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Abstract
We consider algorithmic problems in the setting in which the input data has been partitioned ar-
bitrarily on many servers. The goal is to compute a function of all the data, and the bottleneck is
the communication used by the algorithm. We present algorithms for two illustrative problems on
massive data sets: (1) computing a low-rank approximation of a matrix A = A1 +A2 + . . .+As,
with matrix At stored on server t and (2) computing a function of a vector a1 + a2 + . . . + as,
where server t has the vector at; this includes the well-studied special case of computing frequency
moments and separable functions, as well as higher-order correlations such as the number of sub-
graphs of a specified type occurring in a graph. For both problems we give algorithms with nearly
optimal communication, and in particular the only dependence on n, the size of the data, is in the
number of bits needed to represent indices and words (O(log n)).

1. Introduction

In modern large-scale machine learning problems the input data is often distributed among many
servers, while the communication as well as time and space resources per server are limited. We
consider two well-studied problems: (1) Principal Component Analysis (PCA), and (2) Generalized
Higher-order correlations. Both problems study correlations between vectors. For the first problem,
the vectors correspond to the rows of a matrix and we are interested in second-order correlations,
while in the second problem we are interested in higher-order correlations among the vectors.

PCA is a central tool in many learning algorithms. The goal of PCA is to find a low-dimensional
subspace that captures as much of the variance of a dataset as possible. By projecting the rows of a
matrix onto this lower-dimensional subspace, one preserves important properties of the input matrix,
but can now run subsequent algorithms in the lower-dimensional space, resulting in significant com-
putational and storage savings. In a distributed setting, by having each server first locally project
his/her own data onto a low-dimensional subspace, this can also result in savings in communica-
tion. PCA is useful for a variety of downstream tasks, e.g., for clustering or shape-fitting problems
(Feldman et al. (2013)) and latent semantic analysis.

The second problem we consider is the Generalized Higher Order Correlation Problem. For this
problem we assume server t has an n-dimensional vector at with non-negative entries. Note that for
PCA, it is useful and more general to allow the entries to be positive, negative, or zero. On the other
hand, the non-negativity assumption for Generalized Higher Order Correlations is justified both by
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the applications we give , as well as the fact that it is impossible to achieve low communication
without this assumption, as described in more detail below.

A special case of this problem is the well-studied frequency moment problem. That is, if server
t holds the vector at, with coordinates at1, at2, . . . , atn, then the k-th frequency moment of

∑s
t=1 at

is
∑n

i=1(
∑s

t=1 ati)
k, where, k is a positive integer. This problem has been extensively studied in

the data stream literature, starting with the work of Alon et al. (1999). Known lower bounds for this
problem from that literature rule out low communication algorithms when k > 2 in the distributed
setting when the number of servers grows as a power of n (Bar-Yossef et al. (2004); Chakrabarti
et al. (2003); Gronemeier (2009)), or when there are only two servers and the entries are allowed
to be negative Bar-Yossef et al. (2004). Here we overcome these lower bounds for smaller s and
indeed will develop algorithms and lower bounds for estimating

∑n
i=1 f(

∑s
t=1 ati), for a general

class of functions f : R+ → R+.
We then extend these results to the following more general problem: there is a collection of

vectors that is partitioned into s parts - W1,W2, . . . ,Ws - and server t holds Wt. For each t and
each i ∈ Wt, there is an n-dimensional vector vi = (vi1, vi2, . . . , vin) wholly residing on server
t. Let f : R+ → R+ and g : Rk

+ → R+ be functions. For a natural number k, define the k-th
generalized moment M(f, g, k) as

M(f, g, k) =
∑

j1,j2,...,jk∈[n] distinct

f

(∑
i

g(vi,j1 , vi,j2 , . . . , vi,jk)

)
.

There are many applications of higher-order correlations, and we only mention several here.
For a document collection, we seek statistics (second, third and higher moments) of the number of
documents in which each trigram (triples of terms) occurs. For a bipartite graph G(V1, V2, E) and
constants (r, u), we want to estimate the number ofKr,u (complete bipartite graph) subgraphs. For a
time series of many events, we want to estimate the number of tuples (E1, E2, . . . , Er; t1, t2, . . . , tu)
for which each of the events E1, E2, . . . , Er occurs at each of the times t1, t2, . . . , tu.

Conceptually, for each i, we can think of a vector ai with
(
n
k

)
components - one for each distinct

tuple (j1, j2, . . . , jk). Suppose ai;j1,j2,...,jk = g(vi,j1 , vi,j2 , . . . , vi,jk), and let at =
∑

i∈Wt
ai. Our

first theorem describes a way of estimatingM(f, g, k) up to a (1+ε)-factor, where, each server uses
polynomial time and polynomial space, but we try to optimize total communication while keeping
the number of rounds constant. For this algorithm, server t explicitly constructs the vector at first,
so it uses O(nk|Wt|) space. Thereafter the space is linear in the total size of all the at. Our second
theorem shows how to reduce space to linear in n. This algorithm does not construct at explicitly,
but instead performs a rejection sampling procedure.

Before stating our theorems, we need some notation. Let cf,s be the least positive real number
such that

f(x1 + x2 + · · ·+ xs) ≤ cf,s(f(x1) + f(x2) + · · ·+ f(xs)) ∀x1, x2, . . . , xs ∈ R+. (1)

Note that for f(x) = xk (as in the k-th frequency moment), cf,s = sk−1, since for any non-negative
real numbers b1, b2, . . . , bs, we have (b1 + b2 + · · ·+ bs)

k ≤ sk−1(bk1 + bk2 + · · ·+ bks), and taking
bt = 1, we see that the factor sk−1 cannot be improved.

Model. The communication and computations are not assumed to be synchronous. We arbitrarily
denote one of the s servers as the Central Processor (CP). A round consists of the CP sending a
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message to each server and each server sending an arbitrary length message to the CP. A round is
complete when the CP has received messages from all servers from which it is expecting a message
in that round. All servers communicate only with the CP, which, up to a factor of two, is equivalent
to the servers communicating directly with each other (provided they indicate in their message who
the message is being sent to). For formal details of this model, we refer the reader to Section 3 of
Braverman et al. (2013). Our algorithms take polynomial time, linear space and O(1) rounds of
communication.

Our Results.

Low-rank matrix approximation and approximate PCA. Our first set of results is for low-rank
approximation: given an n× d matrix A, a positive integer k and ε > 0, find an n× d matrix B of
rank at most k such that

||A−B||F ≤ (1 + ε) · min
X:rank(X)≤k

||A−X||F .

Here, for a matrix A, the Frobenius norm ||A||2F is the sum of squares of the entries of A. A basis
for the rowspace of B provides an approximate k-dimensional subspace to project the rows of A
onto, and so is a form of approximate PCA. We focus on the frequently occurring case when A is
rectangular, that is, n� d.

Theorem 1 Consider the arbitrary partition model where an n × d matrix At resides in server t
and the data matrix A = A1 + A2 + · · · + As. For any 1 ≥ ε > 0, there is an algorithm that, on
termination, leaves a n×d matrix Ct in server t such that the matrix C = C1 +C2 + · · ·+Cs with
arbitrarily large constant probability achieves ‖A − C‖F ≤ (1 + ε) minX:rank(X)≤k ||A − X||F ,
using linear space, polynomial time and with total communication complexity O(sdk/ε+ sk2/ε4)
real numbers. Moreover, if the entries of each At are b bits each, then the total communication is
O(sdk/ε+ sk2/ε4) words each consisting of O(b+ log(nd)) bits.

In contrast to the guarantees in Theorem 1, in the streaming model even with multiple passes, a
simple encoding argument formalized in Theorem 4.14 of Clarkson and Woodruff (2009) shows the
problem requires Ω(n + d) communication. We bypass this problem by allowing the s different
servers to locally output a matrix Ct so that

∑
tCt is a (1 + ε)-approximation to the best rank-k

approximation. We are not aware of any previous algorithms with less than n communication in the
arbitrary partition model.

In the row-partition model, in which each row of A is held by a unique server, there is an
O(sdk/ε) word upper bound due to Feldman et al. (2013). This is also achievable by the algorithms
of Ghashami and Phillips (2013); Liang et al. (2013); Balcan et al. (2014). As the row-partition
model is a special case of our model in which for each row of A, there is a unique server with a
non-zero vector on that row, our result implies their result up to the low order O(sk2/ε4) term, but
in a stronger model. For example, consider the case in which a customer corresponds to a row of A,
and a column to his/her purchases of a specific item. These purchases could be distributed across
multiple servers corresponding to different vendors. Or in the case of search data, each column
could correspond to a search term of a user, and the searches may be distributed across multiple
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servers for storage and processing considerations. These examples are captured by the arbitrary
partition model but not by the row partition model.

The technique for our upper bound is based on a two-stage adaptive sketching process, and
has played an important role in several followup works, including CUR Matrix Factorizations of
Boutsidis and Woodruff (2014) and subspace embeddings for the polynomial kernel by Avron et al.
(2014).

We also show an Ω̃(skd) communication lower bound, showing our algorithm is tight up to a
Õ(1/ε) factor. The argument involves an upper bound showing how a player can communication-
efficiently learn a rank-k matrix given only a basis for its row space.

Theorem 2 Suppose each of s servers has an n × d matrix Ai and the CP wants to compute a
rank-k approximation of A =

∑s
i=1A

i to within relative error ε ≥ 0. The total communication
required is Ω̃(skd) bits. Note that the lower bound holds for computing a (1 + ε)-approximation
for any ε ≥ 0.

Frequency moments and higher-order correlations. Our next set of results are for estimating
higher moments and higher-order correlations of distributed data.

Theorem 3 Let f : R+ → R+ and cf,s be as in (1). There are s polynomial time, linear space
bounded servers, where server t holds a non-negative n-vector at = (at1, at2, . . . , atn). We can
estimate

∑n
i=1 f (

∑s
t=1 ati) up to a (1 + ε) factor by an algorithm using O(s2cf,s/ε

2) total words
of communication (from all servers) inO(1) rounds. Moreover, any estimation up to a (1+ε) factor
needs in the worst case Ω(cf,s/ε) bits of communication.

We remark that the lower bound applies to any function f with parameter cf,s, not a specific
family of such functions.

Theorem 4 Let f : R+ → R+, g : Rk
+ → R+ be monotone functions with cf,s as in (1). k ∈ O(1)

is a natural number and let M(f, g, k) be the generalized moment. We can approximate M(f, g, k)
to relative error ε by an algorithm with communication at mostO(s3cf,s/ε

2) words inO(1) rounds.
Further, we use polynomial time and linear space.

A key feature of this algorithm, and our following ones, is worth noting: they involve no depen-
dence on n or lnn, so they can be used when at are implicitly specified and n itself is very large,
possibly infinite (provided, we can communicate each index i). In the theorem below Ω is the set
of coordinates of each vector. It is analogous to [n]. We use

∑
x∈Ω, which when Ω is infinite and

the probabilities are densities, should be replaced with an integral; our theorem is also valid for the
case when we have integrals.

Theorem 5 Let f : R+ → R+, g : Rk
+ → R+ be monotone functions with cf,s as in (1). Server t

is able to draw (in unit time) a sample x ∈ Ω according to a probability distribution ht on Ω. Also,
server t can estimate

∑
x∈Ω f(ht(x)). Then with O(s3cf,s/ε

2) words of communication, CP can
estimate

∑
x∈Ω f (

∑s
t=1 ht(x)) to within relative error ε.

As a special case we consider the well-studied case of frequency moments. The best previous upper
bound for the k-th frequency moment problem in the distributed setting is by Woodruff and Zhang

(2012) who gave an algorithm that achieves sk−1
(
C logn
ε

)O(k)
communication, so the complexity
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still depends, albeit mildly, on n. Theorem 3 implies an algorithm with O(sk+1/ε2) words of
communication. We further improve this:

Theorem 6 There are s servers, with server t holding a non-negative vector at =
(at1, at2, . . . , atn).1 Then, to estimate A =

∑n
i=1 (

∑s
t=1 ati)

k to within relative error ε, there
is an algorithm that communicates O((sk−1 + s3)(ln s/ε)3) words 2 in O(1) rounds.

Thus, for k ≥ 4, the complexity is Õ(sk−1/ε3). Our algorithm has no dependence on n, though
it does have the restriction that k ≥ 4. It nearly matches a known lower bound of Ω(sk−1/ε2)
due to Woodruff and Zhang (2012). In Theorem 12, we extend the algorithm and its near-optimal
guarantees to a broader class of functions.

2. Low-rank Approximation

For a matrix A, define fk(A) as: fk(A) = minX:rank(X)≤k ||A − X||F . Recall that the rank-k
approximation problem is the following: Given an n × d matrix A, and ε > 0, find an n × d
matrix B of rank at most k such that ||A−B||F ≤ (1 + ε) · fk(A).

2.1. Upper bound for low rank approximation

One of the tools we need is a subspace embedding. A randomm×nmatrix P withm = O(d/ε2) is
a subspace embedding if for all vectors x ∈ Rd, ‖PAx‖2 = (1±ε)‖Ax‖2. There are many choices
for P , including a matrix of i.i.d. N(0, 1/m) random variables or a matrix of i.i.d. Rademacher
random variables (uniform in {−1/

√
m,+1/

√
m}) with m = O(d/ε2) (combining the Johnson-

Lindenstrauss transform with a standard net argument) by Arriaga and Vempala (1999); Achlioptas
(2003); Arriaga and Vempala (2006). With a slightly larger value of m, one can also use Fast
Johnson-Lindenstrauss transforms by Ailon and Chazelle (2009) and the many optimizations to
them, or the recent fast sparse subspace embeddings by Clarkson and Woodruff (2013) and its
optimizations in Nelson and Nguyen (2012); Meng and Mahoney (2013). Such mappings can also
be composed with each other.

We are mainly concerned with communication, so we omit the tradeoffs of different composi-
tions and just use a composition for which m = O(d/ε2), PA is an m × d matrix of words each
consisting of O(b + log(nd)) bits, and P can be specified using O(d log n) bits (using a d-wise
independent hash function, as first shown in Clarkson and Woodruff (2009)), see Theorem 7 below.
Since we will assume that b is at least log n, the O(d log n) bits to specify P will be negligible,
though we remark that the number of bits to specify P can be further reduced using results of Kane
et al. (2011).

We will prove the following property about the top k right singular vectors of PA for a subspace
embedding P .

Theorem 7 Suppose A is an n × d matrix. Let P be an m × d matrix for which (1 − ε)‖Ax‖2 ≤
‖PAx‖2 ≤ (1 + ε)‖Ax‖2 for all x ∈ Rd, that is, P is a subspace embedding for the column space
of A. Suppose V V T is a d × d matrix which projects vectors in Rd onto the space of the top k
singular vectors of PA. Then ‖A−AV V T ‖F ≤ (1+O(ε)) ·fk(A). Furthermore, ifm = O(d/ε2)

1. The vector at need not be written down explicitly in server t. it just has to have the ability to (i) find
∑n

i=1 a
k
ti to

relative error ε and draw a sample according to {ak
ti/

∑
j a

k
tj}.

2. Each communicated word is either an index i or a value ati.

5



KANNAN VEMPALA WOODRUFF

and P is a random sign matrix with entries uniform in {−1/
√
m, 1/

√
m}, then with O(d)-wise

independent entries, P satisfies the above properties with probability at least3 1− exp(−d).

We will combine this property with the following known property.

Theorem 8 (combining Theorem 4.2 and the second part of Lemma 4.3 of Clarkson and Woodruff
(2009)) Let S ∈ Rm×n be a random sign matrix with m = O(k log(1/δ)/ε) in which the entries
are O(k + log(1/δ))-wise independent. Then with probability at least 1 − δ, if UUT is the d × d
projection matrix onto the row space of SA, then if (AU)k is the best rank-k approximation to
matrix AU , we have

‖(AU)kU
T −A‖F ≤ (1 +O(ε))‖A−Ak‖F .

We can now state the algorithm, which we call ADAPTIVECOMPRESS. In ADAPTIVECOM-

ADAPTIVECOMPRESS(k,ε, δ)

1. Server 1 chooses a random seed for an m × n sketching matrix S as in Theorem 8, given
parameters k, ε, and δ, where δ is a small positive constant. It communicates the seed to the
other servers.

2. Server i uses the random seed to compute S, and then SAi, and sends it to Server 1.

3. Server 1 computes
∑s

i=1 SA
i = SA. It computes an m × d orthonormal basis UT for the

row space of SA, and sends U to all the servers.

4. Each server i computes AiU .

5. Server 1 chooses another random seed for a O(k/ε2)× n matrix P which is to be O(k)-wise
independent and communicates this seed to all servers.

6. The servers then agree on a subspace embedding matrix P of Theorem 7 for AU , where P is
an O(k/ε3)× n matrix which can be described with O(k log n) bits.

7. Server t computes PAtU and send it to Server 1.

8. Server 1 computes
∑s

t=1 PAtU = PAU . It computes V V T , which is an O(k/ε)×O(k/ε)
projection matrix onto the top k singular vectors of PAU , and sends V to all the servers.

9. Server t outputs Ct = AtUV V
TUT . Let C =

∑s
t=1Ct. C is not computed explicitly.

PRESS, the matrix P is of size O(k/ε3)× n.
Proof (of Theorem 7.) Suppose P is a subspace embedding for the column space of A. Form an
orthonormal basis of Rd using the right singular vectors of PA. Let v1, v2, . . . , vd be the basis.

||A−A
k∑
i=1

viv
T
i ||2F =

d∑
i=k+1

|Avi|2 ≤ (1 + ε)2
d∑

i=k+1

|PAvi|2 = (1 + ε)2f2
k (PA).

3. exp(−d) denotes 2−Θ(d).
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Also, suppose now u1, u2, . . . , ud is an orthonormal basis consisting of the singular vectors of A.
Then, we have

fk(PA)2 ≤ ||PA− PA
k∑
i=1

uiu
T
i ||2F =

d∑
i=k+1

|PAui|2 ≤ (1 + ε)2
d∑

i=k+1

|Aui|2 = (1 + ε)2fk(A)2.

Thus,‖A−A
∑k

i=1 viv
T
i ‖2F ≤ (1 + ε)4fk(A)2, as desired.

For the second part of the theorem, regarding the choice of P , fix attention on one particular
x ∈ Rd. We apply Theorem 2.2 of Clarkson and Woodruff (2009) with A,B of that theorem
both set to Ax of the current theorem and m = O(d/ε2) in the notation of that theorem. This
states that for m = O(d/ε2), if P is an m× n matrix with O(d)-wise independent entries uniform
in {−1/

√
m,+1/

√
m}, then for any fixed vector x, ‖PAx‖2 = (1 ± ε)‖Ax‖2 with probability

1− exp(−d). We combine this with Lemma 4 in Appendix A of Arora et al. (2006), based on Feige
and Ofek (2005), to conclude that for all vectors x, ‖PAx‖2 = (1 ± ε)‖Ax‖2 with probability
1− exp(−d) (for a different constant in the exp() function).

Proof of Theorem 1: By definition of the ADAPTIVECOMPRESS protocol, we have ‖A − C‖ =
‖A−AUV V TUT ‖, where all norms in this proof are the Frobenius norm.

Notice that UUT and Id−UUT are projections onto orthogonal subspaces, where Id is the d×d
identity matrix. It follows by the Pythagorean theorem applied to each row that

‖AUV V TUT −A‖2 = ‖(AUV V TUT −A)(UUT )‖2 + ‖(AUV V TUT −A)(I − UUT )‖2

= ‖AUV V TUT −AUUT ‖2 + ‖A−AUUT ‖2, (2)

where the second equality uses that UTU = Ic, where c is the number of columns of U .
Observe that the row spaces of AUV V TUT and AUUT are both in the row space of UT ,

and therefore in the column space of U . It follows that since U has orthonormal columns,
‖AUV V TUT −AUUT ‖ = ‖(AUV V TUT −AUUT )U‖, and therefore

‖AUV V TUT −AUUT ‖2 + ‖A−AUUT ‖2 = ‖(AUV V TUT −AUUT )U‖2 + ‖A−AUUT ‖2

= ‖AUV V T −AU‖2 + ‖A−AUUT ‖2, (3)

where the second equality uses that UTU = Ic. Let (AU)k be the best rank-k approximation to the
matrix AU . By Theorem 7, with probability 1− o(1), ‖AUV V T −AU‖2 ≤ (1 +O(ε))‖(AU)k −
AU‖2, and so

‖AUV V T −AU‖2 + ‖A−AUUT ‖2 ≤ (1 +O(ε))‖(AU)k −AU‖22 + ‖A−AUUT ‖2

≤ (1 +O(ε))(‖(AU)k −AU‖22 + ‖A−AUUT ‖2).(4)

Notice that the row space of (AU)k is spanned by the top k right singular vectors of AU , which are
in the row space of U . Let us write (AU)k = B · U , where B is a rank-k matrix.

For any vector v ∈ Rd, vUUT is in the rowspace of UT , and since the columns of U are
orthonormal, ‖vUUT ‖2 = ‖vUUTU‖2 = ‖vU‖2, and so

‖(AU)k −AU‖2 + ‖A−AUUT ‖2 = ‖(B −A)U‖2 + ‖A(I − UUT )‖2

= ‖BUUT −AUUT ‖2 + ‖AUUT −A‖2. (5)
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We apply the Pythagorean theorem to each row in the expression in (5), noting that the vectors
(Bi − Ai)UUT and AiUUT − Ai are orthogonal, where Bi and Ai are the i-th rows of B and A,
respectively. Hence,

‖BUUT −AUUT ‖2 + ‖AUUT −A‖2 = ‖BUUT −A‖2 = ‖(AU)kU
T −A‖2, (6)

where the first equality uses that

‖BUUT−A‖2 = ‖(BUUT−A)UUT ‖2+‖(BUUT−A)(I−UUT )‖2 = ‖BUUT−AUUT ‖2+‖AUUT−A‖2,

and the last equality uses the definition of B. By Theorem 8, with constant probability arbitrarily
close to 1, we have

‖(AU)kU
T −A‖2 ≤ (1 +O(ε))‖Ak −A‖2. (7)

It follows by combining (2), (3), (4), (5), (6), (7), that ‖AUV V TUT−A‖2 ≤ (1+O(ε))‖Ak−A‖2,
which shows the correctness property of ADAPTIVECOMPRESS.

We now bound the communication. In the first step, by Theorem 8, m can be set to O(k/ε)
and the matrix S can be described using a random seed that is O(k)-wise independent. The
communication of steps 1-3 is thus O(sdk/ε) words. By Theorem 7, the remaining steps take
O(s(k/ε)2/ε2) = O(sk2/ε4) words of communication.

To obtain communication with O(b + log(nd))-bit words if the entries of the matrices At are
specified by b bits, Server 1 can instead send SA to each of the servers. The t-th server then
computes PAt(SA)T and sends this to Server 1. Let SA = RUT , where UT is an orthonormal
basis for the row space of SA, and R is an O(k/ε) × O(k/ε) change of basis matrix. Server 1
computes

∑
t PAt(SA)T = PA(SA)T and sends this to each of the servers. Then, since each of

the servers knows R, it can compute PA(SA)T (RT )−1 = PAU . It can then compute the SVD
of this matrix, from which it obtains V V T , the projection onto its top k right singular vectors.
Then, since Server t knows At and U , it can compute AtU(V V T )UT , as desired. Notice that in
this variant of the algorithm what is sent is SAt and PAt(SA)T , which each can be specified with
O(b+ log(nd))-bit words if the entries of the At are specified by b bits.

3. Frequency Moments and Higher Order Correlations

In this section, we prove Theorems (3), (4) and (6).
We begin with some common notation. For t ∈ [s], i ∈ [n]:

Ct =

n∑
i=1

f(ati) ; Bi =

s∑
t=1

f(ati) ; Ai = f

(
s∑
t=1

ati

)
.

Let B =
∑

iBi =
∑

tCt ; A =
∑

iAi. The task is to estimate A. We analyze the following
algorithm. Let l = 100

s·cf,s
ε2

. The parameters in the algorithm will be specified presently.
Proof (of Theorem (3)):

To analyze the algorithm, we think of it differently: suppose CP picks t for the first of its l trials
and asks that t to pick i according to its {f(ati/Ct}. Let X be the random variable BAi/Bi for
that i. Clearly the estimate made by the algorithm can be viewed as the average of l i.i.d. copies of
X . So it will suffice to show that (i) X is unbiased : I.e., E(X) = A and (ii) Var(X) ≤ cf,ssA

2
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DISTRIBUTEDSUM(ε)

1. For t ∈ [s], server t computes Ct and all servers send their Ct to CP. This is round 1.

2. CP does l i.i.d. trials, in each picking a t, with probabilities {Ct/B}. Let dt be the number of
times it picks t. CP sends dt to server t.

3. Server t picks dt samples i1, i2, . . . in i.i.d. trials, each according to probabilities {f(ati)/Ct}
and sends the dt indices to CP. Round 2 is complete when CP receives all these indices.

4. CP collects all the samples. Let S be the set of sampled i (so, |S| = l). CP sends all of S to
all servers.

5. Server t sends ati for all i ∈ S to CP.

6. CP computes Ai, Bi for all i ∈ S and outputs B
l

∑
i∈S

Ai
Bi

as its estimate of A.

(whence, the variance of the average of l i.i.d. copies ofX would have variance at most ε2A2 giving
us the relative error bound.)

The first part is easy: Let pi be the probability that we pick i by this process. Clearly, pi =∑s
t=1 Prob( CP picked t )Prob(t picks i) =

∑
t
Ct
B
f(ati)
Ct

= Bi
B . So, E(X) =

∑n
i=1B

Ai
Bi

Bi
B = A,

proving (i). For (ii), we have E(X2) = B2
∑

i pi
A2

i

B2
i

= B
∑

i
A2

i
Bi
≤ ABcf,s ≤ cf,ssA

2, since,

Ai = f(
∑

t ati) ≤ cf,s
∑s

t=1 f(ati) by the definition of cf,s and by monotonicity of f , we have
Bi =

∑
t f(ati) ≤ sf(

∑
t ati).

To prove the claimed resource bounds, note that polynomial time and linear space bounds are
obvious, since, all that each server has to do is to compute all f(ati), sum them up and sample at
most l times. The communication is dominated by each of s servers sending {ati, i ∈ S} to CP
which is scf,s/ε2 words per server giving us a total of O(s2cf,s/ε

2).
Now for the lower bound, we use (rather unsurprisingly) the set-disjointness problem. It is

known ( Alon et al. (1999); Bar-Yossef et al. (2004); Chakrabarti et al. (2003); Gronemeier (2009);
Jayram (2009); Woodruff and Zhang (2012)) that the following problem needs Ω(n) bits of com-
munication even for a randomized algorithm: we distinguish between two situations: (a) Each of
s servers holds a subset of [n] and the subsets are pairwise disjoint and (b) There is exactly one
element common to all s sets. We reduce this problem to ours. Let St be the subset held by server
t. By definition of cf,s, there exist x1, x2, . . . , xs ∈ R+ such that f(x1 + x2 + · · · + xs) =

cf,s(f(x1) + f(x2) + · · · + f(xs)). Let n =
cf,s−1
ε . Let ati be defined by: ati = xt if i ∈ St and

ati = 0 otherwise. If the sets are disjoint, then
∑n

i=1 f (
∑s

t=1 ati) =
∑s

t=1 |St|f(xt). In the case
(b) when the sets all share one element in common,

∑n
i=1 f (

∑s
t=1 ati) =

∑s
t=1(|St| − 1)f(xt) +

f(x1 + x2 + · · ·+ xs) =
∑s

t=1 |St|f(xt) + (cf,s− 1)
∑

t f(xt) =
∑s

t=1 |St|f(xt) + εn
∑

t f(xt).
Since |St| ≤ n, it follows that if we can estimate

∑
i f(
∑

t ati) to relative error ε, then we can
distinguish the two cases. But it is known that this requires Ω(n) bits of communication which is
Ω(cf,s/ε) proving the lower bound.

9
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Proof (of Theorem (4): The only change is in the sampling algorithm:

• Order the j = (j1, j2, . . . , jk) lexicographically. Start with the first j as the sample and com-
pute atj by making a pass through the entire data: For each i ∈Wt, after vi,j1 , vi,j2 , . . . , vi,jk
are read, compute g(vi,j1 , vi,j2 , . . . , vi,jk) and sum over all i ∈Wt.

• Process the next j similarly. After processing a j, say, j = j0, compute f(atj0) and keep a
running total of f(atj) for all j seen so far. Reject the old sample and replace it by the current

j0 with probability f(atj0 )

Total of all f(atj) including j0
.

• If the old sampled j is not rejected, just keep it as the sample and go to next j.

The proof of correctness and linear space bound follow straightforwardly by plugging in this
sampling algorithm into Theorem (3).

We next turn to a more refined algorithm for estimating frequency moments with near-optimal
communication, using the specific function f(x) = xk. Here is the algorithm.
Proof (of Theorem (6): Let Bi =

∑s
t=1 a

k
ti and Ai = (

∑s
t=1 ati)

k and ρi = Ai/Bi. Note:
1 ≤ ρi ≤ sk−1. CP can arrange to pick i ∈ [n] with probabilities {Bi/B}, where, B =

∑
iBi

as we already saw. First pick m = sk−2/ε3 sample i ∈ [n] according to {Bi/B}. Then, CP tells
all servers all these i and collects all ati and thence all Ai, Bi. Total communication is at most
ms ≤ sk−1/ε3.

The estimator of A from one i is X = BAi
Bi
. It is easy to see that E(X) = A, and Var(X) ≤

E(X2) = B
∑n

i=1
A2

i
Bi
≤ ABsk−1, since each Ai/Bi ≤ sk−1. So if we estimate A by Ã = average

of m i.i.d. copies of X , then we would get Var(Ã) ≤ ε3sAB.

Claim 9 With a suitable choice of constants, if A ≥ sB), then,
Prob

(
|Ã−A| ≤ εA and Ã ∈ (1− ε)sB

)
≥ 1 − c. Further, since B is known and Ã

is computed the condition Ã ≤ sB can be checked. Conversely, if A ≤ sB, then,
Prob

(
Ã ∈ sB/(1− ε))

)
≥ 1− ε.

Proof In the first case, we have Var(Ã) ≤ ε3A2, from which the first assertion fol-
lows using Chebychev inequality. The checkability is clear. For the second part,
Prob(Ã ≥ sB/(1− ε)) ≤ Prob(Ã > A+ εsB)) ≤ Prob

(
Ã ≥ A+ ε

√
sAB

)
≤ Var(Ã)

ε2sAB
≤ ε.

Given the claim, after this step, the algorithm either has found that A > sB and Ã is a good
estimate of A and terminated or it knows that A ≤ sB. So assume now A ≤ sB. CP now collects
a set S of sk−1(ln s)2/ε3 sampled i ’s, each i.i.d. sampled according to {Bi/B}. [It cannot now
afford to inform all servers of all i ∈ S.]

Let ρi = Ai/Bi. Let β range over {sk−1, e−εsk−1, e−2εsk−1, . . . 1}, a total of O(ln s) values
and let Sβ = {i ∈ S : ρi ∈ [βe−ε, β)}. Then,

∑
i∈S ρi ≈

∑
β |Sβ|β. Since each ρi ≥ 1, we have∑

i∈S ρi ≥ |S|. So we need only accurate estimates of those |Sβ| with |Sβ| ≥ ε|S|/β ln s. For each

10
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FREQUENCYMOMENTS(k, ε)

1. Pick an i.i.d. sample S0 of m = sk−2/ε3 indices i, where each i is picked according to
{Bi/B}.

2. Find average ρi among the picked i by getting all the ati and estimate A by Ã = B times this
average.

3. If Ã ≥ sB, then declare it to be the final estimate of A and stop.

4. CP now gets an i.i.d. sample S of O(sk−1(ln s)2/ε3) i ’s, each according to {Bi/B}.

5. For each β ∈ {sk−1, e−εsk−1, e−2εsk−1, . . . , 1}, CP does the following:

(a) Pick a subset T of S of cardinality Ω(β(ln s)2/ε3) u.a.r.

(b) For each i ∈ T , pick a set L of l = sk−1

β t ∈ [s] u.a.r. Find all the ati, t ∈ L and find
sk

lk

(∑
t∈L ati

)k. Repeat this Ω(k ln s+ln(1/ε)) times and take the median of all values
found to be the estimate Ãi of Ai.

(c) For each i ∈ T , take B̃i = at(i),i, where, t(i) is defined in (8).

(d) For every i ∈ T with Ãi/B̃i ∈ [βe−ε, β), do an exact computation of Ai, Bi by asking
every server for all the ati values.

(e) From the above estimate |Sβ ∩ T and compute s̃β = |Sβ ∩ T ||T |/|S| as the estimate of
|Sβ|.

6. Return B
∑

β s̃ββ as the estimate of A.

Sβ , if we pick u.a.r. a subset T of S of cardinality Ω(β(ln s)2/ε3), then |S||T | |T ∩ Sβ| estimates |Sβ|
to within (1± ε) for every β satisfying |Sβ| ≥ ε|S|/β ln s.

For each β, pick such a random subset T from S. We have to recognize for each i ∈ T ,
whether it is in Sβ . First, for each i ∈ T , we estimate Ai as follows: We pick l = sk−1/β servers
t1, t2, . . . , tl u.a.r. and take Zi = s

l (at1,i + at2,i + · · · atl,i) as our estimate of A1/k
i =

∑s
t=1 ati. If

Y is the r.v. based on just one random server (namely Y = sati for a u.a.r t), then EY = A
1/k
i and

E(Y 2)

(EY )2
= s2

1
s

∑
t a

2
ti

(
∑

t ati)
2

≤ s2

(
1
s

∑
t a

k
ti

)2/k
A

2/k
i

≤ s2−(2/k)

ρ
2/k
i

≤ e2ε/ks2−(2/k)

β2/k
.

11
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From this it follows by averaging over l samples that

E(Z2)

(EZ)2
≤ e2ε/ks2−(2/k)

lβ2/k
=
e2ε/ks2−(2/k)β

sk−1β2/k
= e2ε/k

(
β

sk−1

)1−(2/k)

≤ 1 +O(
ε

k
).

We do Ω(k ln s + ln(1/ε)) such experiments and take the median of all of these to drive down the
failure probability for a single i to less than ε2/sk, whence, it is small by union bound for the failure
of any of the at most sk−1/ε2 indices i ’s. Thus all the A1/k

i , i ∈ T are estimated to a factor of
(1 + ε) by this process whp. Since k is a fixed constant, this also means (1 +O(ε)) relative error in
the estimate of Ai.

Next we estimate the Bi to within a factor of Õ(s), i.e., B̃i
Bi
∈
[

1
10s ln s , 1

]
whp. We will see

shortly that such an estimate suffices. For each i ∈ S, define

t(i) = the index of the server which picked i ; B̃i = akt(i),i. (8)

Then

E(B̃i) =

∑
t a

2k
t,i∑

t a
k
t,i

≥ 1

s

∑
t

akt,i =
1

s
Bi.

We observe that
Prob(akt(i),i ≤ δ

Bi
s

) ≤ δ.

Let Iδ(i) be an indicator random variable of whether B̃i ≤ δBi. Then Iδ(i) are independent: the
distribution of S, t(i) is not changed if we imagine picking S, t(i) as follows: we pick |S| indices
i in i.i.d. trials, according to Bi/B. Then for each i picked, independently pick a t(i), where
Prob(t(i) = t) = akti/Bi. From this, the independence of Iδ is clear. Therefore, by Chernoff the
the number of Bi which are much underestimated is small. Fixing δ = 1/(10 ln s), for each β, the
number of i′ for which Bi is underestimated by by less than δBi/s is at most a δ fraction.

We now have estimates ρ̃i of each ρi, i ∈ T . We need to determine from this |Sβ|. From the
bounds on estimation errors, we have ρ̃i ∈ [e−2ε/kρi, 10(s ln s)ρi]. Therefore, we see that only
i ∈ T with ρi ≥ β/(10s ln s) may be mistaken for an i ∈ Sβ . We have

|{i ∈ S : ρi ≥
β

10s ln s
}| ≤

∑
S ρi

β/(10s ln s)
.

Moreover,

E(
∑
i∈S

ρi) = |S|E(ρi) = |S|
n∑
i=1

Ai
Bi

Bi
B

= |S|A
B
≤ s|S|.

Therefore,

E(|{i ∈ S : ρi ≥
β

s
}|) ≤ 10s2 ln s|S|

β
.

The subset that intersects T is then {i ∈ T : ρi ≥ β/s}| ≤ 20 |T ||S|
s2 ln s|S|

β = O(s2 ln3 s/ε3).
Now for these i ’s in T , we collect all ati and find Ai, Bi exactly. This costs us O(s3(ln s)3/ε2)
communication. Thus the overall communication is bounded by

sk−1

ε3
+
sk−1 ln3 s

ε3
+
s3 ln3 s

ε3
= O((sk−1 + s3) ln3 s/ε3).

12



ALGORITHMS FOR DISTRIBUTED DATA

This is Õ(sk−1/ε3) for k ≥ 4.
We have given the proof already of all assertions except the number of rounds. For the number

of rounds, the most crucial point is that though the algorithm as stated requires O((ln s)c) rounds,
we can instead deal with all β simultaneously. CP just picks the T for all of them at once and sends
them accross. Also, we just make sure that CP communicates all choices of t for each i all in one
round. Also, note that the sk−2 sampling and checking if the first Ã > Ω(sB) can all be done in
O(1) rounds, so also the sk−1 sampling. Then the crude estimation of ρ̃i can be done in one O(1)
rounds followed by the finer sampling in O(1) rounds.
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4. Appendix

4.1. Lower bound for low-rank approximation

Our reduction is from the multiplayer SUM problem.
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Theorem 10 (Phillips et al. (2012)) Suppose each of s players has a binary vector ai with n bits
and the first player wants to compute

∑s
i=1 a

i mod 2 with constant probability. Then the total
communication needed is Ω(sn) bits.

Proof (of Theorem 2.) We reduce from the s− 2 player SUM problem, in which each player has a
k × d binary matrix Ai and the first player wants to learn their sum. By Theorem 10, this problem
needs Ω(skd) communication, since even the mod 2 version of the problem requires this amount of
communication. Now consider the s-player problem s-RESTRICT-SUM in which the first player
has Id, the second player has −Id, the remaining s − 2 players have a k × d binary matrix Ai and
the first player wants to learn the sum of all inputs. This also requires Ω(skd) communication.
This follows since if this problem could be solved with o(skd) communication, then SUM with
s − 2 players would have o(skd) communication by a simulation in which the first player of the
(s− 2)-SUM problem simulates the first three players of the s-RESTRICT-SUM problem.

In our s-player low-rank approximation problem, we give the first player Id, the second player
−Id, and the remaining s− 2 players each has a random k × d binary matrix Ai. Note that there is
a unique rank-k approximation to the sum of the k player inputs, namely, it is the matrix

∑s
i=3A

i.
It follows that any algorithm which outputs a projection matrix V V T for which ‖A−AV V T ‖2F ≤
(1 + ε) minX: rank(X)≤k, for any ε ≥ 0, must be such that V V T is a projection onto the row space
of
∑s

i=3A
i. This follows because (1 + ε) minX: rank(X)≤k ‖A−X‖F = (1 + ε) · 0 = 0.

Now, since the first player has Id, his output is IdV V T , where the row space of V T equals the
row space of

∑s
i=3A

i. Suppose the total communication of our problem is C.
We use this to build a protocol for s-RESTRICT-SUM, which has the same inputs as in our

s-player low rank approximation problem. Notice that A =
∑s

i=3A
i is a k× d matrix with rows in

{0, 1, 2, ..., s− 2}d.
Claim. The span of the rows of A can intersect {0, 1, . . . , s− 2}d in at most (2s)k distinct points.
Proof Let rowspace(A) denote the row space of A. We will bound the size of
rowspace(A) ∩ GF (p)d for prime p with s − 2 < p < 2(s − 2), where GF (p) is the fi-
nite field with elements {0, 1, 2, . . . , p − 1}, and GF (p)d is the vector space over GF (p). This
will be an upper bound on the size of rowspace(A) ∩ {0, 1, . . . , s − 2}d. Since rowspace(A)
is k-dimensional, so is rowspace(A) ∩ GF (p)d. Hence the intersection has at most k linearly
independent points. These k linearly independent points can be used to generate the remaining
points in rowspace(A) ∩ GF (p)d. The number of distinct combinations of these points is at most
pk < (2s)k, bounding the intersection size.

Next, players 3, . . . , s agree on random {+1,−1}d vectors u1, . . . uk
′

where k′ = k log 4s via
a public coin. The entries of u1, ..., uk

′
need only be O(k log s)-wise independent, and as such can

be agreed upon by all the players using only O(sk log s) bits of communication. Each player i then
computes the inner products Aij ·u1, . . . , Aij ·uk

′
for each j ∈ {1, . . . , k}. Here Aij denotes the j’th

row of a the i’th player’s matrix Ai.
The players P3, ..., Ps send all of these inner products to P1. The latter, for all rows j ∈

{1, ..., k}, computes the inner products Aj · u1, . . . , Aj · uk log s, where A =
∑s

i=3A
i. This can

be done using Õ(sk2) communication. Since P1 now has V T , he can compute the O(s)k points in
{0, 1, ..., s − 2}d that each row of A could possibly be. Let p be one such possible point. For each
row j, P1 checks if Aj · ul = p · ul for every l ∈ {1, 2, . . . , k′}. He decides p = Aj iff all k log s
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equalities hold for Aj . In this way, he can reconstruct A =
∑s

i=3Ai. The number k log s of the
different u vectors is chosen so that by a union bound, the procedure succeeds with high probability.

We can thus solve the s-RESTRICT-SUM problem using our s-player low rank problem with
communication C+ Õ(sk2), where C was the communication of our low-rank problem. Therefore,
C + Õ(sk2) = Ω(skd), which implies C = Ω̃(skd) since k < d.

4.2. Generalized moments

Here we extend the above theorem and proof works for a wide class of functions satisfying a weak
Lipschitz condition (and generalizing the case of moments).

For a monotone function f : <+ → <+, define

Lf = min r : ∀x > y > 0,
f(x)

f(y)
≤
(
x

y

)r
.

Alternatively, Lf is the Lipschitz constant of f wrt the “distance” d(x, y) = log(x)− log(y), i.e.,

Lf = sup
d(f(x), f(y))

d(x, y)
.

For the function f(x) = xk, we see that Lf = k.

Lemma 11 For any function f : <+ → R+ with L = Lf ,

f(
∑s

t=1 xt)∑s
t=1 f(xt)

≤
(
∑s

t=1 xt)
L∑s

t=1 x
L
t

Proof

f(
∑s

t=1 xt)∑s
t=1 f(xt)

=
f(
∑s

t=1 xt)∑s
t=1 x

L
t

∑s
t=1 x

L
t∑s

t=1 f(xt)

≤
f(
∑s

t=1 xt)∑s
t=1 x

L
t

min
t

xLt
f(xt)

= min
t

f(
∑s

t=1 xt)

f(xt)

xLt∑s
t=1 x

L
t

≤ min
t

(
∑s

t=1 xt)
L

xLt

xLt∑s
t=1 x

L
t

=
(
∑s

t=1 xt)
L∑s

t=1 x
L
t

.

Theorem 12 Let f be any nonnegative, superlinear real function with L = Lf ≥ 4. Suppose
there are s servers, with server t holding a non-negative vector at = (at1, at2, . . . , atn) Then,
to estimate A =

∑n
i=1 f (

∑s
t=1 ati) to relative error ε, there is an algorithm that communicates

O(sL−1(ln s)3/ε3) words in O(1) rounds.
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The algorithm is the following, essentially the same as in the moments case, with parameters
defined in terms of Lf for a general function f(.) in place of xk.

1. Pick an i.i.d. sample S0 of m = sL−2/ε3 indices i, where each i is picked according to
{Bi/B}.

2. Find average ρi among the picked i by getting all the ati and estimate A by Ã = B times this
average.

3. If Ã ≥ sB, then declare it to be the final estimate of A and stop.

4. CP now gets an i.i.d. sample S of O(sL−1 ln2 s/ε3) i ’s, each according to {Bi/B}.

5. For each β ∈ {sL−1, e−εsL−1, e−2εsL−1, . . . , 1}, CP does the following:

(a) Pick a subset T of S of cardinality Ω(β(ln s)2/ε3) u.a.r.

(b) For each i ∈ T , pick a set T ′ of l = sL−1

β t ∈ [s] u.a.r. Find all the ati, t ∈ T ′ and
find f

(
s
l

∑
t∈T ′ ati

)
. Repeat this Ω(L ln s + ln(1/ε)) times and take the median of all

values found to be the estimate Ãi of Ai.

(c) For each i ∈ T , take B̃i = at(i),i, where, t(i) is defined in (8).

(d) For every i ∈ T with Ãi/B̃i ∈ [βe−ε, β), do an exact computation of Ai, Bi by asking
every server for all the ati values.

(e) From the above estimate |Sβ ∩ T and compute s̃β = |Sβ ∩ T ||T |/|S| as the estimate of
|Sβ|.

6. Return B
∑

β s̃ββ as the estimate of A.

Proof (of Thm. 12.) We point out the changes in the analysis from the special case of moments.
Now we have Ai = f(

∑s
t=1 ati), Bi =

∑s
t=1 f(ati) and A =

∑n
i=1Ai, B =

∑n
i=1Bi. Also

ρi = Ai/Bi. The reader will have noticed that k has been replaced by L in the above algorithm.
The first phase remains the same, and at the end we either have a good approximation for A or we
know that A ≤ sB.

In the next phase we estimate f(
∑

t ati)
1/L. To do this, we first estimate

∑s
t=1 ati, then apply f

to this estimate. We need to analyze the error of both parts. For the first part, let Y = sati as before.
Then E(Y ) =

∑s
t=1 ati and since the server used to define Y is chosen uniformly at random, we

have

E(Y 2)

E(Y )2
≤ s2

1
s

∑s
t=1 a

2
ti

(
∑s

i=1 ati)
2

≤ s2

(
1
s

∑s
t=1 a

L
ti

(
∑s

i=1 ati)
L

)2/L

≤ s2−(2/L)

(
f(
∑s

t=1 ati)∑s
t=1 f(ati)

)2/L

(using Lemma 11)

=
s2−(2/L)

ρ
2/L
i

.
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This is then bounded by e2ε/L just as before. So we get an estimate of ai =
∑s

t=1 ati to within
multiplicative error eε/L. Let ãi be this approximation. It remains to bound f(ãi) in terms of f(ai).
For this we observe that using the definition of L, if ai ≤ ãi, then

1 ≤ f(ãi)

f(ai)
≤
(
ãi
ai

)L
≤ eε.

We get a similar approximation if ai > ãi.
The last phase for estimating Bi and putting together the estimates for all the ρi is again the

same as in the case of moments.
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