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Abstract
In the standard setting of approachability there are two players and a target set. The players play
a repeated vector-valued game where one of them wants to have the average vector-valued payoff
converge to the target set which the other player tries to exclude. We revisit the classical setting
and consider the setting where the player has a preference relation between target sets: she wishes
to approach the smallest (“best”) set possible given the observed average payoffs in hindsight.
Moreover, as opposed to previous works on approachability, and in the spirit of online learning,
we do not assume that there is a known game structure with actions for two players. Rather,
the player receives an arbitrary vector-valued reward vector at every round. We show that it is
impossible, in general, to approach the best target set in hindsight. We further propose a concrete
strategy that approaches a non-trivial relaxation of the best-in-hindsight given the actual rewards.
Our approach does not require projection onto a target set and amounts to switching between scalar
regret minimization algorithms that are performed in episodes.
Keywords: Online learning, multi-objective optimization, approachability

1. Introduction

In online learning (or regret minimization) a decision maker is interested in obtaining as much
reward as she would have obtained with perfect hindsight of the average rewards. The underlying
assumption is that the decision maker can quantify the outcomes of her decision into a single value,
e.g., money. However, the outcome of some sequential decision problems cannot be cast as a single
dimensional optimization problem: different objectives that are possibly contradicting need to be
considered. This arises in diverse fields such as finance, control, resource management, and many
others. This is called multi-objective optimization.

Offline answers to multi-objective optimization. The fundamental solution concept used in
offline multi-objective optimization is that of the Pareto front: given several criteria to be optimized
this is the set of feasible points that are not (weakly) dominated by any other point. While every
rationally optimal solution is on the Pareto front, it is not always clear which of the points on the
front should be selected. One approach it to scalarize the different objectives and solve a single
objective. However, scalarization leads to finding just a single point on the Pareto front. Other
approaches include no-preference methods, a prior methods and a posteriori methods; see Hwang
and Masud (1979); Miettinen (1999).
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Online answers proposed so far. The approachability theory of Blackwell (1956) can be con-
sidered as the most general approach available so far for online multi-objective optimization. In
the standard setting of approachability there are two players, a vector-valued payoff function, and
a target set. The players play a repeated vector-valued game where one of them wants to have the
average vector-valued payoff (representing the states in which the different objectives are) converge
to the target set (representing the admissible values for the said states) which the other player tries
to exclude. The target set is prescribed a priori before the game starts and the aim of the decision
maker is that the average reward be asymptotically inside the target set.

We note that determining if a convex set is approachable may not be an easy task. In fact,
Mannor and Tsitsiklis (2009) show that determining if a single point is approachable is NP-hard in
the dimension of the reward vector.

Our view: approachability in “unknown games.” The analysis in approachability has been
limited to date to cases where the action of Nature, or a signal thereof, is revealed. We deviate
from the standard setting by considering the decision problem to be an online problem where only
(vector-valued) rewards are observed and there is no a priori assumption on what can and cannot
be obtained. Moreover, we do not assume that there is some underlying game structure we can
exploit. In our model for every action of the decision maker there is a reward that is only assumed
to be arbitrary. This setting is referred to as the one of an “unknown game” and the minimization of
regret could be extended to it (see, e.g., Cesa-Bianchi and Lugosi, 2006, Sections 7.5 and 7.10). One
might wonder if it is possible to treat an unknown game as a known game with a very large class
of actions and then use approachability. While such lifting is possible in principle, it would lead to
unreasonable time and memory complexity as the dimensionality of the problem will explode.

In such unknown games, the decision maker does not try to approach a pre-specified target set,
but rather tries to approach the best (smallest) target set given the observed (average) vector-valued
rewards. Defining a goal in terms of the actual rewards is standard in online learning, but has not
been pursued (with a few exceptions listed below) in the multi-objective optimization community.

Literature review. Our approach generalizes several existing works. Our proposed strategy
can be used for standard approachability as it is computationally efficient. It can further be used for
opportunistic approachability (when the decision maker tries to take advantage of suboptimal plays
of Nature, see Bernstein et al., 2013). The proposed strategy further encompasses online learning
with sample path constraints approachability Mannor et al. (2009) as a special case. The algorithm
we present does not require projection which is the Achilles’ heel of many approachability-based
schemes (similarly to Bernstein and Shimkin, 2014). Our approach is also more general than one
recently considered by Azar et al. (2014). An extensive comparison to the results by Bernstein and
Shimkin (2014) and Azar et al. (2014) is offered in Section 4.2.

Contributions and outline. To summarize, we propose a strategy that works in the online
setting where a game is not defined, but rather only reward vectors are obtained. This strategy can
approach a good-in-hindsight set among a filtration of target sets. Furthermore, the convergence rate
is independent of the dimension and the computational complexity is reasonable (i.e., polynomial).

We start the paper with defining the setting of approachability in unknown games in Section 2.
In Section 3 we then move to discussing the issue of the target to be achieved. We review three
different families of possible targets. The first is the best set based on average rewards in hindsight,
which is not achievable. The second is the convexification of the former, which is achievable but
not ambitious enough. The third goal is a sort of convexification of some individual-response-based
target set; we show that the latter goal is never worse and often strictly better than the second one. In
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APPROACHABILITY IN UNKNOWN GAMES

Section 4 we devise a general strategy achieving this third goal. It amounts to playing a (standard)
regret minimization in blocks and modifying the direction as needed. In Section 5 we finally work
out the applications of our approach to the setting of classical approachability and to online learning
with sample path constraints approachability.

2. Setup (“unknown games”), notation, and aim

The setting is the one of (classical) approachability, that is, vector payoffs are considered. The
difference lies in the aim. In (classical) approachability theory, the average rT of the obtained
vector payoffs should converge asymptotically to some base approachable convex set C. In our
setting, we do not know whether C is approachable (because there is no underlying payoff function)
and ask for convergence to some α–expansion of C, where α should be as small as possible.

Setting: unknown game with vectors of vector payoffs. The following game is repeatedly
played between two players, who will be called respectively the decision-maker (or first player) and
the opponent (or second player). Vector payoffs in Rd, where d > 1, will be considered. The first
player has finitely many actions whose set we denote byA = {1, . . . , A}. The opponent chooses at
each round t ∈ {1, 2, . . .} a vector mt = (mt,a)a∈A of vector payoffs mt,a ∈ Rd. We impose the
restriction that these vectors mt lie in a convex and bounded set K of RdA. The first player picks
at each round t an action at, possibly at random according to some mixed action xt = (xt,a)a∈A;
we denote by ∆(A) the set of all such mixed actions. We consider a scenario where the player is
informed of the whole vector mt at the end of the round and we are interested in controlling the
average of the payoffs mt,at . Actually, because of martingale convergence results, this is equivalent
to studying the averages rT of the conditionally expected payoffs rt, where

rt = xt �mt =
∑
a∈A

xt,amt,a and rT =
1

T

T∑
t=1

rt =
1

T

T∑
t=1

xt �mt .

Remark 1 We will not assume that the first player knows K (or any bound on the maximal norm
of its elements); put differently, the scaling of the problem is unknown.

Aim. This aim could be formulated in terms of a general filtration (see Remark 2 below); for the
sake of concreteness we resort rather to expansions of a base set C in some `p–norm, which we
denote by ‖ · ‖, for 0 < p < ∞. Formally, we denote by Cα the α–expansion in `p–norm of
C. The decision-maker wants that her average payoff rT approaches an as small as possible set
Cα. To get a formal definition of the latter aim, we consider the smallest set that would have been
approachable in hindsight for a properly chosen target function ϕ : K → [0,+∞). (Section 3 will
indicate reasonable such choices of ϕ.) This function takes as argument the average of the past
payoff vectors,

mT =
1

T

T∑
t=1

mt , that is, ∀ a ∈ A, mT,a =
1

T

T∑
t=1

mt,a .

It associates with it the ϕ(mT )–expansion of C. Therefore, our aim is that

dp
(
rT , Cϕ(mT )

)
−→ 0 as T →∞ , (1)

where dp( · , S) denotes the distance in `p–norm to a set S.

3



Concrete example. Consider a decision problem where a decision maker has to decide how to
transmit bits on a wireless channel in a cognitive network (Simon, 2005; Beibei and Liu, 2011).
The objectives of the decision maker are to have minimum power and maximum throughput. The
decision maker decides at every stage how to transmit: which channels to use, what code to select
and how much power to use. The transmissions of multiple other players, modeled as Nature,
dictate the success of each transmission. The ideal working point is where throughput is maximal
and power is zero. This working point is untenable and the decision maker will be looking for a
better balance between the objectives. The model presented here fits the application naturally with
d = 2 where the two axes are power and throughput. The set C is the point in the power-throughput
plane with values 0 for power and maximal throughput for throughput.

Remark 2 More general filtrations α ∈ [0,+∞) 7→ Cα could be considered than expansions in
some norm, as long as this mapping is Lipschitz for the Hausdorff distance between sets. (By
“filtration” we mean that Cα ⊆ Cα′ for all a 6 α′.) For instance, if 0 ∈ C, one can consider
shrinkages and blow-ups, C0 = {0} and Cα = α C for α > 0. Or, given some compact set B with
non-empty interior, Cα = C + αB for α > 0.

2.1. Link with approachability in known finite games

We link here our general setting above with the classical setting considered by Blackwell. Therein
the opponent also has a finite set of actions B and chooses at each round t an action bt ∈ B, possibly
at random according to some mixed action yt = (yt,b)b∈B. A payoff function r : A × B → Rd is
given and is linearly extended to ∆(A)×∆(B), where ∆(A) and ∆(B) are the sets of probability
distributions over A and B, respectively. The conditional expectation of the payoff obtained at
round t is rt = r(xt, yt). Therefore, the present setting can be encompassed in the more general
one described above by thinking of the opponent as choosing the vector payoff mt = r( · , bt). A
target set C is to be approached, that is, the convergence rT = (1/T )

∑
t6T r(xt, yt) −→ C should

hold uniformly over the opponent’s strategies. A necessary and sufficient condition for this when C
is non-empty, closed, and convex is that for all y ∈ ∆(B), there exists some x ∈ ∆(A) such that
r(x, y) ∈ C. Of course, this condition, called the dual condition for approachability, is not always
met. However, in view of the dual condition, the least approachable α–Euclidian expansion of such
a non-empty, closed, and convex set C is given by

αunif = max
y∈∆(B)

min
x∈∆(A)

d2

(
r(x, y), C

)
. (2)

Approaching Cαunif corresponds to considering the constant target function ϕ ≡ αunif. Better (uni-
formly smaller) choices of target functions exist, as will be discussed in Section 5.1. This will be
put in correspondance therein with what is called “opportunistic approachability.”

2.2. Applications

We describe in this section two related mathematical applications we have in mind.

Regret minimization under sample path constraints. We rephrase (and slightly generalize) here
the setting of Mannor et al. (2009). A vectorma ∈ Rd now not only represents some payoff but also
some cost. The aim of the player here is to control the average payoff vector (to have it converge to
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APPROACHABILITY IN UNKNOWN GAMES

the smallest expansion of a given target set C) while abiding by some cost constraints (ensuring that
the average cost vector converges to a prescribed set).

Formally, two matrices P and G associate with a vector ma ∈ Rd a payoff vector Pma ∈ Rp
and a cost vector Gma ∈ Rg. By an abuse of notation, we extend P and G to work with vectors
m = (ma)a∈A of vectors ma ∈ Rd by defining Pm = (Pma)a∈A and Gm = (Gma)a∈A. In our
setting, the opponent player and the decision-maker thus choose simultaneously and respectively a
vector (ma)a∈A ∈ K ⊆ RdA and a mixed action xt ∈ ∆(A); the decision-maker then gets as a
payoff and cost vectors xt � Pmt = P

(
xt �mt

)
and xt � Gmt = G

(
xt �mt

)
. The admissible

costs are represented by a set Γ ⊆ Rg, while some set P ⊆ Rp is to be approached.
We adapt here slightly the exposition above. We define some base set C = C0 ⊆ Rd and its

α–expansions Cα in `p–norm by forcing the constraints stated by Γ: for all α > 0,

Cα =
{
m′ ∈ Rd : Gm′ ∈ Γ and dp

(
Pm′, P

)
6 α

}
.

We also denote by Pα the (unconstrained) α–expansions of P in `p–norm. For all m′ ∈ Rd with
Gm′ ∈ Γ, one has dp(m

′, C) 6 dp(Pm
′, P). Therefore, the general aim (1) is now satisfied as

soon as the following convergences are realized: as T →∞,

dp
(
PrT , Pϕ(mT )

)
−→ 0 and dp

(
GrT , Γ

)
−→ 0 , (3)

for some target function ϕ to be defined (taking into account the cost constraints); see Section 5.2.

Approachability of an approachable set at a minimal cost. This is the dual problem of the pre-
vious problem: have the vector-valued payoffs approach an approachable convex set while suffering
some costs and trying to control the overall cost. In this case, the setP is fixed and the α–expansions
are in terms of Γ. Actually, this is a problem symmetric to the previous one, when the roles of P
and P are exchanged with G and Γ. This is why we will not study it for itself in Section 5.2.

3. Choices of target functions

We discuss in this section what a reasonable choice of a target function ϕ can be. To do so, we start
with an unachievable target function ϕ?. We then provide a relaxation given by its concavification
cav[ϕ?], which can be aimed for but is not ambitious enough. Based on the intuition given by the
formula for concavification, we finally provide a whole class of achievable targets, relying on a
parameter: a response function Ψ.

An unachievable target function. We denote by ϕ? : K → [0,+∞) the function that associates
with a vector of vector payoffs m ∈ K the index of the smallest `p–expansion of C containing a
convex combination of its components:

ϕ?(m) = min
{
α > 0 : ∃x ∈ ∆(A) s.t. x�m ∈ Cα

}
= min

x∈∆(A)
dp(x�m, C) , (4)

the infimum being achieved by continuity. That is, for all m ∈ K, there exists x?(m) such that
x?(m)�m ∈ Cϕ?(m). The defining equalities of ϕ? show that this function is continuous (it is even
a Lipschitz function with constant 1 in the `p–norm).

5



Definition 3 A continuous target function ϕ : K → [0,+∞) is achievable if the decision-maker
has a strategy ensuring that, against all strategies of the opponent player,

dp
(
rT , Cϕ(mT )

)
−→ 0 as T →∞ . (5)

More generally, a (possibly non-continuous) target function ϕ : K → [0,+∞) is achievable if the
following convergence to a set takes place in RdA × Rd as T →∞:

(mT , rT ) −→ Gϕ where Gϕ =
{

(m, r) ∈ RdA × Rd s.t. r ∈ Cϕ(m)

}
. (6)

The set Gϕ is the graph of the set-valued mapping m ∈ K → Cϕ(m). The second part of the
definition above coincides with the first one in the case of a continuous ϕ, as we prove in Mannor
et al. (2014, Section B.1). (In general, it is weaker, though.) It is useful in the case of non-continuous
target functions to avoid lack of convergence due to errors at early stages. The following lemma is
proved by means of two examples in Mannor et al. (2014, Section C).

Lemma 4 The target function ϕ? is not achievable in general.

An achievable, but not ambitious enough, target function. We resort to a classical relaxation,
known as a convex relaxation (see, e.g., Mannor et al., 2009): we only ask for convergence of
(mT , rT ) to the convex hull of Gϕ? , not to Gϕ? itself. This convex hull is exactly the graph Gcav[ϕ?],
where cav[ϕ?] is the so-called concavification of ϕ?, defined as the least concave function K →
[0,+∞] above ϕ?. Its variational expression reads

cav[ϕ?](m) = sup

{∑
i6N

λi ϕ
?(mi) : N > 1 and

∑
i6N

λimi = m

}
, (7)

for all m ∈ K, where the supremum is over all finite convex decompositions of m as elements of K
(i.e., the λi factors are nonnegative and sum up to 1). By a theorem by Fenchel and Bunt (see Hiriart-
Urruty and Lemaréchal, 2001, Theorem 1.3.7) we could actually impose that 1 6 N 6 dA+ 1. In
general, cav[ϕ?] is not continuous; it however is so when, e.g., K is a polytope.

Definition 5 A target function ϕ : K → [0,+∞) is strictly smaller than another target function ϕ′

if ϕ 6 ϕ′ and there exists m ∈ K with ϕ(m) < ϕ′(m). We denote this fact by ϕ ≺ ϕ′.

Lemma 6 The target function cav[ϕ?] is achievable. However, in general, there exist easy-to-
construct achievable target functions ϕ with ϕ ≺ cav[ϕ?].

The first part of the lemma is proved in Mannor et al. (2014, Section B.2); its second part is a special
case of Lemma 7 below.

A general class of achievable target functions. By (4) we can rewrite (7) as

cav[ϕ?](m) = sup

{∑
i6N

λi dp
(
x?(mi)�mi, C

)
: N > 1 and

∑
i6N

λimi = m

}
.

6



APPROACHABILITY IN UNKNOWN GAMES

Now, whenever C is convex, the function dp( · , C
)

is convex as well over Rd; see, e.g., Boyd and
Vandenberghe (2004, Example 3.16). Therefore, denoting by ϕx

?
the function defined as

ϕx
?
(m) = sup

{
dp

(∑
i6N

λi x
?(mi)�mi, C

)
: N > 1 and

∑
i6N

λimi = m

}
(8)

for all m ∈ K, we have ϕx
?
6 cav[ϕ?]. The two examples considered in Mannor et al. (2014,

Section C) show that this inequality can be strict at some points. We summarize these facts in the
lemma below.

Lemma 7 The inequality ϕx
?
6 cav[ϕ?] always holds; and sometimes ϕx

? ≺ cav[ϕ?].

More generally, let us introduce individual response functions Ψ as functions K → ∆(A). The
target function naturally associated with Ψ in light of (8) is defined, for all m ∈ K, as

ϕΨ(m) = sup

{
dp

(∑
i6N

λi Ψ(mi)�mi, C
)

: N > 1 and
∑
i6N

λimi = m

}
. (9)

Lemma 8 For all response functions Ψ, the target functions ϕΨ are achievable. However, in gen-
eral, there exist easy-to-construct achievable target functions ϕ (possibly of the form ϕΨ) with
ϕ ≺ ϕx? .

The second part of the lemma indicates that there are cleverer choices for the response function
Ψ than x?. This is illustrated by Mannor et al. (2014, Section C, Example 2). We also provide some
elements towards a theory of optimality in Mannor et al. (2014, Section D); e.g., there always exist
“admissible” functions, i.e., functions that are achievable and such that no strictly smaller function
is achievable. But we were unable so far to prove or disprove that a target of the form ϕΨ could be
optimal, let alone to provide guidelines on how to choose Ψ in practice.

The first part of the lemma will follow from Theorem 9 below, which provides an explicit and
efficient strategy to achieve any ϕΨ. However, we provide in Mannor et al. (2014, Section B.3) a
proof based on calibration, which further explains the intuition behind (9). It also advocates why
the ϕΨ functions are reasonable targets: resorting to some auxiliary calibrated strategy outputting
accurate predictions m̂t (in the sense of calibration) of the vectors mt almost amounts to knowing
in advance the mt.

4. A strategy by regret minimization in blocks

In this section we exhibit a strategy to achieve the desired convergence (5) with the target func-
tions ϕΨ advocated in the previous section. The algorithm is efficient, as long as calls to Ψ are (a
full discussion of the complexity issues is provided in Section 5). The considered strategy—see
Figure 1—relies on some auxiliary regret-minimizing strategyR, with the following property.

Assumption 1 The strategyR sequentially outputs mixed actions ut such that for all rangesB > 0
(not necessarily known in advance), for all T > 1 (not necessarily known in advance), for all
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Parameters: a regret-minimizing strategyR (with initial action u1), a response function Ψ : K → ∆(A)

Initialization: play x1 = u1 and observe m1 ∈ RdA

For all blocks n = 2, 3 . . .,

1. compute the total discrepancy at the beginning of block n (i.e., till the end of block n− 1),

δn =

n(n−1)/2∑
t=1

xt �mt −
n−1∑
k=1

kΨ
(
m(k)

)
�m(k) ∈ Rd , where m(k) =

1

k

k(k+1)/2∑
t=k(k−1)/2+1

mt

is the average vector of vector payoffs obtained in block k ∈ {1, . . . , n− 1};

2. run a fresh instanceRn ofR for n rounds as follows: set un,1 = u1; then, for t = 1, . . . , n,

(a) play xn(n−1)/2+t = un,t and observe mn(n−1)/2+t ∈ RdA;

(b) feedRn with the vector payoff m′n,t ∈ RA with components given by

m′n,t,a = −〈δn, mn(n−1)/2+t,a〉 ∈ R, where a ∈ A ,

where 〈 · , · 〉 denotes the inner product in Rd;

(c) obtain fromRn a mixed action un,t+1.

Figure 1: The proposed strategy, which plays in blocks of increasing lengths 1, 2, 3, . . .

sequences of vectors m′t ∈ RA of one-dimensional payoffs lying in the bounded interval [−B,B],
possibly chosen by some adversary, where t = 1, . . . , T ,

max
u∈∆(A)

T∑
t=1

u�m′t 6 4B
√
T lnA+

T∑
t=1

ut �m′t .

Note in particular that the auxiliary strategyR adapts automatically to the rangeB of the payoffs
and to the number of rounds T , and has a sublinear worst-case guarantee. (The adaptation to B
will be needed because K is unknown.) Such auxiliary strategies indeed exist, for instance, the
polynomially weighted average forecaster of Cesa-Bianchi and Lugosi (2003). Other ones with a
larger constant factor in front of the B

√
T lnA term also exist, for instance, exponentially weighted

average strategies with learning rates carefully tuned over time, as in Cesa-Bianchi et al. (2007);
de Rooij et al. (2014).

For the sake of elegance (but maybe at the cost of not providing all the intuitions that led us to
this result), we only provide in Figure 1 the time-adaptive version of our strategy, which does not
need to know the time horizon T in advance. The used blocks are of increasing lengths 1, 2, 3, . . ..
Simpler versions with fixed block length L require a tuning of L of the order of

√
T to optimize the

theoretical bound.

4.1. Performance bound for the strategy

We denote by ‖ · ‖ the Euclidian norm and let Kmax = max

{
max
m∈K

‖m‖, max
m,m′∈K

‖m−m′‖
}

be a bound on the range of the norms of the (differences of) elements in K. Note that the strat-
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APPROACHABILITY IN UNKNOWN GAMES

egy itself does not rely on the knowledge of this bound Kmax as promised in Remark 1; only its
performance bound does. Also, the convexity of C is not required. The proof is in Section A.

Theorem 9 For all response functions Ψ, for all T > 1, for all sequences m1, . . . , mT ∈ RdA of
vectors of vector payoffs, possibly chosen by an adversary,

dp
(
rT , CϕΨ(mT )

)
= O

(
T−1/4

)
.

More precisely, with the notation of Figure 1, denoting in addition by N the largest integer such
that N(N + 1)/2 6 T , by

mpart. =
1

T −N(N − 1)/2

T∑
t=N(N−1)/2+1

mt

the partial average of the vectors of vector payoffs mt obtained during the last block, and by cT ∈
CϕΨ(mT ) the following convex combination,

cT =
1

T

(
N−1∑
k=1

kΨ
(
m(k)

)
�m(k) +

(
T − N(N − 1)

2

)
Ψ
(
mpart.

)
�mpart.

)
,

we have

wwwww 1

T

T∑
t=1

xt �mt − cT

wwwww
2

6
(
8Kmax

√
lnA

)
T−1/4 +

√
2Kmax T

−1/2 . (10)

4.2. Discussion

In this section we gather comments, remarks, and pointers to the literature. We discuss in particular
the links and improvements over the concurrent (and independent) works by Bernstein and Shimkin
(2014) and Azar et al. (2014).

Do we have to play in blocks? Our strategy proceeds in blocks, unlike the ones exhibited for
the case of known games, as the original strategy by Blackwell (1956) or the more recent one
by Bernstein and Shimkin (2014). This is because of the form of the aim ϕΨ we want to achieve:
it is quite demanding. Even the calibration-based strategy considered in the proof of Lemma 8
performs some grouping, according to the finitely many possible values of the predicted vectors of
vector payoffs. Actually, it is easy to prove that the following quantity, which involves no grouping
in rounds, cannot be minimized in general:∥∥∥∥∥ 1

T

T∑
t=1

xt �mt −
1

T

T∑
t=1

Ψ(mt)�mt

∥∥∥∥∥
1

. (11)

Indeed, for the simplest case of regret minimization, the mt consist of scalar components `a,t > 0,
where a ∈ A, each representing the nonnegative loss associated with action a at round t. The
cumulative loss is to be minimized, that is, the set C = (−∞, 0] is to be approached, and its
expansions are given by Cα = (−∞, α], for α > 0. The target function ϕΨ thus represents what the
cumulative loss of the strategy is compared to. Considering Ψ

(
(`a)a∈A

)
∈ arg mina∈A `a, we see

that (11) boils down to controlling∣∣∣∣∣
T∑
t=1

∑
a∈A

xa,t`a,t −
T∑
t=1

min
a′t∈A

`a′t,t

∣∣∣∣∣ ,
9



which is impossible (see, e.g., Cesa-Bianchi and Lugosi, 2006). In this example of regret minimiza-
tion, the bound (10) corresponds to the control (from above and from below) of some shifting regret
for
√
T blocks; the literature thus shows that the obtained T−1/4 rate to do so is optimal (again, see,

e.g., Cesa-Bianchi and Lugosi, 2006, Chapter 5 and the references therein).
In a nutshell, what we proved in this paragraph is that if we are to ensure the convergence (1) by

controlling a quantity of the form (10), then we have to proceed in blocks and convergence cannot
hold at a faster rate than T−1/4. However, the associated strategy is computationally efficient.

Trading efficiency for a better rate. Theorem 9 shows that some set is approachable here,
namely, GϕΨ : it is thus a B–set in the terminology of Spinat (2002), see also Hou (1971). There-
fore, there exists some (abstract and possibly computationally extremely inefficient) strategy which
approaches it at a 1/

√
T–rate. Indeed, the proof of existence of such a strategy does not rely on any

constructive argument.

Links with the strategy of Bernstein and Shimkin (2014). We explain here how our strategy
and proof technique compare to the ones described in the mentioned reference. The setting is the
one of a known game with a known target set C, which is known to be approachable. The latter
assumption translates in our more general case into the existence of a response function ΨC such
that ΨC(m) �m ∈ C for all m ∈ K. In that case, one wishes to use the null function ϕ = 0 as a
target function. A straightforward generalization of the arguments of Bernstein and Shimkin (2014)
then corresponds to noting that to get the desired convergence dp

(
rT , C

)
→ 0, it suffices to show

that there exist vectors m̃t such that∥∥∥∥∥ 1

T

T∑
t=1

xt �mt −
1

T

T∑
t=1

ΨC
(
m̃t

)
� m̃t

∥∥∥∥∥
1

−→ 0 ; (12)

of course, this is a weaker statement than trying to force convergence of the quantity (11) towards 0.
Section A.2 recalls how to prove the convergence (12), which takes place at the optimal 1/

√
T–rate.

On the related framework of Azar et al. (2014). The setting considered therein is exactly the
one described in Section 2: the main difference with our work lies in the aim pursued and in the
nature of the results obtained. The quality of a strategy is evaluated therein based on some quasi-
concave and Lipschitz function f : Rd → R. With the notation of Theorem 9, the extension to an
unknown horizon T of their aim would be to guarantee that

lim inf
T→∞

f

(
1

T

T∑
t=1

xt �mt

)
− min
k∈{1,...,N−1}

max
x∈∆(A)

f
(
x�m(k)

)
> 0 , (13)

where N is of order
√
T (e.g., as the N considered in Theorem 9). A direct consequence of our

Theorem 9 and of the Lipschitz assumption on f is that

lim inf
T→∞

f

(
1

T

T∑
t=1

xt �mt

)
− f

(
O(1/

√
T ) +

1

T

N−1∑
k=1

kΨ(m(k))�m(k)

)
> 0 . (14)

The quasi-concavity of f implies that the image by f of a convex combination is larger than the
minimum of the images by f of the convex combinations. That is,

lim inf
T→∞

f

(
1

T

T∑
t=1

xt �mt

)
− min
k=1,...,N−1

f
(
Ψ(m(k))�m(k)

)
> 0 .

10



APPROACHABILITY IN UNKNOWN GAMES

Defining Ψ as Ψ(m) ∈ arg max
x∈∆(A)

f(x�m), we get (13).

However, we need to underline that the aim (13) is extremely weak: assume, for instance, that
during some block Nature chooses m(k) such that x�m(k) = min f for all x ∈ ∆(A). Then (13)
is satisfied irrespectively of the algorithm. On the contrary, the more demanding aim (14) that we
consider is not necessarily satisfied and an appropriate algorithm—as our one—must be used.

In addition, the strategy designed in Azar et al. (2014) still requires some knowledge—the setK
of vectors of vector payoffs needs to be known (which is a severe restriction)—and uses projections
onto convex sets. The rate they obtain for their weaker aim isO(T−1/4), as we get for our improved
aim.

An interpretation of the rates. Based on all remarks above, we conclude this section with an
intuitive interpretation of the T−1/4 rate obtained in Theorem 9, versus the 1/

√
T rate achieved by

Blackwell’s original strategy or variations of it as the one described above in the case where C is
approachable. The interpretation is in terms of the number of significant computational units Ncomp

(projections, solutions of convex or linear programs, etc.) to be performed. The strategies with the
faster rate 1/

√
T perform at least one or two of these units at each round, while our strategy does

it only of the order of
√
T times during T rounds—see the calls to Ψ. In all the cases, the rate is√

Ncomp/T .

5. Applications (worked out)

In this section we work out the applications mentioned in Section 2.2. Some others could be con-
sidered, such as global costs (see Even-Dar et al., 2009; Bernstein and Shimkin, 2014) but we omit
them for the sake of conciseness.

5.1. Link with classical approachability, opportunistic approachability

We recall that in the setting of known finite games described in Section 2.1, vectors of vector payoffs
m actually correspond to the r( · , y), where y is some mixed action of the opponent. This defines
the set K. The response function Ψ will thus be a function of r( · , y) ∈ K. A natural (but not
necessarily optimal, as illustrated by Mannor et al., 2014, Section C, Exemple 2) choice is, for all
y ∈ ∆(B),

x?(y) = Ψ
(
r( · , y)

)
∈ arg min

x∈∆(A)
d2

(
r(x, y), C

)
.

A key feature of our algorithm, even based on this non-necessarily optimal response function,
is that it is never required to compute the quantity αunif defined in (2), which, depending on whether
it is null or positive, indicates whether a convex set C is approachable or not and in the latter case,
suggests to consider the least approachable convex set Cαunif . The latter problem of determining the
approachability of a set is actually an extremely difficult problem as even the determination of the
approachability of the singleton set C = {0} in known games is NP–hard to perform; see Mannor
and Tsitsiklis (2009).

On the other hand, our strategy only needs to compute
√
T calls to Ψ in T steps. Moreover,

each of these queries simply consists of solving the convex program

min
∥∥∑

a∈A xar(a, y)− c
∥∥2 s.t. x ∈ ∆(A), c ∈ C ,

11



which can be done efficiently. (It even reduces to a quadratic problem when C is a polytope.) Doing
so, our algorithm ensures in particular that the average payoffs rT are asymptotically inside of or
on the border of the set Cαunif .

To see that there is no contradiction between these statements, note that our algorithm does not,
neither in advance nor in retrospect, issue any statement on the value of αunif. It happens to perform
approachability to Cαunif for the specific sequence of actions chosen by the opponent but does not
determine a minimal approachable set which would suited for all sequences of actions. In particular,
it does not provide a certificate of whether a given convex set C is approachable or not.

This is of course a nice feature of our method but it comes at a cost: the main drawback is the
lower rate of convergence of T−1/4 instead of T−1/2. But we recall that the latter superior rates
requires in general, to the best of our knowledge, the knowledge of αunif.

Opportunistic approachability? In general, in known games, one has that the target function
considered above, ϕx

?
, satisfies ϕx

? ≺ αunif. That is, easy-to-control sequences of vectors r( · , yt)
can get much closer to C than the uniform distance αunif: we get some pathwise refinement of
classical approachability. This should be put in correspondance with the recent, but different, notion
of opportunistic approachability (see Bernstein et al., 2013). However, quantifying exactly what we
gain here with the pathwise refinement would require much additional work (maybe a complete
paper as the one mentioned above) and this is why we do not explore further this issue.

5.2. Regret minimization under sample path constraints

We recall that the difficulty of this setting is that there exists a hard constraint, given by the costs
having to (asymptotically) lie in Γ. The aim is to get the average of the payoffs as close as possible to
P given this hard constraint. We will choose below a response function Ψ such that for all m ∈ K,
one has G

(
Ψ(m)�m

)
∈ Γ and we will adjust (9) to consider only payoffs:

φΨ(m) = sup

{
dp

(
P

N∑
i=1

λi Ψ(mi)�mi, P

)
:

N∑
i=1

λimi = m

}
.

As long as Γ is convex, the strategy of Figure 1 and its analysis can then be adapted to get (3):

dp
(
PrT , PφΨ(mT )

)
−→ 0 and dp

(
GrT , Γ

)
−→ 0 .

A reasonable choice of Ψ. We assume that the cost contraint is feasible, i.e., that for all m ∈ K,
there exists x ∈ ∆(A) such that G(x�m) ∈ Γ. We then define, for all m ∈ K,

x?(m) = Ψ(m) ∈ arg min
{

dp
(
P (x�m), P

)
: x ∈ ∆(A) s.t. G(x�m) ∈ Γ

}
,

where the minimum is indeed achieved by continuity as soon as both P and Γ are closed sets.
At least when P is a linear form (i.e., takes scalar values), Γ is convex, and P is an interval, the
defining equation of x? is a linear optimization problem under a convex constraint and can be solved
efficiently (see, e.g., Mannor et al., 2009; Bernstein and Shimkin, 2014).

Link with earlier work. The setting of the mentioned references is the one of a known game, with
some linear scalar payoff function and vector-valued cost functions u : ∆(A)×∆(B)→ [0,M ] and

12
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c : ∆(A)×∆(B)→ Rg. (With no loss of generality we can assume that the payoff function takes
values in a bounded nonnegative interval.) The vector m of our general formulation corresponds to

m(y) =

[
u( · , y)
c( · , y)

]
.

The payoff set P to be be approached given the constraints is [M, +∞), that is, payoffs are to be
maximized given the constraints: Pα = [M − α, +∞). Abusing the notation by not distinguishing
between m(y) and y, we denote the maximal payoff under the constraint by

φ?(y) = max
{
u(x, y) : x ∈ ∆(A) s.t. c(x, y) ∈ Γ

}
.

This target function corresponds to (4) in the same way as φΨ corresponds to (9). Mannor et al.
(2009) exactly proceed as we did in Section 3: they first show that φ? is unachievable in general and
then show that the relaxed goal cav[φ?] can be achieved. They propose a computationally complex
strategy to do so (based on calibration) but Bernstein and Shimkin (2014) already noted that simpler
and more tractable strategies could achieve cav[φ?] as well.

The target function φx
?
, which we proved above to be achievable, improves on cav[φ?], even

though, as in the remark concluding Section 5.1, it is difficult to quantify in general how much we
gain. One should look at specific examples to quantify the improvement from cav[φ?] to ϕψ (as we
do in Mannor et al., 2014, Section C). The added value in our approach mostly lies in the versatility:
we do not need to assume that some known game is taking place.
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Appendix A.

We prove Theorem 9, as well as the convergence (12), which was a key point in the comparison of
our work with the one by Bernstein and Shimkin (2014).

A.1. Proof of Theorem 9

The first part of the theorem follows from its second part, together with the definition of ϕΨ as a
supremum and the equivalence between `p– and `2–norms.

It thus suffices to prove the second part of the theorem, which we do by induction. We use a
self-confident approach: we consider a function β : {1, 2, . . .} → [0,+∞) to be defined by the
analysis and assume that we have proved that our strategy is such that for some n > 1 and for all
sequences of vectors of vector payoffs mt ∈ K, possibly chosen by some adversary,

‖δn+1‖2 =

wwwwww
n(n+1)/2∑

t=1

xt �mt −
n∑
k=1

kΨ
(
m(k)

)
�m(k)

wwwwww
2

6 β(n) .

We then study what we can guarantee for n+ 2. We have

‖δn+2‖22 =

wwwwwwδn +

 (n+1)(n+2)/2∑
t=n(n+1)/2+1

xt �mt − (n+ 1) Ψ
(
m(n+1)

)
�m(n+1)

wwwwww
2

2

= ‖δn‖22 +

wwwwww
(n+1)(n+2)/2∑
t=n(n+1)/2+1

xt �mt − (n+ 1) Ψ
(
m(n+1)

)
�m(n+1)

wwwwww
2

2

+2

〈
δn,

(n+1)(n+2)/2∑
t=n(n+1)/2+1

xt �mt − (n+ 1) Ψ
(
m(n+1)

)
�m(n+1)

〉
. (15)

We upper bound the two squared norms by β(n)2 and (n+1)2K2
max, respectively. The inner product

can be rewritten, with the notation of Figure 1, as

〈
δn,

(n+1)(n+2)/2∑
t=n(n+1)/2+1

xt �mt − (n+ 1) Ψ
(
m(n+1)

)
�m(n+1)

〉

= −
n+1∑
t=1

un+1,t �m′n+1,t +
n+1∑
t=1

u(n+1) �m′n+1,t (16)

where we used the short-hand notation u(n+1) = Ψ
(
m(n+1)

)
. Now, the Cauchy–Schwarz inequality

indicates that for all a and t,∣∣m′n+1,t,a

∣∣ 6 ‖δn‖2 ‖mn(n+1)/2+t,a‖2 6 Kmax β(n) ,

where we used the induction hypothesis. Assumption 1 therefore indicates that the quantity (16)
can be bounded by 4Kmax β(n)

√
(n+ 1) lnA.
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Putting everything together, we have proved that the induction holds provided that β is defined,
for instance, for all n > 1, as

β(n+ 1)2 = β(n)2 + 8Kmaxβ(n)
√

(n+ 1) lnA+K2
max(n+ 1)2 .

In addition, we have that β(1)2 = K2
max is a suitable value, by definition of Kmax. By the lemma

below, taking γ1 = 4Kmax

√
lnA and γ2 = K2

max, we thus get first

β(n)2 6 8K2
max(lnA)n3 or β(n) 6 2Kmax

√
2n3 lnA

for all n > 1, hence the final bound

‖δn+1‖2 6 2Kmax

√
2n3 lnA

still for all n > 1.
It only remains to relate the quantity at hand in (10) to the δn+1. Actually, T times the quantity

whose norm is taken in (10) equals δN plus at most N differences of elements in K. Therefore,wwwww 1

T

T∑
t=1

xt �mt − cT

wwwww
2

6
1

T

(
‖δN‖2 +NKmax

)
.

In addition, N(N + 1)/2 6 T implies N 6
√

2T , which concludes the proof of the theorem.

Lemma 10 Consider two positive numbers γ1, γ2 and form the positive sequence (un) defined by
u1 = γ2 and

un+1 = un + 2γ1

√
(n+ 1)un + γ2(n+ 1)2

for all n > 1. Then, for all n > 1,

un 6 max
{

2γ2
1 , γ2

}
n3 .

Proof We proceed by induction and note that the relation is satisfied by construction for n = 1.
Assuming now it holds for some n > 1, we show that it is also true for n + 1. Denoting C =
max

{
2γ2

1 , γ2

}
, we get

un+1 = un + 2γ1

√
(n+ 1)un + γ2(n+ 1)2 6 C n3 + 2γ1

√
C
√

(n+ 1)n3 + γ2(n+ 1)2 .

It suffices to show that the latter upper bound is smaller than C (n+ 1)3, which follows from

2γ1

√
C
√

(n+ 1)n3 + γ2(n+ 1)2 6
(
2γ1

√
2C + γ2

)
n2 + 2γ2 n+ γ2 6 3C n2 + 3C n+ C ;

indeed, the first inequality comes from bounding n+ 1 by 2 and expanding the (n+ 1)2 term, while
the second inequality holds because C > γ2 and 2C > 2γ1

√
2C by definition of C.
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A.2. Proof of the convergence (12)

The construction of the strategy at hand and the proof of its performance bound also follow some
self-confident approach: denote, for t > 1,

δt+1 =

t∑
s=t

xs �ms −
t∑

s=1

ΨC
(
m̃s

)
� m̃s .

No blocks are needed and we proceed as in (15) by developing the square Euclidian norm; we
show that the inner product can be forced to be non-positive, which after an immediate recurrence
shows that ‖δT+1‖2 is less than something of the order of 1/

√
T , which is the optimal rate for

approachability. Indeed, the claimed inequality

〈δt+1, xt+1 �mt+1〉 6
〈
δt+1, ΨC

(
m̃t+1

)
� m̃t+1

〉
(17)

follows from the following choices, defining the strategy:

xt+1 ∈ arg min
x∈∆(A)

max
m∈K

〈δt+1, x�m〉 and m̃t+1 ∈ arg max
m∈K

min
x∈∆(A)

〈δt+1, x�m〉 .

Then, by von Neumann’s minmax theorem, for all m′ ∈ K and x′∆(A),

〈δt+1, xt+1�m′〉 6 min
x∈∆(A)

max
m∈K
〈δt+1, x�m〉 = max

m∈K
min

x∈∆(A)
〈δt+1, x�m〉 6

〈
δt+1, x

′�m̃t+1

〉
.

Choosing m′ = mt+1 and x′ = ΨC
(
m̃t+1

)
entails (17).
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