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Abstract

In practical scenarios, it is often necessary to be able to make predictions with very limited
access to the features of any example. We provide one natural formulation as an online
sparse regression problem with squared loss, and ask whether it is possible to achieve
sublinear regret with efficient algorithms (i.e. polynomial running time in the natural
parameters of the problem).

1. Introduction

In various real-world scenarios, features for examples are constructed by running some
computationally expensive algorithms. With resource constraints, it is essential to be able
to make predictions with only a limited number of features computed per example.

We provide one natural formulation of this prediction with limited feature access problem
as an online sparse regression problem. Over a number of prediction rounds, the learner is
required to make real-valued predictions in [—1, 1] for a stream of examples online generated
adversarially. Each example has d real-valued features, and has /o norm bounded 1. For
every example, the learner is restricted to observe only k features (of its choice) out of
the d features for the example. Then the true label of the example is observed, and the
learner suffers the squared loss. The goal is to minimize regret, i.e. total loss of the learner
compared to the loss of the best k-sparse linear predictor of 5 norm at most 1.

Formally, for t =1,2,...,7, the learner

1. selects a subset Sy C {1,2,...,d} of size at most k,

2. observes z(S;), i.e. the values of the features of z; restricted to the subset S,
3. makes a prediction g, € [—1,1],

4. observes true label y; € [—1,1], and suffers loss (§; — ;).

Define regret as:

Regret := (G — y1)? — min (w-z — ).
Zt: w: [wlo<k, ||w||slzt:

In case 9 is chosen using randomization, we consider expected regret instead. We are
interested in the following 2 goals:

1. (Sublinear Regret) Make predictions g so that regret grows like poly(d, k) - o(T).

2. (Efficiency) Make these predictions efficiently, i.e. in poly(d, k,T') time per iteration.
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2. Open problem

Give an algorithm to achieve the goals of sublinear regret and efficiency simultaneously. Or
prove a hardness result showing this is intractable.

The offline problem, finding the best k-sparse linear predictor, is known to be NP-hard
by the results of Welch (1982); Natarajan (1995). Given this, for the upper bound it is
acceptable to use any reasonable relaxation of the problem as long as the basic requirement
that the predictions 3 be made using only a limited number of features of any example
is satisfied. For example, one may allow the algorithm to use poly(k) features, while the
comparator is restricted to use only k-sparse linear predictors.

We note that the question of resolving the computational complexity for a more general
problem was also posed by Zolghadr et al. (2013).

3. Related Work and Known Results

A related setting is attribute-efficient learning (Cesa-Bianchi et al., 2011; Hazan and Koren,
2012). This is a batch learning problem where the examples are generated i.i.d., and the goal
is to simply output a linear regressor using only a limited number of features per example
with bounded excess risk compared to the optimal linear regressor, when given full access
to the features at test time. While the aforementioned papers give efficient, near-optimal
algorithms for this problem, these algorithms do not work in the online sparse regression
setting we are interested in because here we are required to make predictions only using a
limited number of features.

The simplest algorithm one might try' is running a bandit algorithm where the actions
correspong to selecting one O(d"*) subsets of coordinates of size k& and running an online
regression algorithm (such as the Online Newton Step algorithm of Hazan et al. (2007))
over these coordinates for B steps, initialized from scratch each time. Applying standard
bandit algorithms, since there are O(d*) actions, T//B effective time steps, and a scaling
of B for each time step to account for the B rounds of the online regression algorithm,
the regret will become O(Vd*BT') with respect to the best periodically restarted regression
algorithm. The loss of the latter relative to the best weight vector with a fixed set of k
non-zero coordinates is (7'/B)O(klog(B)). Optimizing B = O(T/3d—*/3) gives an overall
regret of O(k?d*/3T%/3log(T/d)). This has exponential dependence on k both in running
time and the regret.

Zolghadr et al. (2013) consider a very closely related setting where features and labels
may be obtained by the learner at some cost (which may be different for different features),
and this cost is factored into the loss of the learner. In the special case of their setting
corresponding to the problem considered here, they given an algorithm, LQDEXP3, which
relies on discretizing all k-sparse weight vectors and running an exponential weights experts
algorithm on the resulting set with stochastic loss estimators, obtaining an O(\/diT ) regret
bound. However the running time of their algorithm is prohibitive: O((dT)°%)) time per
iteration.? This algorithm is based on the observation that the loss for a given weight vector

1. This was also suggested by an anonymous referee.

2. The paper of Zolghadr et al. (2013) gives a per-iteration running time bound of O(To(d)); the improved
running time bound follows from the observation made by an anonymous referee that only k-sparse
predictors need to be discretized.
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w at time ¢ can be rewritten as

T T

w' ) w— 2w (

yere) + yi-
So an unbiased estimator for the loss can be constructed by sampling coordinates and using
importance weighting to construct unbiased estimators for the two quantities

:Btajg— and  yay (1)

In collaboration with Dean Foster, we can give an algorithm that has better running
time, O(d¥) per iteration, but worse® regret, O(poly(d)v/T). Also, this algorithm requires
access to k' > k + 2 features per example, whereas the comparator is allowed access to only
k features.

The idea is the following. Treat each subset S of [d] of size at most k as an expert,
and run the standard exponential weights algorithm on these experts. Each expert S
internally runs stochastic gradient descent on weight vectors that are non-zero only on the
coordinates in S. In each round, the learner samples an expert (i.e. a subset S;) from the
distribution generated by the exponential weights algorithm, obtains the features indexed
by S, and uses the internal weight vector of the expert S; to make its prediction g;. Next,
using the extra k' — k features that are available to the learner, it constructs stochastic
gradients for all experts by sampling a uniformly random subset of coordinates of size k' — k
and using importance weighting to construct unbiased estimators for the quantities in (1).
Overall, using the known regret bounds for the exponential weights algorithm and stochastic
gradient descent, we obtain the stated regret bound. The running time is dominated by
the exponential weights algorithm which needs to update weights for all the experts in each
round, and is hence O(d*) per round.
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3. The dependence on d is a small polynomial which we did not attempt to optimize.
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