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Abstract
We consider stochastic multi-armed bandit problems where the expected reward is a Lipschitz

function of the arm, and where the set of arms is either discrete or continuous. For discrete Lip-
schitz bandits, we derive asymptotic problem specific lower bounds for the regret satisfied by any
algorithm, and propose OSLB and CKL-UCB, two algorithms that efficiently exploit the Lipschitz
structure of the problem. In fact, we prove that OSLB is asymptotically optimal, as its asymptotic
regret matches the lower bound. The regret analysis of our algorithms relies on a new concentration
inequality for weighted sums of KL divergences between the empirical distributions of rewards and
their true distributions. For continuous Lipschitz bandits, we propose to first discretize the action
space, and then apply OSLB or CKL-UCB, algorithms that provably exploit the structure efficiently.
This approach is shown, through numerical experiments, to significantly outperform existing algo-
rithms that directly deal with the continuous set of arms. Finally the results and algorithms are
extended to contextual bandits with similarities.

1. Introduction

In their seminal paper, Lai and Robbins (1985) solve the classical stochastic Multi-Armed Bandit
(MAB) problem. In this problem, the successive rewards of a given arm are i.i.d., and the expected
rewards of the various arms are not related. They derive an asymptotic (when the time horizon grows
large) lower bound of the regret satisfied by any algorithm, and present an algorithm whose regret
matches this lower bound. This initial algorithm was quite involved, and many researchers have,
since then, tried to devise simpler and yet efficient algorithms. The most popular of these algorithms
are UCB Auer et al. (2002) and its extensions, e.g. KL-UCB Garivier and Cappé (2011), Cappé et al.
(2013) – note that the KL-UCB algorithm was initially proposed and analysed in Lai (1987), see
(2.6). When the expected rewards of the various arms are not related as in Lai and Robbins (1985),
the regret of the best algorithm essentially scales as O(K log(T )) where K denotes the number of
arms, and T is the time horizon. When K is very large or even infinite, MAB problems become
more challenging. Fortunately, in such scenarios, the expected rewards often exhibit some structural
properties that the decision maker can exploit to design efficient algorithms. Various structures have
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been investigated in the literature, e.g., Lipschitz Agrawal (1995), Kleinberg et al. (2008), Bubeck
et al. (2008), linear Dani et al. (2008), and convex Flaxman et al. (2005).

In this paper, we revisit bandit problems where the expected reward is a Lipschitz function of the
arm. The set of arms is a subset of [0, 1] and we address both discrete Lipschitz bandits where this set
is finite, and continuous Lipschitz bandits where this set is [0,1]. For discrete Lipschitz bandits, we
derive problem specific regret lower bounds, and propose OSLB (Optimal Sampling for Lipschitz
Bandits), an algorithm whose regret matches our lower bound. Most previous work on Lipschitz
bandit problems address the case where the set of arms is [0,1], Agrawal (1995), Kleinberg et al.
(2008), Bubeck et al. (2008). For these problems, there is no known problem specific regret lower
bound. In Kleinberg et al. (2008), a regret lower bound is derived for the worst Lipschitz structure.
The challenge in the design of efficient algorithms for continuous Lipschitz bandits stems from
the facts that such algorithms should adaptively select a subset of arms to sample from, and based
on the observed samples, establish tight confidence intervals and construct arm selection rules that
optimally exploit the Lipschitz structure revealed by past observations. The algorithms proposed in
Agrawal (1995), Kleinberg et al. (2008), Bubeck et al. (2008) adaptively define the set of arms to
play, but used simplistic UCB indexes to sequentially select arms. In turn, these algorithms fail at
exploiting the problem structure revealed by the past observed samples. For continuous bandits, we
propose to first discretize the set of arms (as in Kleinberg et al. (2008)), and then apply OSLB, an
algorithm that optimally exploits past observations and hence the problem specific structure. As it
turns out, this approach outperforms algorithms directly dealing with continuous sets of arms.

Our contributions.
(a) For discrete Lipschitz bandit problems, we derive an asymptotic regret lower bound satis-

fied by any algorithm. This bound is problem specific in the sense that it depends in an explicit
manner on the expected rewards of the various arms (this contrasts with existing lower bounds for
continuous Lipschitz bandits).

(b) We propose OSLB (Optimal Sampling for Lipschitz Bandits), an algorithm whose regret
matches our lower bound. We further present CKL-UCB (Combined KL-UCB), an algorithm that
exhibits lower computational complexity than that of OSLB, and that is yet able to exploit the
Lipschitz structure.

(c) We provide a finite time analysis of the regret achieved under OSLB and CKL-UCB. The
analysis relies on a new concentration inequality for a weighted sum of KL divergences between the
empirical distributions of rewards and their true distributions. We believe that this inequality can be
instrumental for various bandit problems with structure.

(d) We evaluate our algorithms using numerical experiments for both discrete and continuous
sets of arms. We compare their performance to that obtained using existing algorithms for continu-
ous bandits.

(e) We extend our results and algorithms to the case of contextual bandits with similarities as
investigated in Slivkins (2011).

2. Models

We consider a stochastic multi-armed bandit problem where the set of arms is a subset {x1, . . . , xK}
of the interval [0, 1]. Results can be easily extended to the case where the set of arms is a subset of a
metric space as considered in Kleinberg et al. (2008). The set of arms is of finite cardinality, possibly
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large, and we assume without loss of generality that x1 < x2 < . . . < xK . Problems with con-
tinuous sets of arms are discussed in Section 7. Time proceeds in rounds indexed by n = 1, 2, . . ..
At each round, the decision maker selects an arm, and observes the corresponding random reward.
Arm xk is referred to as arm k for simplicity. For any k, the reward of arm k in round n is denoted
by Xk(n), and the sequence of rewards (Xk(n))n≥1 is i.i.d. with Bernoulli distribution of mean θk
(the results can be generalized to distributions belonging to a certain parametrized family of distri-
butions, but to simplify the presentation, we restrict our attention to Bernoulli rewards). The vector
θ = (θ1, . . . , θK) represents the expected rewards of the various arms. Let K = {1, . . . ,K}. We
denote by θ? = maxk∈K θk the expected reward of the best arm. A sequential selection algorithm
π selects in round n an arm kπ(n) ∈ K that depends on the past observations. In other words, for
any n ≥ 1, if Fπn denotes the σ-algebra generated by (kπ(t), Xkπ(t)(t))1≤t≤n, then kπ(n + 1) is
Fπn -measurable. Let Π denote the set of all possible sequential selection algorithms.

We assume that the expected reward is a Lipschitz function of the arm, and this structure is
known to the decision maker. More precisely, there exists a positive constant L such that for all
pairs of arms (k, k′) ∈ K,

|θk − θk′ | ≤ L× |xk − xk′ |. (1)

We assume that L is also known. We denote by ΘL the set of vectors in [0, 1]K satisfying (1). The
objective is to devise an algorithm π ∈ Π that maximizes the average cumulative reward up to a
certain round T referred to as the time horizon (T is typically large). Such an algorithm should
optimally exploit the Lipschitz structure of the problem. As always in bandit optimization, it is
convenient to quantify the performance of an algorithm π ∈ Π through its expected regret (or regret
for short) defined by:

Rπ(T ) = Tθ? − E[
T∑
n=1

Xkπ(n)(n)].

3. Regret Lower Bound

In this section, we derive an asymptotic (when T grows large) regret lower bound satisfied by
any algorithm π ∈ Π. We denote by I(x, y) = x log(xy ) + (1 − x) log(1−x

1−y ) the KL divergence
between two Bernoulli distributions with respective means x and y. Fix the average reward vector
θ = (θ1, . . . , θK). Let K− = {k ∈ K : θk < θ?} be the set of sub-optimal arms. For any k ∈ K−,
we define λk = (λ1, . . . , λK) as: ∀i ∈ K, λki = max{θi, θ? −L|xk − xi|}. The expected reward
vector λk is illustrated in Figure 3, and may be interpreted as the most confusing reward vector
among vectors in ΘL such that arm k (which is sub-optimal under θ) is optimal under λk. This
interpretation will be made clear in the proof of the following theorem. Without loss of generality,
we restrict our attention to so-called uniformly good algorithms, as defined in Lai and Robbins
(1985). π ∈ Π is uniformly good if for all θ ∈ ΘL, Rπ(T ) = o(T a) for all a > 0. Uniformly good
algorithms exist – for example, the UCB algorithm is uniformly good.

Theorem 1 Let π ∈ Π be a uniformly good algorithm. For any θ ∈ ΘL, we have:

lim inf
T→∞

Rπ(T )

log(T )
≥ C(θ), (2)
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Figure 1: A Lipschitz bandit with 17 arms, and an example of sub-optimal expected reward vector
λk involved in the regret lower bound.

where C(θ) is the minimal value of the following optimization problem:

min
ck≥0,∀k∈K−

∑
k∈K−

ck × (θ? − θk) (3)

s.t. ∀k ∈ K−,
∑
i∈K

ciI(θi, λ
k
i ) ≥ 1. (4)

The regret lower bound is a consequence of results in optimal control of Markov chains, see
Graves and Lai (1997). All proofs are presented in appendix. As in classical bandits, the minimal
regret scales logarithmically with the time horizon. Observe that the lower bound (2) is smaller than
the lower bound derived in Lai and Robbins (1985) when the various average rewards (θk, k ∈ K)
are not related (i.e., in absence of the Lipschitz structure). Hence (2) quantifies the gain one may
expect by designing algorithms optimally exploiting the structure of the problem. Note that for any
k ∈ K−, the variable ck corresponding to a solution of (3) characterizes the number of times arm k
should be played under an optimal algorithm: arm k should be roughly played ck log(n) times up
to round n.

It should be also observed that our lower bound is problem specific (it depends on θ), which con-
trasts with existing lower bounds for continuous Lipschitz bandits, see e.g. Kleinberg et al. (2008).
The latter are typically derived by selecting the problems that yield maximum regret. However, our
lower bound is only valid for bandits with a finite set of arms, and cannot easily be generalized to
problems with continuous sets of arms.

4. Algorithms

In this section, we present two algorithms for discrete Lipschitz bandit problems. The first of these
algorithms, referred to as OSLB (Optimal Sampling for Lipschitz Bandits), has a regret that matches
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Algorithm 1 OSLB(ε)
For all n ≥ 1, select arm k(n) such that:
If θ̂?(n) ≥ maxk 6=L(n) bk(n), then k(n) = L(n);
Else If tk(n)(n) < ε

K tk(n)(n), then k(n) = k(n);
Else k(n) = k(n).

the lower bound derived in Theorem 1, i.e., it is asymptotically optimal. OSLB requires that in
each round, one solves an LP similar to (3). The second algorithm, CKL-UCB (Combined KL-
UCB) is much simpler to implement, but has weaker theoretical performance guarantees, although
it provably exploits the Lipschitz structure.

4.1. The OSLB Algorithm

To formally describe OSLB, we introduce the following notations. For any n ≥ 1, let k(n) be the
arm selected under OSLB in round n. tk(n) denotes the number of times arm k has been selected
up to round n − 1. By convention, tk(1) = 0. The empirical reward of arm k at the end of round
(n − 1) is θ̂k(n) = 1

tk(n)

∑n−1
t=1 1{k(t) = k}Xk(t), if tk(n) > 0 and θ̂k(n) = 0 otherwise. We

denote by L(n) = arg maxk∈K θ̂k(n) the arm with the highest empirical reward (ties are broken
arbitrarily) at the end of round n − 1. Arm L(n) is referred to as the leader for round n. We
also define θ̂?(n) = θ̂L(n)(n) as the empirical reward of the leader at the end of round n − 1. Let
f(n) = log(n) + (3K + 1) log log(n). Further define, for all q ≥ 0 and k, the Lipschitz vector λq,k

such that for any k′, λq,kk′ = q−L|xk − xk′ |. The sequential decisions made under OSLB are based
on the indexes of the various arms. The index bk(n) of arm k for round n is defined by:

bk(n) = sup{q ∈ [θ̂k(n), 1] :

K∑
k′=1

tk′(n)I+(θ̂k′(n), λq,kk′ ) ≤ f(n)}.

Note that the index bk(n) is always well defined, even for small values of n, e.g. n = 1 (we have
for all x > 0, I+(0, x) = − log(1 − x)). For any θ ∈ ΘL, let C(θ) denote the minimal value of
the optimization problem (3), and let (ck(θ), k ∈ K−) be the values of the variables (ck, k ∈ K−)
in (3) yielding C(θ). For simplicity, we define Ĉ(n) = C(θ̂(n)), and ĉk(n) = ck(θ̂(n)) for
any k ∈ K−(n) where K−(n) = {k : θ̂k(n) < θ̂?(n)}. The design of OSLB stems from the
observation that an optimal algorithm should satisfy limn→∞ tk(n)/(ck(θ) log(n)) = 1, almost
surely, for all k ∈ K−. Hence we should force the exploration of arm k ∈ K−(n) in round n if
tk(n) < ĉk(n) log(n). We define the arm k(n) to explore as k(n) = arg mink∈Ke(n) tk(n) where
Ke(n) = {k ∈ K−(n) : tk(n) ≤ ĉk(n) log(n)}. If Ke(n) = ∅, k(n) = −1 (a dummy arm).
Finally we define the least played arm as k(n) = arg mink tk(n). In the definitions of k(n) and
k(n), ties are broken arbitrarily. We are now ready to describe OSLB. Its pseudo-code is presented
in Algorithm 1.

Under OSLB, the leader is selected if its empirical average exceeds the index of other arms. If
this is not the case, OSLB selects the least played arm k(n), if the latter has not been played enough,
and arm k(n) otherwise. Note that the description of OSLB is valid in the sense that k(n) 6= −1 if
θ̂?(n) < maxk 6=L(n) bk(n). After each round, all variables are updated, and in particular ĉk(n) for
any k ∈ K−(n), which means that at each round we solve an LP, similar to (3).
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Algorithm 2 CKL-UCB
For all n ≥ 1, select arm k(n) such that:
If ∃k such that tk(n) < log log(n), then k(n) = k (ties are broken arbitrarily);
Else if bL(n)(n) ≥ max

k 6=L(n)
bk(n), then k(n) = L(n);

Else k(n) = arg min
k
{tk(n) : bk(n) > bL(n)(n)} (ties are broken arbitrarily).

4.2. The CKL-UCB Algorithm

Next, we present the algorithm CKL-UCB (Combined KL - UCB). The sequential decisions made
under CKL-UCB are based on the indexes bk(n), and CKL-UCB explores the apparently suboptimal
arms by choosing the least played arms first. When the leaderL(n) has the largest index, it is played,
and otherwise we play the arm in {k : bk(n) > bL(n)(n)}, the set of arms which are possibly better
than the leader, with the least number of current plays. Note that in practice, the forced log log(n)
exploration is unnecessary and only appears to aide in the regret analysis.

The rationale behind CKL-UCB is that if we are given a set of suboptimal arms, by exploring
them, we will first eliminate arms whose expected reward is low (these arms do not require many
plays to be eliminated). Note that the arm chosen by CKL-UCB is directly computed from the
indexes, without solving an LP, and hence CKL-UCB is computationally light. From a practical
perspective, CKL-UCB should also be more robust than OSLB in the sense that it does not take
decisions based on the solution of the LP calculated with empirical averages θ̂(n). This could be
problematic if the LP solution is very sensitive to errors in the estimate of θ.

5. Regret Analysis

In this section, we provide finite time upper bounds for the regret achieved under OSLB and CKL-
UCB.

5.1. Concentration Inequalities

To analyse the regret of algorithms for bandit optimization problems, one often has to leverage
results related to the concentration-of-measure phenomenon. More precisely, here, in view of the
definition of the indexes bk(n), we need to establish a concentration inequality for a weighted sum
of KL divergences between the empirical distributions of rewards and their true distributions. We
derive such an inequality. The latter extends to the multi-dimensional case the concentration in-
equality derived in Garivier (2013) for a single KL divergence. We believe that this inequality can
be instrumental in the analysis of general structured bandit problems, as well as for statistical tests
involving vectors whose components have distributions in a one-parameter exponential family (such
as Bernoulli or Gaussian distributions). For simplicity, the inequality is stated for Bernoulli random
variables only.

We use the following notations. For k ∈ K, let {Xk(n)}n∈N be a sequence of i.i.d. Bernoulli
random variables with expectation θk and X(n) = (Xk(n), k ∈ K). We represent the history up
to round n using the σ-algebra Fn = σ(X(1), . . . , X(n)), and define the natural filtration F =
{Fn}n≥1. We consider a generic sampling rule B(n) = (Bk(n), k ∈ K) where Bk(n) ∈ {0, 1} for
all k ∈ K. The sampling rule is assumed to be predictable in the sense that B(n) ∈ Fn−1.

6



LIPSCHITZ BANDITS

We define the number of times that k was sampled up to round n− 1 by tk(n) =
∑n−1

t=1 Bk(t)

and the sum Sk(n) =
∑n−1

t=1 Bk(t)Xk(t). The empirical average for k is θ̂k(n) = Sk(n)/tk(n) if
tk(n) > 0 and θ̂k(n) = 0 otherwise. Finally, we define the vectors θ̂(n) = (θ̂1(n), . . . , θ̂K(n)) and
t(n) = (t1(n), . . . , tK(n)). When comparing vectors in RK , we use the component-by-component
order unless otherwise specified.

Theorem 2 For all δ ≥ (K + 1) and n ∈ N we have:

P

[
K∑
k=1

tk(n)I+(θ̂k(n), θk) ≥ δ

]
≤ e−δ

(
dδ log(n)eδ

K

)K
eK+1. (5)

The proof of Theorem 2 involves tools that are classically used in the derivation of concentration
inequalities, but also requires the use of stochastic ordering techniques, see e.g. Müller and Stoyan
(2002).

5.2. Finite time analysis of OSLB

Next we provide a finite time analysis of the regret achieved under OSLB, under the following mild
assumption. This assumption greatly simplifies the analysis.

Assumption 1 The solution of the LP (3) is unique.

It should be observed that the set of parameters θ ∈ ΘL such that Assumption 1 is satisfied
constitutes a dense subset of ΘL.

Theorem 3 For all ε > 0, under Assumption 1, the regret achieved under π = OSLB(ε) satisfies:
for all θ ∈ ΘL, for all δ > 0 and T ≥ 1,

Rπ(T ) ≤ Cδ(θ)(1 + ε) log(T ) + C1 log log(T ) +K3ε−1δ−2 + 3Kδ−2, (6)

where Cδ(θ)→ C(θ), as δ → 0+, and C1 > 0.

In view of the above theorem, when ε is small enough, OSLB(ε) approaches the fundamental
performance limit derived in Theorem 1. More precisely, we have for all ε > 0 and δ > 0:

lim sup
T→∞

Rπ(T )

log(T )
≤ Cδ(θ)(1 + ε).

In particular, for any ζ > 0, one can find ε > 0 and δ > 0 such that Cδ(θ)(1 + ε) ≤ (1 + ζ)C(θ),
and hence, under π =OSLB(ε),

lim sup
T→∞

Rπ(T )

log(T )
≤ C(θ)(1 + ζ).
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5.3. Finite Time analysis of CKL-UCB

In order to analyze the regret of CKL-UCB, we define the following optimization problem. De-
fine the matrix of Kullback-Leibler divergence numbers A = (aik)i,k∈K with aik = I(θi, λ

k,θ?

i ).
Consider an arm k 6= k?, a subset of arms N ⊂ {1, . . . ,K} \ {k, k?}, and α0 ≥ 0. We define
dk(A,α0,N ) the optimal value of the following linear program:

min
α1,...,αK

∑
k′∈K−\{k}

αk′ak′k

s.t. αk′ ≥ α0, ∀k′ 6∈ N , k′ 6= k?

αk′ ≥ 0, ∀k′∑
k′′∈K−\{k}

αk′′ak′′k′ ≥ 1− α0akk′ , ∀k′ ∈ N .

and ek(A,α0) = minN dk(A,α0,N ) where the minimum is taken over all possible subsets of
{1, . . . ,K} \ {k, k?}.

Theorem 4 Under CKL-UCB, for all θ ∈ ΘL, all T ≥ 1, all 0 < δ < (θ? −maxk 6=k? θk)/2, and
any suboptimal arm k ∈ K−,
(i) we have:

E[tk(T )] ≤ f(T )

I(θk + δ, θ∗ − δ)
+ C1 log(log(T )) + 2δ−2.

with C1 ≥ 0 a constant.
(ii) Furthermore, for all k ∈ K−, we have that:

lim sup
T→∞

E[tk(T )]

log(T )
≤ βk(θ).

where
βk(θ) = inf{α0 ≥ 0 : ak,kα0 + ek(A,α0) > 1}.

(iii) Assume that there exists k′ such that 0 < akk′ < akk and such that for all k′′ we have that if
ak′′k = 0 then ak′′k′ = 0 as well. Then βk(θ) < 1/akk = 1/I(θk, θ

?).

In the above theorem, statement (i) shows that CKL-UCB plays arm k at most as much as KL-
UCB, so that CKL-UCB outperforms KL-UCB for any value of the parameters θ. Now statements
(ii) and (iii) show that under certain assumptions, CKL-UCB plays arm k strictly less than KL-UCB,
so that CKL-UCB indeed exploits the Lipshitz structure of the problem. Note that the conditions
in (iii) holds for triangular reward functions, and other unimodal functions, and hence in these
cases, CKL-UCB strictly outperforms KL-UCB. The regret analysis of CKL-UCB presented above
is preliminary, and we believe that its performance guarantees can be further improved.

6. Contextual Bandit with Similarities

The algorithms and results presented above can be extended to the case of contextual bandit prob-
lems with similarities as studied in Slivkins (2011). In such problems, in each round, the decision
maker observes a context, and then decides which arm to select. The expected reward of the various
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arms depends on the context, and is assumed to be Lipschitz in the arm and context. We assume that
contexts arrive according to an i.i.d. process whose distribution is not known to the decision maker.
This contrasts with most of the work in contextual bandits, where the context process is adversarial.

6.1. Model

Let {y1, . . . , yJ} denote the set of possible contexts, assumed to be a subset of [0, 1]. We assume
that y1 < . . . < yJ . For simplicity, context yj is referred to as context j. For each context
j ∈ J = {1, . . . , J}, the expected rewards of the various arms are represented by a vector θ(j) =
(θk(j), k ∈ K) (θk(j) is the expected reward of arm k when the context is j). We consider a general
scenario where the reward is a Lipschitz function in both the arm and the context. There exists L
(known to the decision maker) such that for all (i, k), (j, l) ∈ J ×K,

|θk(i)− θl(j)| ≤ L×D((i, k), (j, l)), (7)

where D refers to some metric over J × K. The choice of this metric is free, and allows us to
consider different scenarios. For example, we may assume that the Lipschitz structure is stronger in
terms of arms than in terms of contexts. In this case, we may choose, for some β > 1,
D((i, k), (j, l)) =

√
(β(yi − yj)2 + (xk − xl)2) . The set of θ = (θk(j), k ∈ K, j ∈ J ) satisfying

(7) is denoted by ΘL,2.
The context process is i.i.d.. The distribution of the observed context j(n) in round n is ψ, i.e.,

ψ(j) = P[j(n) = j]. Without loss of generality, we assume that for any j ∈ J , ψ(j) > 0. ψ is
unknown to the decision maker. Let Xj,k(n) denote the reward of arm k obtained in round n when
the context is j. For contextual bandits, we define the regret of algorithm π as follows:

Rπ(T ) = T
∑
j∈J

ψ(j)θ?(j)−
T∑
n=1

E[Xj(n),kπ(n)(n)]. (8)

where θ?(j) denotes the reward of the best arm under context j, and as earlier kπ(n) denotes the
arm selected under π in round n.

6.2. Regret Lower Bound

To state the regret lower bound, we introduce for any context j ∈ J , K−(j) = {k ∈ K : θk(j) <
θ?(j)} the set of suboptimal arms for context j. We also introduce for any context j ∈ J , and any
k ∈ K, the vector (λj,kl (i), l ∈ K, i ∈ J ) such that

λj,kl (i) = max{θl(i), θ?(j)− LD((j, k), (i, l))}.

Theorem 5 Let π be a uniformly good algorithm. Then, for any θ ∈ ΘL,2:

lim inf
T→∞

Rπ(T )

log(T )
≥ C ′(θ) (9)

where C ′(θ) is the minimal value of the following optimization problem:

min
cj,k≥0,∀j,∀k

∑
j∈J

∑
k∈K−(j)

cj,k × (θ∗(j)− θk(j)) (10)

s.t. ∀j,∀k ∈ K−(j),
∑
i∈J

∑
l∈K

ci,lI(θl(i), λ
j,k
l (i)) ≥ 1. (11)

9
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Algorithm 3 CCKL-UCB
For all n ≥ 1, observe context j = j(n), and select arm k(n) such that:
If ∃k such that tk(j, n) < log log(n), then k(n) = k (ties are broken arbitrarily);
Else if L(n, j) = arg max

k
bck(n, j), then k(n) = L(n, j);

Else k(n) = arg min
k
{tk(j, n) : bck(j, n) > bcL(n)(j, n)} (ties are broken arbitrarily).

Observe that our regret lower bound is problem specific, and again the values of the cj,k’s solving
the above optimization problem can be interpreted as follows: an asymptotically optimal algorithm
plays arm k when the context is j a number of times that scales as cj,k log(T ) as T grows large.
Also note that the regret lower bound does not depend on the distribution ψ of the contexts.

6.3. Algorithms

The algorithms proposed for Lipschitz bandits can be naturally extended to the case of contextual
bandits with similarities. For conciseness, we just present CCKL-UCB (Contextual Combined KL
- UCB), the extension of CKL-UCB. Its regret analysis can be conducted as that of CKL-UCB with
minor modifications.

To describe CCKL-UCB, we introduce the following notations. Let θ̂k(j, n) denote the empiri-
cal average reward of arm k for context j up to round n− 1. tk(j, n) is the number of times context
j is presented and arm k is chosen up to round n − 1. We define the index bck(j, n) of arm k for
round n, when the context j is observed as:

bck(n, j) = sup{q ∈ [θ̂k(j, n), 1] :
∑
i∈J

∑
l∈K

tl(i, n)I+(θ̂l(i, n), λq,k,jl (i, n)) ≤ f(n)},

where λq,k,jl (i, n) = q − LD((j, k), (i, l)). As for Lipschitz bandits, the indexes are built so as to
match the constraints (11) of the optimisation problem leading to the regret lower bound. The leader
for round n and context j is defined L(n, j) = arg max

k
θ̂k(j, n) (ties are broken arbitrarily). In

round n, CCKL-UCB plays the leader L(n, j(n)) for the current context if it has the highest index,
and otherwise selects the least played arm which has an index higher than the leader L(n, j(n)).

7. Numerical Experiments

In this section, we present numerical experiments illustrating the performance of our algorithms
compared to other existing algorithms.

7.1. Discrete Lipschitz Bandits

We first consider discrete bandit problems with 46 arms, and with time horizons less than T = 5.105

rounds. The regret is averaged over 150 runs. In Figure 2, we compare the performance of KL-UCB
and CKL-UCB. For improved numerical performance, in the case of both algorithms we ignore the
log log(n) terms in the indexes (i.e.f(n) = log(n)). On the left, we plot the expected reward as
a function of the arm, as well as the (scaled) amount of times E[tk(n)]/ log(n) sub-optimal arm
k is played under both algorithms, as function of time. Under KL-UCB, the amount of times for
arm k approaches 1/I(θk, θ

?), whereas under CKL-UCB, E[tk(n)] satisfy the upper bounds derived

10
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Figure 2: (Left) The expected rewards and the scaled amount of times suboptimal arms are played
under KL-UCB and CKL-UCB as a function of the arm. (Right) Regret under KL-UCB
and CKL-UCB as a function of time.

in Theorem 4. CKL-UCB explores suboptimal arms less often than KL-UCB, as it is designed to
exploit the Lipschitz structure. On the right, we plot the expected regret as a function of time under
both algorithms. The regret under CKL-UCB is always smaller than that under KL-UCB (the regret
under KL-UCB is typically twice as large as that under CKL-UCB in this example). This illustrates
the significant gains that one may achieve by efficiently exploiting the structure of the problem.

7.2. Continuous Lipschitz Bandits
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Figure 3: Expected regret of different algorithms as function of time for a triangular reward function
(left) and a quadratic reward function (right).

We now turn our attention to continuous Lipschitz bandits where the set of arms is [0,1].
We consider two reward functions that behave differently around their maximum: (1) θ(x) =
0.8− 0.5|0.5− x| (triangle) and (2) θ(x) = max(0.1, 0.9− 3.2 ∗ (0.7− x)2) (quadratic function).
To adapt KL-UCB and CKL-UCB to this continuous setting, we use a uniform discretization of the
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set of arms, with δ−1 = d
√
T/ log(T )e arms. This discretization is known to be order-optimal for

functions which are regular around their maximum Kleinberg (2004). In order not to give a positive
bias to KL-UCB and CKL-UCB, we make sure that the maximum of the reward functions is not
achieved in one of the arms in the discretization: the maximum is placed at a distance of at least
δ/4 from any arm in the discretization. We compare the performance of KL-UCB and CKL-UCB
to that of the algorithm HOO introduced in Bubeck et al. (2008), and the Zooming algorithm pro-
posed in Kleinberg et al. (2008). The two latter algorithms have performance guarantees (they are
order-optimal). We also compare KL-UCB and CKL-UCB to HOO+ and Zooming+, two improved
versions of HOO and Zooming, respectively. In these tuned versions, the confidence radius (see
Bubeck et al. (2008) and Kleinberg et al. (2008) for details) is set equal to

√
log(n)/(2 ∗ tk(n)) in

round n. HOO+ and Zooming+ exhibit better performance than their initial versions, but their re-
grets have not been analytically studied. In the experiments, we limit the time horizon to T = 25000
rounds, and the expected regret is calculated by averaging over 100 independent runs.

Figure 3 presents the expected regret of the various algorithms for the triangular reward func-
tion (left) and for the quadratic reward function (right). First note that surprisingly, KL-UCB, an
algorithm that does not leverage the Lipschitz structure, outperforms some of the algorithms de-
signed to exploit the structure. Observe that CKL-UCB clearly outperforms KL-UCB and all other
algorithms in both problem instances. For quadratic reward functions, it is known that the optimal
discretization of the set of arms should roughly have (log(T )/T )1/4 arms, Combes and Proutiere
(2014a). We also plot the regret achieved under CKL-UCB using this optimized discretization, and
we observe that this indeed further reduces the regret.

It is worth noting that in the case of CKL-UCB most of the regret is caused by not discretizing
enough around the top arm. In contrast, in the case of Zooming and HOO, most of the regret
is caused by loose confidence bounds. Therefore, in future work we will explore the possibility
of combining the adaptive discretization scheme of Zooming and HOO with efficient confidence
bounds as used by CKL-UCB.

8. Conclusion

We consider stochastic multi-armed bandits (discrete or continuous) where the expected reward is
a Lipschitz function of the arm. For discrete Lipschitz bandits, we derive asymptotic lower bounds
for the regret achieved under any algorithm. We propose OSLB and CKL-UCB, two algorithms that
exploit the Lipschitz structure efficiently. OSLB is asymptotically optimal and CKL-UCB is a com-
putationally light algorithm which efficiently exploits the Lipschitz structure. The regret analysis
is based on a new concentration inequality for sums of KL divergences which can be instrumental
for bandit problems with correlated arms. For continuous Lipschitz bandits, we adapt OSLB and
CKL-UCB by using a simple discretization. For both discrete and continuous bandits, initial numer-
ical experiments show that our approach significantly outperforms the state-of-the-art algorithms.
Finally the results and algorithms are extended to contextual bandits with similarities.
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Appendix A. Proof of Theorem 1

To establish the asymptotic lower bound, we apply the techniques used in Graves and Lai (1997)
to investigate efficient adaptive decision rules in controlled Markov chains. We recall here their
general framework. Consider a controlled Markov chain (Xt)t≥0 on a finite state space S with
a control set U . The transition probabilities given control u ∈ U are parametrized by θ taking
values in a compact metric space Θ: the probability to move from state x to state y given the
control u and the parameter θ is p(x, y;u, θ). The parameter θ is not known. The decision maker is
provided with a finite set of stationary control laws G = {g1, . . . , gK} where each control law gj is
a mapping from S to U : when control law gj is applied in state x, the applied control is u = gj(x).
It is assumed that if the decision maker always selects the same control law g, the Markov chain
is irreducible with stationary distribution πgθ . Now the expected reward obtained when applying
control u in state x is denoted by r(x, u), so that the expected reward achieved under control law g
is: µθ(g) =

∑
x r(x, g(x))πgθ(x). There is an optimal control law given θ whose expected reward is

denoted µ?θ ∈ arg maxg∈G µθ(g). Now the objective of the decision maker is to sequentially select
control laws so as to maximize the expected reward up to a given time horizon T . As for MAB
problems, the performance of a decision scheme can be quantified through the notion of regret
which compares the expected reward to that obtained by always applying the optimal control law.

We now apply the above framework to our Lipschitz bandit problem, and we consider θ ∈ ΘL.
The Markov chain has values in {0, 1}. The set of control laws is G = {1, . . . ,K}. These laws are
constant, in the sense that the control applied by control law k does not depend on the state of the
Markov chain, and corresponds to selecting arm k. The transition probabilities are:

p(x, y; k, θ) =

{
θk, if y = 1,
1− θk, if y = 0.

Finally, the reward r(x, k) is just given by the state x.
We now fix θ ∈ ΘL. Define the set B(θ) consisting of all bad parameters λ ∈ ΘL such that k?

is not optimal under parameter λ, but which are statistically indistinguishable from θ:

B(θ) = {λ ∈ ΘL : λk? = θk? and max
k

λk > λk?},

B(θ) can be written as the union of sets Bk(θ), k ∈ K− defined as:

Bk(θ) = {λ ∈ B(θ) : λk > λk?}.

By applying Theorem 1 in Graves and Lai (1997), we know that C(θ) is the minimal value of the
following LP:

min
∑

k ck(θ
? − θk) (12)

s.t. infλ∈Bk(θ)

∑
l∈K clI(θl, λl) ≥ 1, ∀k ∈ K− (13)

ck ≥ 0, ∀k ∈ K. (14)
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To conclude the proof, it is sufficient to remark that for any k,

inf
λ∈Bk(θ)

∑
l∈K

clI(θl, λl) =
∑
l∈K

clI(θl, λ
k
l ),

which is easy in view of the definition of λk, by monotonicity of x 7→ I(θk, x) when x ≥ θk. �

Appendix B. Proof of Theorem 2

In this section, we first establish the concentration inequality assuming that Lemma 6 holds. We
then prove Lemma 6, and to this aim, we state and use two further intermediate results, Lemmas 7
and 8, proved at the end of this section. Without loss of generality, we assume that tk(n) ≥ 1 for
any k (the case where for some k, tk(n) = 0 is treated similarly).

Proof of Theorem 2. Let δ ≥ K + 1 and η > 0. Define D = dlog(n)/ log(1 + η)e, and the set
D = {1, . . . , D}K . Introduce the following events:

A =

{
K∑
k=1

tk(n)I+(θ̂k(n), θk) ≥ δ

}
,

Bd = ∩Kk=1

{
(1 + η)dk−1 ≤ tk(n) ≤ (1 + η)dk

}
, for all d ∈ D.

We have A = ∪d∈D(A∩Bd), and hence P[A] ≤
∑

d∈D P[A∩Bd]. We let η = 1/(δ−1) and apply
Lemma 6 with tk = (1 + η)dk−1. Since δ ≥ K + 1, for η = 1/(δ − 1), δ ≥ (1 + η)K, and the
application of Lemma 6 is legitimate. We obtain for all d ∈ D:

P[A ∩Bd] ≤
(
δe

K

)K
e−δ/(1+η).

Since |D| = DK , we deduce that P[A] ≤
(
Dδe
K

)K
e−δ/(1+η). Now with our choice η = 1/(δ − 1),

and using the inequality log(1 + η) = − log(1/(1 + η)) ≥ 1− 1/(1 + η) = 1/δ, we get:

P[A] ≤ e−δ
(
δdδ log(n)e

K

)K
eK+1,

which concludes the proof. �

Lemma 6 For any k = 1, . . . ,K, let 1 ≤ t̄k ≤ n. Let η > 0. Define the event:

C = ∩Kk=1{t̄k ≤ tk(n) ≤ (1 + η)t̄k}.

For δ ≥ (1 + η)K, we have:

P

[
1C

K∑
k=1

tk(n)I+(θ̂k(n), θk) ≥ δ

]
≤
(
δe

K

)K
e−δ/(1+η).
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Proof of Lemma 6. Define the event E = {1C
∑K

k=1 tk(n)I+(θ̂k(n), θk) ≥ δ}. We shall prove that
for all ζ ∈ (R+)K :

P[∩Kk=1{1Ctk(n)I+(θ̂k(n), θk) ≥ ζk}] ≤ e−(
∑K
k=1 ζk)/(1+η).

Let ζ ∈ (R+)K . For t ≥ 0, we define xk(t) such that (i) if there exists 0 ≤ x ≤ θk such that
tI+(x, θk) = ζk, then xk(t) = x, (ii) else xk(t) = 0. By monotonicity of I+, t 7→ xk(t) is
increasing. Hence tk(n)I+(θ̂k(n), θk) ≥ ζk implies that θ̂k(n) ≤ xk(tk(n)) ≤ xk(t̄k(1 + η)). We
also have t̄kI+(xk(t̄k(1 + η)), θk) = ζk/(1 + η).

We deduce that

P[∩k{1Ctk(n)I+(θ̂k(n), θk) ≥ ζk}] ≤ P[∩k{θ̂k(n) ≤ xk(tk(n)), C}]
≤ P[∩k{θ̂k(n) ≤ xk(t̄k(1 + η)), C}]

≤
K∏
k=1

e−t̄kI(xk(t̄k(1+η)),θk)] = e−
∑K
k=1 ζk/(1+η),

where the last inequality is obtained by applying Lemma 7 with Ck = xk(t̄k(1+η)). Next we apply
Lemma 8 with Zk = 1Ctk(n)I+(θ̂k(n), θk) and a = 1/(1 + η). We get:

P[E] ≤
(

δe

K(1 + η)

)K
e−δ/(1+η),≤

(
δe

K

)K
e−δ/(1+η).

�

Lemma 7 For any k = 1, . . . ,K, let 1 ≤ t̄k ≤ n. Then for all 0 ≤ Ck ≤ θk we have:

P[∩Kk=1{θ̂k(n) ≤ Ck, t̄k ≤ tk(n)}] ≤
K∏
k=1

e−t̄kI(Ck,θk).

Proof of Lemma 7. For all k = 1, . . . ,K and λ, we define

φk(λ) = log(E[eλXk(1)]) = log(θke
λ + (1− θk)).

One can easily show that for all x ∈ [0, θk], I(x, θk) = supλ≤0{λx − φk(λ)}. Define the events
F = F1 ∩ F2, where F1 = ∩Kk=1{t̄k ≤ tk(n)}, and F2 = ∩Kk=1{θ̂k(n) ≤ Ck}.

For all k, let λk ≤ 0, and define G(n) = exp
(∑K

k=1 λkSk(n)− tk(n)φk(λk)
)

. For all n′ ≤ n
we have G(n′) = G(n′ − 1)

∏K
k=1 e

Bk(n′)(λkXk(n′)−φk(λk)). Since Bk(n′) is Fn′−1 measurable
and {Xk(n

′)}k is independent of Fn′−1, we deduce that E[G(n′)|Fn′−1] = G(n′ − 1), i.e., G is a
martingale. Furthermore E[G(n)] = 1.

For all k, we set
λk = arg max

λ≤0
{λCk − φk(λ)}, (15)
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so that λkCk − φk(λk) = I(Ck, θk). We have λk < 0 and therefore:

P[F ] = P[∩Kk=1{Sk(n) ≤ tk(n)Ck , F1}]

≤ P[
K∑
k=1

λkSk(n) ≥
K∑
k=1

λktk(n)Ck , F1]

≤ P[1F1e
∑K
k=1 λkSk(n) ≥ e

∑K
k=1 λktk(n)Ck ]

= P[1F1G(n) ≥ e
∑K
k=1 tk(n)(λkCk−φk(λk))]

= P[1F1G(n) ≥ e
∑K
k=1 tk(n)I(Ck,θk)]

≤ P[1F1G(n) ≥ e
∑K
k=1 t̄kI(Ck,θk)].

Using Markov inequality and the fact that E[1F1G(n)] ≤ E[G(n)] = 1, and we obtain the an-
nounced result:

P[F ] ≤ E[1F1G(n)]e−
∑K
k=1 t̄kI(Ck,θk) ≤ e−

∑K
k=1 t̄kI(Ck,θk).

�

Lemma 8 Let a > 0, K ≥ 2. Let Z ∈ RK be a random variable such that for all ζ ∈ (R+)K:

P[Z ≥ ζ] ≤ e−a
∑K
k=1 ζk .

Then for all δ ≥ K/a ∈ R+:

P[

K∑
k=1

Zk ≥ δ] ≤
(
aδe

K

)K
e−aδ.

Proof of Lemma 8. Let Y ∈ (R+)K a vector whose components are independent and exponentially
distributed with parameter a. Then, Z ≤uo Y since for all ζ ∈ (R+)K (see Lemma 9):

P[Z ≥ ζ] ≤ e−a
∑K
k=1 ζk = P[Y ≥ ζ].

Let λ ∈ [0, a) and δ ∈ R+. Using Markov inequality we get:

P[

K∑
k=1

Zk ≥ δ] = P[eλ
∑K
k=1 Zk ≥ eλδ] ≤ e−λδE[eλ

∑K
k=1 Zk ]

= e−λδE[
K∏
k=1

eλZk ] ≤ e−λδE[
K∏
k=1

eλYk ]

= e−λδ
K∏
k=1

E[eλYk ].

where we have used the results of Lemma 9 with fk(z) = ezλ for all k. Note that z 7→ ezλ is
positive and increasing.
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Furthermore we have E[eλYk ] =
∫ +∞

0 ae−ayeλydy = a
a−λ . Hence we have established that for

all 0 ≤ λ < a:

P[
K∑
k=1

Zk ≥ δ] ≤ e−λδ
aK

(a− λ)K
.

Setting λ = a−K/δ ≥ 0, we obtain:

P[

K∑
k=1

Zk ≥ δ] ≤
(
aδe

K

)K
e−aδ.

�
The next lemma presents a result on multivariate stochastic ordering, see Müller and Stoyan

(2002)[Theorem 3.3.16].

Lemma 9 Let X and Y be two random variables on RK . The following are equivalent:
(i) X ≤uo Y ,
(ii) For all x ∈ RK , P[X ≥ x] ≤ P[Y ≥ x],
(iii) For all collections of non negative increasing functions f1, . . . , fK we have E[

∏K
k=1 fk(Xk)] ≤

E[
∏K
k=1 fk(Yk)].

Appendix C. Proof of Theorem 3

We first present two important corollaries of our concentration inequality (Theorem 2).

Corollary 10 Let f(n) = log(n) + (3K + 1) log log(n). There exists n0 such that for all n ≥ n0:

P

[
K∑
k=1

tk(n)I+(θ̂k(n), θk) ≥ f(n)

]
≤ 1

n log(n)
.

Corollary 11 Let f(n) = log(n) + (3K + 1) log log(n), and define λq,kk′ = q−L|xk − xk′ |. Then
there exists n0 such that for all n ≥ n0:

P[bk(n) < θk] ≤
1

n log(n)
.

Proof of Corollary 11. Since I+ is increasing in its second argument, the event bk(n) < θk implies
that:

K∑
k′=1

tk′(n)I+(θ̂k′(n), λθk,kk′ ) ≥ f(n).

Furthermore, by definition λθk,kk′ = θk − L|xk − xk′ | ≤ θk′ . Hence:

K∑
k′=1

tk′(n)I+(θ̂k′(n), θk′) ≥ f(n).
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We can now apply Corollary 10 and obtain:

P[bk(n) < θk] ≤ P[
K∑
k′=1

tk′(n)I+(θ̂k′(n), θk′) ≥ f(n)] ≤ 1

n log(n)
.

�
We then give an important lemma that allows us to upper bound the average cardinalities of

particular sets of rounds. This lemma is stated and proved in Combes and Proutiere (2014b).

Lemma 12 Let k ∈ K, and ε > 0. Define Fn the σ-algebra generated by
(Xk(t))1≤t≤n,1≤k≤K . Let Λ ⊂ N be a (random) set of instants. Assume that there exists a sequence
of (random) sets (Λ(s))s≥1 such that (i) Λ ⊂ ∪s≥1Λ(s), (ii) for all s ≥ 1 and all n ∈ Λ(s),
tk(n) ≥ εs, (iii) |Λ(s)| ≤ 1, and (iv) the event n ∈ Λ(s) is Fn-measurable. Then for all δ > 0:

E[
∑
n≥1

1{n ∈ Λ, |θ̂k(n)− θk| > δ}] ≤ 1

εδ2
. (16)

We are now ready to analyze the regret achieved under OSLB(ε).

Proof of Theorem 3. Let S(θ) denote the set of solutions of (3) for a given θ. For any χ > 0, we
define the set

Γχ,θ = ∪{θ′:|θ′k−θk|<χ,∀k}S(θ′),

and for all k, cχk = sup{ck : c ∈ Γχ,θ}. In view of Lemma 13, θ′ 7→ S(θ′) is upper hemicontinuous
at θ and by Assumption 1 S(θ) reduces to a point. Therefore, for any open neigbourhood B of S(θ),
there exists χ > 0 such that S(θ′) ⊂ B if supk |θ′k − θk| < χ. Hence for all k: cχk → ck(θ), as
χ→ 0.

Fix 0 < δ < (θ? −maxk 6=k? θk)/2 and ε > 0. To simplify the notation, we replace ε by Kε in
the Theorem 3, and prove the result for this choice of ε.

Let k be a suboptimal arm. We derive an upper on the number of times it is played. Let n
be a round where k is played, i.e., k(n) = k. In view of the design of OSLB(ε), there are three
possible scenarios: (a) k can be the leader and its empirical reward exceeds the indexes of other
arms, L(n) = k and θ̂k(n) ≥ maxl bl(n); (b) k and k? are not the leader, and k can be either k(n)
or k(n); (c) k? is the leader, and again k can be either k(n) or k(n). We investigate all cases, but
we start by defining sets of rounds whose average cardinalities can be easily controlled:

Ak = {1 ≤ n ≤ T : k(n) = k, bk(n) ≤ θk}
Bk = {n ≥ 1 : k(n) = k,min

k′
tk′(n) ≥ εtk(n),max

k′
|θ̂k′(n)− θk′ | ≥ δ}

Ek = {n ≥ 1 : k(n) = k, |θ̂k(n)− θk| ≥ δ}
Fk = {n ≥ 1 : k(n) = k, tk(n) ≤ min(tk′(n), tk?(n)), max

l∈{k′,k?}
|θ̂l(n)− θl| ≥ δ}

and A = ∪kAk, B = ∪kBk, E = ∪kEk, F = ∪kFk. From the concentration inequality, and its
corollaries, we have E[|A|] ≤ C1 log log(T ). We use Lemma 12 to bound the cardinalities of the
other sets.
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• Bound for Bk. Let us fix k′ 6= k. We apply Lemma 12 to k′ with Λ(s) = {n : k(n) =
k,minl tl(n) ≥ εs, tk(n) = s}, and Λ = ∪sΛ(s). We get that:

E
[∣∣{n : k(n) = k,min

l
tl(n) ≥ εtk(n), |θ̂k′(n)− θk′ | ≥ δ}

∣∣] ≤ 1

εδ2
.

We conclude that: E[|Bk|] ≤ K/(εδ2).

• Bound for Ek. The application of lemma is direct here, and we get: E[|Ek|] ≤ 1/δ2.

• Bound for Fk. Using the same argument as that used to bound the cardinality of Bk, we get:
E[|Fk|] ≤ 2/δ2.

Next we consider n /∈ A ∪ B ∪ E ∪ F such that k is played. We treat all cases (a), (b), and (c)
that can arise in such a round.

Case (a) We assume here that k = L(n) and that k(n) = k, so that θ̂k(n) ≥ maxl bl(n). Hence,
since n /∈ Ak? , θ̂k(n) ≥ bk?(n) ≥ θ?. In summary, θ̂k(n) ≥ θ?, which is impossible because of our
choice of δ (< θ? − θk), and n /∈ Ek.

Case (b) Let k′ /∈ {k, k?} be the leader in round n, and assume that k(n) = k. We consider two
subcases: (i) k = k(n), and (ii) k = k(n).
(i) In this case, k has been played less than any other arm, and so tk(n) ≤ min(tk′(n), tk?(n)). On
the other hand, since k′ is the leader, we have θ̂k′(n) ≥ θ̂k?(n), which implies that either θk′ or θk?
is badly estimated. More precisely, we proved that n ∈ Fk, which is impossible.
(ii) In this case, we know that tk(n) ≤ tk(n)(n)/ε. In addition, again, we have θ̂k′(n) ≥ θ̂k?(n),
and so either θk′ or θk? is badly estimated. We proved that n ∈ Bk, which is impossible.

Case (c) Assume that k? = L(n). k is played, and we need to consider two subcases: (i) k = k(n),
and (ii) k = k(n).
(i) In this case, since k = k(n), we have tk(n) ≤ minl tl(n), and hence εtk(n) ≤ minl tl(n). Since
n /∈ Bk, in view of the previous inequality, all arms must be well-estimated, i.e., maxl |θ̂l(n) −
θl| < δ. This implies that for all l ∈ K, ĉl(n) ≤ cδl . Now by definition in our algorithm, if
k(n) = k = k(n), then tk(n) < εtk(n)(n), and so tk(n) < εmaxl c

δ
l log(n). In other words,

n ∈ Dk where

Dk = {1 ≤ n ≤ T, n /∈ A ∪B ∪ E ∪ F,L(n) = k?, k(n) = k, tk(n) ≤ εmax
k′

cδk′ log(T )}.

We shall bound the size of Dk later in the proof.
(ii) In this case, we must have tt(n)(n) ≥ εtk(n). Hence since n /∈ Bk, all arms are well estimated,
and hence again, for all l ∈ K, ĉl(n) ≤ cδl . In particular, since k is played, tk(n) ≤ cδk log(n), and
thus n ∈ Ck where

Ck = {1 ≤ n ≤ T, n /∈ A ∪B, k(n) = k, tk(n) ≤ cδk log(T )}.

Nest we bound the expected cardinalities of Ck and Dk. Since tk(n) is incremented if n ∈ Ck
or n ∈ Dk, we simply have:

|Ck| ≤ cδk log(T ), |Dk| ≤ εmax
k′

cδk′ log(T ).
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Putting it all together we have proven the announced regret bound:

Rπ(T ) ≤
∑
k 6=k?

(θ? − θk)(E[|Ck|] + E[|Dk|])

+ E[|A|] + E[|B|] + E[|E|] + E[|F |],

≤ log(T )
∑
k 6=k?

(θ? − θk)(cδk + εmax
k′

cδk′)

+ C1 log log(T ) +K2ε−1δ−2 + 3Kδ−2.

This completes the proof (because of our particular choice of ε, and maxl c
δ
l ≤

∑
l c
δ
l ). �

C.1. Continuity of solutions to parametric linear programs

We state and prove Lemma 13, a technical result about the continuity of the solutions of a parametric
linear program with respect to its parameters. It follows from the general conditions of Wets (1985).

Lemma 13 Consider A ∈ (R+)K×K , c ∈ (R+)K , and T ⊂ (R+)K×K × (R+)K . Define
t = (A, c). Consider the function Q and the set-valued map Q?

Q(t) = inf
x∈RK

{cx|Ax ≥ 1, x ≥ 0}

Q?(t) = {x : cx ≤ Q(t)|Ax ≥ 1, x ≥ 0}.

Assume that:

(i) For all t ∈ T , all rows and columns of A are non-identically 0

(ii) mint∈T mink ck > 0

Then:

(a) Q is continuous on T .

(b) Q? is upper hemicontinuous on T .

Proof. Define
c0 = min(1,min

t∈T
min
k
ck) > 0,

and a = max(k,k′)Ak,k′ . Define the sets K = {x|Ax ≤ 1}, D = {x|Ax ≤ c} and B =

[0, c0/(aK)]K . Then B ⊂ K ∩ D, so that both K and D have non-empty interior. By Wets
(1985)[Corollary 7], t → K and t → D are continuous on T since they have non-empty inte-
rior and all rows of (A, 1) and columns of

(
A
c

)
are non identically 0. By Wets (1985)[Theorem 2],

Q is continuous on T since both K and D are continuous on T , proving the first statement.
Consider a sequence {(ti, xi)}i≥1, such that xi ∈ Q?(ti) and (ti, xi) → (t, x), i → ∞. Since

for all i ≥ 1 cxi ≤ Q(ti) and Axi ≥ 1 we have, by continuity, Ax ≥ 1 and cx = Q(t) and so
x ∈ Q?(t). Hence Q? is upper hemicontinuous. �
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Appendix D. Proof of Theorem 4

D.1. Proof of (i)

Let 0 < δ < (θ∗ −maxk∈K− θk)/2 fixed throughout the proof. Define the random sets of rounds:
B = {1 ≤ n ≤ T : bk?(n) ≤ θ?} the set of rounds at which the index of the optimal arm
underestimates its true value θ?, and Dk = {n : k(n) = k, bk(n) ≥ θ? − δ} the set of rounds at
which k is selected and its index is larger than θ? − δ.

Let k 6= k? be a suboptimal arm, and let n /∈ B such that k is selected k(n) = k. The possible
events are:

(a) If L(n) ∈ {k, k?} then bk(n) ≥ bk?(n) ≥ θ? since n /∈ B, so n ∈ Dk.

(b) If L(n) = k′ /∈ {k, k?}, then bk(n) ≥ bk′(n) and:

(b-i) If we further have bk′(n) ≥ θ? − δ then bk(n) ≥ θ? − δ so n ∈ Dk as well.

(b-ii) Otherwise bk′(n) ≤ θ? − δ.

Define the random set of instants Ek = {n 6∈ B : k(n) = k, L(n) 6∈ {k, k?}, bk∗(n) >
bL(n)(n), |θ̂k∗(n) − θk∗ | ≥ δ}. In the case (b-ii), we have bL(n)(n) ≤ θ? − δ < θ? ≤ bk?(n)

since n /∈ B. Also by definition of L(n) we have that θ̂k?(n) ≤ θ̂L(n)(n) ≤ bL(n)(n) ≤ θ? − δ. So
in case (b-ii) we have n ∈ Ek.

In summary, k(n) = k implies that n ∈ B∪Ek∪Dk so: E[tk(T )] ≤ E[|B|]+E[|Ek|]+E[|Dk|].
Let us upper bound the expected sizes of sets B, Ek and Dk.

Expected size of B: From Theorem 2, there exists a constant C1 ≥ 0 such that E[|B|] is upper
bounded by the Bertrand series:

E[|B|] ≤
T∑
n=1

C1(n log(n))−1 ≤ C1 log(log(T )),

Expected size of Ek: If n ∈ Ek , we have bk∗(n) > bL(n)(n) > θ̂L(n)(n), so that by design of
CKL-UCB, k(n) ∈ arg min

k:bk(n)>bL(n)(n)
tk(n) and k∗ ∈ {k : bk(n) > bL(n)(n)}. Since k(n) = k,

we have tk(n) ≥ tk?(n). Define s =
∑n

n′=1 1{n′ ∈ Ek}, this implies tk∗(n) ≥ s. Applying
Lemma 12 as earlier, we conclude that E[Ek] ≤ δ−2.

Expected size of Dk: Define F δk = {n : k(n) = k, |θ̂k(n) − θk| < δ} and F δk = {n : k(n) =

k, |θ̂k(n) − θk| ≥ δ}. Let us consider a round n ∈ Dk ∩ F δk . Assume that tk(n) > f(n)/I(θk +
δ, θ∗−δ). Since n ∈ Dk and k(n) = k, we have: bk(n) ≥ θ∗−δ. Therefore, from the monotonicity
of I(x, y) in y when y > x, we have:

tk(n)I(θ̂k(n), θ∗ − δ) ≤
∑
i∈K

ti(n)I(θ̂i(n), λθ
∗−δ,k
i ) ≤

∑
i∈K

ti(n)I(θ̂i(n), λ
bk(n),k
i ) = f(n) (17)

where the last equality comes from our definition of bk(n). Furthermore, by our assumption and
since θ̂k(n) ≤ θk + δ (since n ∈ F δk ):

f(n) < tk(n)I(θk + δ, θ∗ − δ) ≤ tk(n)I(θ̂k(n), θ∗ − δ),
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which contradicts (17). Thus for all rounds in n ∈ Dk∩F δk we have tk(n) ≤ f(n)/I(θk+δ, θ∗−δ)
and consequently E[|Dk|] ≤ f(T )/I(θk + δ, θ∗ − δ) + E[|F δk |].

Again a direct application of Lemma 12 yields E[|F δk |] ≤ δ
−2. Thus, we have:

E[tk(T )] ≤ f(T )/I(θk + δ, θ∗ − δ) + C1 log(log(T )) + 2δ−2.

�

D.2. Proof of (ii)

We work with a fixed sample path throughout the proof. Since for all k when T → ∞ we have
tk(T )→∞ a.s., so by the law of large numbers θ̂k(T )→ θk as T →∞.

From the first statement of the theorem, we have that for all k 6= k?, lim sup
T→∞

E[tk(T )]/ log(T ) <

∞ which implies that lim sup
T→∞

tk(T )/ log(T ) < ∞ . In turn we have that tk?(T ) = T −∑
k 6=k? tk(T ) = T −O(log(T )), so that tk?(T )/T →T→∞ 1. By Pinsker’s inequality:

θ̂k?(T ) ≤ bk?(T ) ≤ θ̂k?(T ) +
√

2f(T )/tk?(T )

and we can deduce bk?(T )→ θ? as T →∞, because θ̂k?(T )→ θ? and f(T )/tk?(T ) = f(T )/(T−
O(log(T )))→ 0 when T →∞.

Let δ such that 0 < δ < (θ? − max
k∈K−

θk)/2, by the above reasoning there exists n0 ∈ N

(depending on the sample path and δ) such that for all n ≥ n0 we have |bk?(n) − θ?| ≤ δ and
|θ̂k(n)− θk| ≤ δ for all k. It is noted that for all n ≥ n0, L(n) = k?, since δ < (θ? −max

k 6=k?
θk)/2.

Let α0 ≥ 0, and assume that there exists T large enough such that tk(T ) = α0f(T ) and
α0f(T ) > tk(n0). Therefore there exists n0 ≤ n ≤ T such that tk(n) = α0f(T ) − 1 and k is
selected at time n: k(n) = k. DefineN = {k′ : bk′(n) ≤ bk?(n)}. Consider k′ ∈ N , since n ≥ n0,
we have that L(n) = k? and bL(n) ≤ θ? + δ. So bk′(n) ≤ θ? + δ which implies (by definition of
bk′(n)): ∑

k′′∈K
tk′′(n)I(θk′′ − δ, λθ

?+δ,k′

k′′ ) ≥ f(n) (18)

Also, since k(n) = k, by design of CKL-UCB we have tk(n) = arg min
k′ 6∈N

tk′(n), so that :

tk′(n) ≥ tk(n) = α0f(T )− 1 ≥ α0f(n)− 1, ∀k′ 6∈ N . (19)

Finally, since k(n) = k, L(n) = k?, we must have bk(n) ≥ bk?(n) ≥ θ? − δ, so that:∑
k′∈K

tk′(n)I(θk′ + δ, λθ
?−δ,k
k′ ) ≤ f(n)

(α0f(T )− 1)I(θk + δ, λθ
?−δ,k
k ) +

∑
k′∈K\{k}

tk′(n)I(θk′ + δ, λθ
?−δ,k
k′ ) ≤ f(n)

(α0f(n)− 1)I(θk + δ, λθ
?−δ,k
k ) +

∑
k′∈K\{k}

tk′(n)I(θk′ + δ, λθ
?−δ,k
k′ ) ≤ f(n) (20)
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Define the matrix Ã = (ãk′k)k,k′ , with ãk′k = I(θk′ + δ, λθ
?−δ,k
k′ ) for all k′ and ãk′′k′ = I(θk′′ −

δ, λθ
?+δ,k′

k′′ ) for all k′ 6= k and all k′′.
Define αk′(n) = tk′(n)/f(n) for all k′, and by dividing equations (20) , (19) and (18) by f(n),

we obtain:

α0ãkk +
∑

k′∈K\{k}

αk′(n)ãk′k ≤ 1,

αk′(n) ≥ α0 −
1

f(n)
, ∀k′ /∈ N ,

α0ãkk′ +
∑

k′′∈K\{k}

αk′′(n)ãk′′k′ ≥ 1, ∀k′ ∈ N .

It is noted that α′k(n) ≥ 0 for all k′ by definition. Define α = (α1, . . . , αK) a limit point of the
sequence (α(n))n≥1 (note that this sequence need not converge and might have several limit points).
First letting n → ∞ along a converging subsequence and then letting δ → 0 the constraints above
become:

α0akk +
∑

k′∈K\{k}

αk′ak′k ≤ 1,

αk′ ≥ α0, ∀k′ /∈ N ,

α0akk′ +
∑

k′′∈K\{k}

αk′′ak′′k′ ≥ 1, ∀k′ ∈ N .

Therefore, by definition of dk, we must have:

α0ãkk + dk(A,α0,N ) ≤ 1,

and taking the infimum over N so that we obtain the condition:

α0ãkk + ek(A,α0) ≤ 1. (21)

Now consider α0 such that α0ãkk + ek(A,α0) > 1. Then in view of the necessary condition (21),
we cannot have tk(T ) ≥ α0 log(T ), so that:

lim sup
T→∞

tk(T )

log(T )
≤ inf{α0 ≥ 0 : akkα0 + ek(A,α0) > 1} = βk(θ).

We get (ii) by Lebesgue’s dominated convergence theorem, since supT≥1 E[ tk(T )
log(T ) ] <∞ from (i).

D.3. Proof of (iii)

In order to prove the last part of the theorem, it is sufficient to prove that for α0 = 1/akk, we have
ek(A,α0) > 0 so that akkα0 + ek(A,α0) = 1 + ek(A,α0) > 1 so that βk(θ) < α0 = 1/akk.

We proceed by contradiction. Assume that ek(A,α0) = 0. Then there exists N a subset of
{1, . . . ,K} \ {k?, k} such that dk(A,α0,N ) = 0. As a consequence there exists α1, ..., αK such
that:
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∑
k′∈K\{k}

αk′ak′k = 0

s.t. αk′ ≥ α0, ∀k′ 6∈ N
αk′ ≥ 0, ∀k′∑
k′′∈K\{k}

αk′′ak′′k′ ≥ 1− α0akk′ , ∀k′ ∈ N .

Consider there exists k′ such that ak′k > 0. Then we must have k′ ∈ N , otherwise αk′ ≥ α0 =
1/akk and 0 =

∑
k′′∈K\{k}

αk′′ak′′k ≥ α0ak′k > 0, a contradiction. By the same reasoning we must

also have αk′ = 0.
As said in the theorem statement, assume that there exists k′ ∈ N such that 0 < akk′ < akk

and assume that for all k′′ we have that if ak′′k = 0 then ak′′k′ as well. Considering k′′ = k′

in our assumption, since ak′k = 0 would imply ak′k′ = 0, we then have that ak′k > 0 since
ak′k′ = I(θk′ , θ

∗) > 0. From our previous argument we have that if ak′k > 0 then k′ ∈ N .
Therefore :

∑
k′′∈K\{k}

αk′′ak′′k′ ≥ 1− α0akk′ = 1− akk′/akk > 0

∑
k′′ 6=k, ak′′k=0

αk′′ak′′k′ > 0 (22)

By assumption, ak′′k = 0 implies ak′′k′ = 0 so that the l.h.s. of (22) is zero and cannot be strictly
larger than 0. This is a contradiction, proving that ek(A,α0) = 0 cannot occur and concludes the
proof.

�
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