |St|)] ≤
T∑
t=1

ε2t f(K,Mt),

and

∑
h?∈H

E0[Gh? ] =

T∑
t=1

∑
h?∈H

εt
2
P0[h

? ∈ St, At = ah
?

t ] ≤
T∑
t=1

εt
2
E0[f(K, |St|)] ≤

T∑
t=1

εt
2
f(K,Mt).

Inequality (14) follows from the bound f(K,Mt) ≥ 2Mt
K2 forK ≥ 2, and the bound f(K,Mt) ≤ 3N

4
for N ≥ 2. Finally, taking expectation over the choice of the expert h?, the expected regret of the
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algorithm is at least

1

N

∑
h?∈H

(U −Gh?) ≥
U

4
− 2U

√√√√ T∑
t=1

ε2t
f(K,Mt)

N

=
1

256

√√√√ T∑
t=1

N

f(K,Mt)
= Ω


√√√√ T∑

t=1

min{K, Mt
log(K)}N
Mt

 ,

using the definition of εt. This gives us the required lower bound on the expected regret.
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