
JMLR: Workshop and Conference Proceedings vol 35:1–34, 2014

Bayes-Optimal Scorers for Bipartite Ranking

Aditya Krishna Menon ADITYA.MENON@NICTA.COM.AU

Robert C. Williamson BOB.WILLIAMSON@NICTA.COM.AU

NICTA and the Australian National University, Canberra, ACT, Australia

Abstract
We address the following seemingly simple question: what is the Bayes-optimal scorer for a bipar-
tite ranking risk? The answer to this question helps establish the consistency of the minimisation
of surrogate bipartite risks, and elucidates the relationship between bipartite ranking and other es-
tablished learning problems. We show that the answer is non-trivial in general, but may be easily
determined for certain special cases using the theory of proper losses. Our analysis immediately
establishes equivalences between several seemingly disparate risks for bipartite ranking, such as
minimising a suitable class-probability estimation risk, and minimising the p-norm push risk pro-
posed by Rudin (2009).
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1. The bipartite ranking problem

Bipartite ranking problems (Agarwal et al., 2005; Clémençon et al., 2008; Kotlowski et al., 2011)
have received considerable attention from the machine learning community. In such problems, we
have as input a training set of examples, each of which comprises an instance (typically a vector
of features describing some entity) with an associated binary label (describing whether the instance
possesses some attribute, typically denoted “positive” or “negative”). The goal is to learn a scorer,
which assigns each instance a real number, such that positive instances have a higher score than
negative instances. Violations of this condition are penalised according to some loss `, and the
bipartite ranking risk of a scorer is its expected penalty according to `. A canonical choice is for `
to be zero-one loss, for which the bipartite risk is one minus the area under the ROC curve (AUC)
(Agarwal et al., 2005).

The non-convexity of the 0-1 loss hampers direct maximisation of the AUC. A popular strategy
is to instead minimise the bipartite risk with respect to some surrogate loss ` (Cohen et al., 1999;
Herbrich et al., 2000; Burges et al., 2005). While intuitive, it is of interest to establish whether
these approaches are consistent for the task of AUC maximisation. A necessary condition for this
to hold is for the Bayes-optimal scorers under the surrogate loss to match the Bayes-optimal scorers
under the 0-1 loss. While the Bayes-optimal scorers for 0-1 loss are well understood (Clémençon
et al., 2008), for surrogate losses their study has been restricted to a subset of convex margin losses
(Uematsu and Lee, 2012; Gao and Zhou, 2012).

In this paper, we compute the Bayes-optimal scorers for the bipartite ranking risk when ` be-
longs to the family of proper composite losses (Reid and Williamson, 2010). This family includes as
special cases the 0-1 loss and the margin losses studied in Uematsu and Lee (2012); Gao and Zhou
(2012), and consequently we generalise and unify the existing results. We show that in some special
cases, the Bayes-optimal scorers have a simple form intimately related to those of other learning
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problems. Consequently, we find equivalences between the risks for several disparate approaches to
bipartite ranking, including performing class-probability estimation with a suitable proper compos-
ite loss, and minimising the p-norm push risk, a proposal due to Rudin (2009) which aims to focus
accuracy at the head of the ranked list.

We begin the paper with some definitions and notation (§2), and then precisely define the risks
of interest to us (§3). We then determine the Bayes-optimal scorers for bipartite ranking (§4) and
the p-norm push extension (§5). We then look at the implications of these findings in terms of
equivalence relationships between four disparate approaches to bipartite ranking (§6).

2. Preliminary definitions

We define the relevant quantities used in the rest of the paper, and fix some notation.

2.1. Notation

We denote by R the set of real numbers, and R+ = [0,∞). We use calligraphic fonts, e.g. X,Y,
to denote arbitrary sets. We use X \ Y to denote set difference, and ∅ to denote the empty set. We
use sans-serif fonts, e.g. X,Y, to denote random variables. The expectation of a random variable is
denoted by E [X]. Given a set S, we denote by ∆S by the set of all distributions on S. We denote by
Ber(θ) the Bernoulli distribution with parameter θ ∈ [0, 1].

For any function f : X → R, we denote by Argmin
x∈X

f(x) the set of all x ∈ X such that f(x) ≤

f(x′) for all x′ ∈ X. When f has a unique minimiser, we denote this by argmin
x∈X

f(x). We denote by

Diff(f) : X× X→ R the function satisfying (Diff(f))(x, x′) = f(x)− f(x′) for every x, x′ ∈ X.
For a set of functions F = {f : X→ R}, we define Diff(F) = {Diff(f) : f ∈ F}.

We use the Iverson bracket (Knuth, 1992) JpK to denote the indicator function, whose value is 1
if p is true and 0 otherwise. For any x ∈ R, we define sign(x) = Jx ≥ 0K− Jx ≤ 0K. The sigmoid
function is defined by σ(z) = 1

1+e−z .

2.2. Scorers

We will focus on supervised learning problems involving an instance space X (often Rn), and a
label space Y = {±1}. We call an element x ∈ X an instance, and an element y ∈ {±1} a label.
A scorer s is some function s : X → V, where V ⊆ R. A classifier is a scorer with V = {±1},
and a class-probability estimator is a scorer with V = [0, 1]. A pair-scorer sPair for a product space
X× X is some function sPair : X× X→ V. We call a pair-scorer sPair decomposable if

sPair ∈ SDecomp = {Diff(s) : s : X→ R}.

2.3. Loss functions

A loss ` is some measurable function ` : {±1} × R → R+. We use `1(v) = `(1, v) and `−1(v) =
`(−1, v) to denote the individual partial losses. Slightly abusing notation, we sometimes specify
a loss via `(v) = (`−1(v), `1(v)). We call a loss ` symmetric if (∀v ∈ R) `1(v) = `−1(−v), or
equivalently if it is a margin loss i.e. `(y, v) = φ(yv) for some φ : R → R. We define the
conditional `-risk to be

L`(η, s) = EY∼Ber(η) [`(Y, s)] = η`1(s) + (1− η)`−1(s). (1)
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A loss of special interest is the zero-one or misclassification loss, `01(y, v) = Jyv < 0K+ 1
2Jv = 0K.

A probability estimation loss λ is some measurable function λ : {±1}× [0, 1]→ R+. We call a
probability estimation loss proper (Buja et al., 2005; Reid and Williamson, 2010) if the conditional
risk L(η, ·) is minimised by predicting η:

(∀η, η′ ∈ [0, 1])Lλ(η, η) ≤ Lλ(η, η′). (2)

We call a loss strictly proper if the inequality is strict. We call a loss ` (strictly) proper composite
if there is some invertible link function Ψ : [0, 1] → R such that the probability estimation loss
λ(y, v) = `(y,Ψ(v)) is (strictly) proper (Reid and Williamson, 2010). For such losses, we have
that for every η ∈ [0, 1], v ∈ R, L`(η,Ψ(η)) ≤ L`(η, v). When ` is differentiable, its inverse link is
(Reid and Williamson, 2010, Corollary 12)

(∀v ∈ V) Ψ−1(v) =
1

1− `′1(v)
`′−1(v)

. (3)

The squared, squared hinge, exponential and logistic loss are all proper composite.

2.4. Conditional distributions

Any D ∈ ∆X×{±1} may be specified exactly by the triplet (P,Q, π), where

(∀x ∈ X) (P (x), Q(x), π) = (Pr[X = x|Y = 1],Pr[X = x|Y = −1],Pr[Y = 1]), (4)

or alternately by the tuple (M,η), where

(∀x ∈ X) (M(x), η(x)) = (Pr[X = x],Pr[Y = 1|X = x]).

We refer to P,Q as the class conditional densities, and π the base rate. We refer to M as the ob-
servation density, and η the class-conditional density. When we wish to refer to these densities, we
will explicitly parameterise the distribution D ∈ ∆X×{±1} as either DP,Q,π or DM,η as appropriate.

3. Classification, class-probability estimation and bipartite ranking

We now describe the problems of interest in this paper by means of their statistical risks.

3.1. Classification and class-probability estimation

Given any D ∈ ∆X×{±1} and loss `, we define the `-classification risk for a scorer s to be

LD` (s) = E(X,Y)∼D [`(Y, s(X))] = EX∼M [L`(η(X), s(X))] , (5)

recalling that L`(η, s) is the conditional `-risk (Equation 1). When the infimum is achievable1, the
set of Bayes-optimal `-scorers comprises those that minimise the risk:

S
D,∗
` = Argmin

s : X→R
LD` (s).

1. The optimal scorer for logistic loss is s∗(x) = log η(x)
1−η(x) . If the data is separable, i.e. η(x) ∈ {0, 1} for every x,

that would require s∗(x) ∈ {±∞}, and so the infimum is not attainable.
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Under appropriate measurability assumptions, this set may be discerned pointwise, by studying the
minimisers of the conditional risk L` (Steinwart, 2007).

In binary classification (Devroye et al., 1996), we wish to find a scorer that (approximately)
minimises the risk for ` = `01, which in a slight abuse of notation we write as LD01. Directly
minimising LD01 may be computationally challenging due to the non-convexity of `01. A common
approach is to instead find a scorer that (approximately) minimises LD` for some surrogate loss `;
via surrogate regret bounds (Zhang, 2004; Bartlett et al., 2006), one can quantify how well this
scorer performs with respect to `01. When ` is proper composite, minimising LD` is in fact precisely
the goal of the class-probability estimation problem (Buja et al., 2005; Reid and Williamson, 2010).

3.2. Bipartite ranking

Given any DP,Q,π ∈ ∆X×{±1} and loss `, we define the `-bipartite risk for a pair-scorer sPair to be

LDBipart,`(sPair) = EX∼P,X′∼Q

[
`1(sPair(X,X

′)) + `−1(sPair(X
′,X))

2

]
. (6)

When the infimum is achievable, the set of Bayes-optimal `-bipartite pair-scorers is

S
D,∗
Bipart,` = Argmin

sPair : X×X→R
LDBipart,`(sPair),

and the set of Bayes-optimal `-bipartite univariate scorers is

S
D,Univ,∗
Bipart,` = Argmin

s : X→R
LDBipart,`(Diff(s)).

In bipartite ranking (Agarwal et al., 2005; Clémençon et al., 2008; Uematsu and Lee, 2012), we
wish to find a scorer s : X → R such that LDBipart,01(Diff(s)) is (approximately) minimised; equiv-
alently, we seek to minimise LDBipart,01(sPair) over all sPair ∈ SDecomp. One minus the risk
LDBipart,01(Diff(s)) equals the area under the ROC curve (AUC) of the scorer s (Agarwal et al.,
2005; Clémençon et al., 2008), which can be interpreted as the probability of a random positive
instance scoring higher than a random negative instance:

AUCD(s) = EX∼P,X′∼Q

[
Js(X) > s(X′)K +

1

2
Js(X) = s(X′)K

]
.

Minimising the 0-1 bipartite risk is thus equivalent to maximising the AUC.

4. Bayes-optimal scorers for the bipartite ranking risk

There are two approaches to learning a scorer s that approximately minimises LDBipart,01(Diff(s)).
In the pointwise approach, one minimises LD` (s) for some surrogate loss ` (Kotlowski et al., 2011).
In the pairwise approach, one minimises LDBipart,`(Diff(s)) for some surrogate loss ` (Herbrich
et al., 2000; Freund et al., 2003; Burges et al., 2005). A key question is whether these approaches are
consistent for the task of minimising LDBipart,01(Diff(s)). To answer this, it is necessary to establish

that the corresponding Bayes-optimal solutions S
D,∗
` and S

D,Univ,∗
Bipart,` fall in the set SD,Univ,∗

Bipart,01. The
nature of the Bayes-optimal solutions is well-understood for the univariate approach, but less so for
the pairwise approach. We thus aim to characterise SD,Univ,∗

Bipart,` , for which it will be useful to establish

S
D,∗
` . In what follows, D = DP,Q,π = DM,η ∈ ∆X×{±1}.
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4.1. Binary classification and class-probability estimation

For `01, any Bayes-optimal scorer has the same sign as η(x) − 1/2 when this quantity is nonzero
(Devroye et al., 1996, pg. 10), (Bartlett et al., 2006):

S
D,∗
01 = {s : X→ R : η(x) 6= 1/2 =⇒ sign(s(x)) = sign(2η(x)− 1)} . (7)

Thus, for `01, what is of interest is determining whether or not each instance has a greater than
random chance of being labelled positive. When ` is a proper composite loss with link Ψ, from the
definition of properness (Equation 2) we can specify one minimiser of the conditional risk, which
applied pointwise gives:

{Ψ ◦ η} ⊆ S
D,∗
` . (8)

This is an equality if and only if ` is strictly proper composite. Thus, a strictly proper composite loss
requires precise information about η, unlike `01. Observe that Ψ ◦ η may be trivially transformed to
give an optimal scorer for `01; thus, exactly solving class-probability estimation also solves binary
classification. For an approximate solution, one can bound the excess `01 error via a surrogate regret
bound (Reid and Williamson, 2009).

4.2. Bipartite ranking with pair-scorers

In bipartite ranking, our interest is in determining the Bayes-optimal univariate scorers, SD,Univ,∗
Bipart,` .

As a warm-up, we first determine the Bayes-optimal pair-scorers, SD,∗Bipart,`. Our first challenge is
determining a suitable conditional risk from Equation 6. To do so, we exploit an equivalence of the
bipartite risk to a pairwise classification risk on a distribution Bipart(D), which we now define.

Definition 1 For any DP,Q,π ∈ ∆X×{±1}, let Bipart(D) ∈ ∆X×X×{±1} by defined by the triplet
(Ppair, Qpair, πpair), where

(∀x, x′ ∈ X) (Ppair(x, x
′), Qpair(x, x

′), πpair) =
(
P (x)Q(x′), P (x′)Q(x), 1/2

)
.

The classification risk with respect to Bipart(D) is equivalent to the bipartite risk with respect to
D, as is well known for `01 (Balcan et al., 2008; Kotlowski et al., 2011; Agarwal, 2013).

Lemma 2 For any DP,Q,π ∈ ∆X×{±1}, loss ` and pair-scorer sPair : X× X→ R,

LDBipart,`(sPair) = LBipart(D)
` (sPair).

Lemma 2 implies that SBipart(D),∗
Bipart,` = S

D,∗
Bipart,`. We now just need the following elementary

property of the observation-conditional density ηPair of Bipart(D).

Lemma 3 For any DM,η ∈ ∆X×{±1}, Bipart(D) has observation-conditional density given by

ηPair = σ ◦Diff(σ−1 ◦ η). (9)

Thus, combining Equations 7 and 9, we have

S
D,∗
Bipart,01 =

{
sPair : X× X→ R : η(x) 6= η(x′) =⇒ sign(sPair(x, x

′)) = sign(η(x)− η(x′))
}
,

(10)
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where we have used the fact that sign(2ηPair(x, x
′) − 1) = sign(η(x) − η(x′)). Similarly, when `

is proper composite with link Ψ,

{Ψ ◦ ηPair} = {Ψ ◦ σ ◦Diff(σ−1 ◦ η)} ⊆ S
D,∗
Bipart,`. (11)

This is an equality if and only if ` is strictly proper composite. As with binary classification, the
optimal solution for a proper composite loss may be trivially transformed to reside in S

D,∗
Bipart,01.

4.3. Bipartite ranking with univariate scorers

When looking to establish the Bayes-optimal univariate scorers for bipartite ranking, we immedi-
ately face a challenge. Finding the set of scorers s that minimise LDBipart,`(Diff(s)) is equivalent to
finding the set of pair-scorers sPair that minimise LDBipart,`(sPair) subject to sPair ∈ SDecomp. While
the latter constraint seems innocuous, it means we need to reason about a minimiser in a restricted
function class. Thus, in general, it is no longer possible to make a pointwise analysis via the condi-
tional risk. But if it happens that the optimal pair-scorer is in fact decomposable, we can effectively
ignore the restricted function class, as the following makes precise.

Proposition 4 Given any D ∈ ∆X×{±1} and loss `,

S
D,∗
Bipart,` ∩ SDecomp 6= ∅ ⇐⇒ S

D,∗
Bipart,` ∩ SDecomp = Diff(SD,Univ,∗

Bipart,` ).

The result simplifies when every Bayes-optimal pair-scorer is decomposable, which is of interest
for example when there is a unique optimal pair-scorer.

Corollary 5 Given any D ∈ ∆X×{±1} and loss `,

S
D,∗
Bipart,` ⊆ SDecomp ⇐⇒ S

D,∗
Bipart,` = Diff(SD,Univ,∗

Bipart,` ).

Simply put, the decomposable Bayes-optimal pair-scorers are exactly the Bayes-optimal uni-
variate scorers passed through Diff . Thus, if we can show that SD,∗Bipart,` ∩ SDecomp 6= ∅ for a loss `,
we automatically deduce the Bayes-optimal scorer.

4.3.1. DECOMPOSABLE CASE

We first handle the case where there is a decomposable Bayes-optimal pair-scorer, which allows us
to easily compute the optimal scorer. Observing from Equation 10 that {Diff(η)} ⊆ S

D,∗
Bipart,01 ∩

SDecomp, we have the following characterisation of the optimal univariate scorers for `01.

Proposition 6 Given any DM,η ∈ ∆X×{±1},

S
D,Univ,∗
Bipart,01 = {s : X→ R : η = φ ◦ s}

for some monotone increasing φ : [0, 1]→ R.

The fact that φ in Proposition 6 need not be strictly monotone increasing means that for some
x 6= x′ ∈ X, we may have η(x) = η(x′) but s(x) 6= s(x′). Nonetheless, an immediate corollary is
that any strictly monotone increasing transform of η is necessarily an optimal univariate scorer.
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Corollary 7 Given any DM,η ∈ ∆X×{±1} and any strictly monotone increasing φ : [0, 1]→ R,

φ ◦ η ∈ S
D,Univ,∗
Bipart,01.

Combined with Equation 8, Corollary 7 implies that SD,∗` ⊆ S
D,Univ,∗
Bipart,01 for a strictly proper

composite loss. Surrogate regret bounds (Agarwal, 2013) may further be developed to establish
consistency of the pointwise approach for this family of losses.

We now proceed to the case where ` is a proper composite loss. To apply Corollary 5, we
characterise the subset of proper composite losses for which there exists a decomposable pair-scorer.

Proposition 8 (Decomposability of Bayes-optimal bipartite pair-scorer.) Given any strictly
proper composite loss ` with a differentiable, invertible link function Ψ,

(∀D ∈ ∆X×{±1}) S
D,∗
Bipart,` ⊆ SDecomp ⇐⇒ (∃a ∈ R \ {0}) (∀v ∈ R) Ψ−1(v) =

1

1 + e−av
.

Proof ( ⇐= ) Let the link function of ` have the specified form, so that Ψ(v) = 1
a log v

1−v =
1
aσ
−1(v), and so (Ψ ◦ σ)(v) = v

a . From Equation 11, the Bayes-optimal pair-scorer is

s∗Pair =
1

a
·Diff(σ−1 ◦ η) = Diff

((
1

a
· σ−1

)
◦ η
)
∈ SDecomp.

( =⇒ ) See Appendix A.

What is special about the particular family of links in Proposition 8, which are scaled versions of
the sigmoid? The answer is simply that the scorer ηPair involves a sigmoid link function (Equation
9). This form of ηPair in turn can be understood in terms of utility representations for binary relations
on sets (Roberts, 1984, pg. 273 – 280); for details, see (Menon and Williamson, 2014).

Observe that the class of proper composite losses satisfying the conditions of Proposition 8 is
“large” in the following sense: one may take any strictly proper loss and compose it with any mem-
ber of the given link family. Some of these compositions result in a non-convex proper composite
loss; nonetheless, we are able to easily determine the optimal scorers for all such losses, as below.

Corollary 9 Given any DM,η ∈ ∆X×{±1} and strictly proper composite loss ` with inverse link
function Ψ−1(v) = 1

1+e−av for some a ∈ R \ {0},

S
D,Univ,∗
Bipart,` = {Ψ ◦ η + b : b ∈ R} ⊆ S

D,Univ,∗
Bipart,01.

Further, we may transfer surrogate regret bounds from binary classification to relate the excess
pairwise ` risk of a scorer s : X → R to its the excess pairwise `01 risk. Such a bound implies that
minimising certain pairwise surrogate risks is consistent for AUC maximisation.

Proposition 10 Given any DM,η ∈ ∆X×{±1}, strictly proper composite loss ` with inverse link
function Ψ−1(v) = 1

1+e−av for some a ∈ R \ {0}, and scorer s : X → R, there exists a convex
function F` : [0, 1]→ R+ such that

F`

(
regretD,Univ

Bipart,01(s)
)
≤ regretD,Univ

Bipart,`(s),

where
regretD,Univ

Bipart,`(s) = LDBipart,`(Diff(s))− inf
t:X→R

LDBipart,`(Diff(t)).
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The function F` : [0, 1]→ R+ is exactly that which appears in bounds relating 0-1 to ` classification
regret for proper composite losses and may be specified in terms of the Bayes-risk of the proper
composite loss ` Reid and Williamson (2009, Theorem 3).

Proposition 10 is a simple consequence of the reduction of bipartite ranking to classification
over pairs, and in particular the fact that regretD,Univ

Bipart,`(s) = regret
Bipart(D)
` (Diff(s)) when the

Bayes-optimal pair-scorer is decomposable. When the optimal pair-scorer is not decomposable, the
two regrets will no longer coincide, and more effort is needed to derive a surrogate regret bound.
This further illustrates the value of the decomposability of the Bayes-optimal pair-scorer.

4.3.2. NON-DECOMPOSABLE CASE

We now turn to the case where the loss ` does not have a decomposable Bayes-optimal pair-scorer.
As noted earlier, we can no longer resort to using the conditional risk. Fortunately, the simple struc-
ture of SDecomp means that we can hope to directly compute the risk minimiser via an appropriate
derivative. Under some assumptions on the loss, it turns out that the Bayes-optimal scorer is still a
strictly monotone transform of η; however, the transform is now distribution dependent, rather than
simply the fixed link function Ψ.

Proposition 11 Given any DM,η = DP,Q,π ∈ ∆X×{±1} and a margin-based strictly proper com-
posite loss `(y, v) = φ(yv) with φ : R→ R+ convex. If φ′ is bounded, or D has finite support

S
D,Univ,∗
Bipart,` = {s∗ : X→ R : η = fDs∗ ◦ s∗},

where

(∀v ∈ V) fDs∗(v) =
πEX∼P

[
`′−1(v − s∗(X))

]
πEX∼P

[
`′−1(v − s∗(X))

]
− (1− π)EX′∼Q [`′1(v − s∗(X′))]

.

To express any optimal scorer s∗ in terms of η, as we have done for the previous cases, it remains to
check whether or not the above the function fDs∗ defined above is invertible. The following corollary
provides sufficient conditions for this to hold.

Corollary 12 Suppose DM,η ∈ ∆X×{±1} and `(y, v) = φ(yv) is a margin-based strictly proper
composite loss, where φ is differentiable, strictly convex, and satisfies

(∀v ∈ V)φ′(v) = 0 ⇐⇒ φ′(−v) 6= 0.

Then if φ′ is bounded or D has finite support

S
D,Univ,∗
Bipart,` = {s∗ : X→ R : s∗ = (fDs∗)

−1 ◦ η} ⊆ S
D,Univ,∗
Bipart,01,

where fDs∗ is defined as in Proposition 11.

We make some observations on the result in Proposition 11. First, while the results of this sec-
tion rely on convexity of the loss `, the previous section established that convexity is not necessary,
since one can have a non-convex loss resulting from a suitable link Ψ = 1

aσ
−1. Second, we suspect

that the requirement of φ′ bounded when D does not have finite support may be dropped, but defer
to future work investigation of minimal conditions for the result to hold. Third, in class-probability
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estimation with a proper composite loss, there is a separation of concerns between the underlying
proper loss and the link function Ψ, with the latter primarily chosen for computational convenience,
and not affecting statistical properties of the proper loss (Reid and Williamson, 2010). For bipar-
tite ranking, however, changing the link function is seen to change the Bayes-optimal solutions in a
non-trivial way. It is unclear for example whether the use of non-sigmoidal links, which induce non-
decomposable Bayes-optimal pair-scorers, still allow for the derivation of surrogate regret bounds,
and hence consistency.

4.4. Relation to existing work

This section generalised and unified several earlier results through the theory of proper losses. For
`01, our Corollary 7 is well-known in the context of scorers that maximise the AUC, which is one
minus the bipartite `01 risk. The result is typically established by the Neyman-Pearson lemma
(Torgersen, 1991), whereas we simply use a reduction to binary classification over pairs. For
exponential loss with a linear hypothesis class, Ertekin and Rudin (2011) studied the (empirical)
Bayes-optimal solutions. For a convex margin loss, Uematsu and Lee (2012) and Gao and Zhou
(2012) independently studied conditions for the Bayes-optimal scorers to be transformations of η.
Our Proposition 8 is a generalisation of Theorem 7 in Uematsu and Lee (2012) and Lemma 3 of
Gao and Zhou (2012), where our result holds for non-symmetric and non-convex proper composite
losses; Appendix D has an empirical illustration of this. Our Corollary 12 is essentially equivalent
to Theorem 3 of Uematsu and Lee (2012) and Theorem 5 of Gao and Zhou (2012), although we
explicitly provide the form of the link function relating η and s∗; Appendix E empirically illustrates
the distribution-dependent nature of the link function. (We translate these results in terms of proper
losses so that the connection is more apparent in Appendix C.)

5. Bayes-optimal scorers for the p-norm push risk

We now consider the p-norm push risk, a family of bipartite risks proposed by Rudin (2009). Their
aim is to focus attention at the head of the ranked list; confer (Clémençon and Vayatis, 2007). We
characterise the Bayes-optimal solutions of the p-norm push risk to relate it to those of other learning
problems. In the sequel, let DM,η ∈ ∆X×{±1}.

5.1. The (`, g)-push risk

Rudin (2009) and Swamidass et al. (2010) studied a family of risks parameterised by a monotone
increasing function designed for the ranking the best problem. Generalising these proposals to the
case of an arbitrary loss ` and pair-scorer sPair, we obtain the (`, g)-push bipartite ranking risk:

LDpush,`,g(sPair) = EX′∼Q

[
g

(
EX∼P

[
`1(s(X,X

′)) + `−1(s(X
′,X))

2

])]
,

where g(·) is a nonnegative, monotone increasing function. When g(x) = x, we recover the stan-
dard bipartite risk (Equation 6). Rudin (2009) provides a detailed study of the choice gp(x) = xp

for p ≥ 1, with margin loss ` and decomposable pair-scorer, leading to the p-norm push risk:

LDpush,`,g(Diff(s)) = EX′∼Q
[(
EX∼P

[
`1(s(X)− s(X′))

])p]
.

9
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For large p, and ` = `01, the risk penalises high false negative rates, which is an intuitive
explanation for why it is suitable for maximising accuracy at the head of the list. To get a different
explanation, we look to compute the Bayes-optimal solutions for this risk, and see how they compare
to those for the standard bipartite risk. Following the conventions of the prequel, define:

S
D,∗
push,`,g = Argmin

sPair : X×X→R
LDpush,`,g(sPair)

S
D,Univ,∗
push,`,g = Argmin

s : X→R
LDpush,`,g(Diff ◦ s).

5.2. Bayes-optimal pair-scorers

As with the standard bipartite risk, determining the Bayes-optimal scorer for the (`, g) push is
challenging due to the implicit restricted function class SDecomp. In fact, this is difficult even for the
pair-scorer case: the (`, g) push risk is not easily expressible in terms of a conditional risk. Thus, we
explicitly compute the derivative of the risk, as in the proof of Proposition 11. (Note that requiring
differentiability of the loss means that we cannot compute the optimal solution for `01.)

Proposition 13 Given any DM,η ∈ ∆X×{±1}, a differentiable function g : X → R, and a strictly
proper composite loss ` with link function Ψ, if `′1, `

′
−1 are bounded or D has finite support

S
D,∗
push,`,g =

{
s∗Pair : X× X→ R : s∗Pair = Ψ ◦ σ ◦ (Diff(σ−1 ◦ η)−GDs∗Pair

)
}
, (12)

where

GDsPair
(x, x′) = log

g′
(
FDsPair

(x)
)

g′
(
FDsPair

(x′)
)

FDsPair
(x) = EX∼P

[
`1(sPair(X, x)) + `−1(sPair(x,X))

2

]
.

When g : x 7→ x, we obtain the standard `-bipartite ranking risk, GD ≡ 0 and so s∗Pair =
Ψ ◦ ηPair as in Equation 11. For general (`, g), however, it is unclear how to simplify the term GD

any further, and thus we apparently have to settle for the above implicit equation. Interestingly,
when ` is the exponential loss and gp(x) = xp, we have the following simple characterisation.

Proposition 14 Pick any DM,η ∈ ∆X×{±1}. Let `exp(y, v) = e−yv be the exponential loss and
gp(x) = xp for any p > 0. Then, if D has finite support

S
D,∗
push,`exp,gp =

{
1

p+ 1
· σ−1 ◦ ηPair

}
=

{
1

p+ 1
·Diff(σ−1 ◦ η)

}
.

As with Proposition 11, we suspect the finiteness assumption on the support of D can be
dropped, although we have been unsuccessful in establishing this. Nonetheless, for this special case,
the optimal scorer can be expressed as 2

p+1 ·Ψ◦ηPair, where Ψ is the link function corresponding to
exponential loss; comparing this to the optimal pair-scorer for the standard bipartite risk (Equation
11), we see that the effect of the function g : x 7→ xp is equivalent to slightly transforming the loss
`; we will explore this more in the next section.

10
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5.3. Bayes-optimal univariate scorers

We now turn attention to computing S
D,Univ,∗
push,`,g . For `01, we were unsuccessful in computing the op-

timal pair-scorer; nonetheless, a different technique lets us establish the optimal univariate scorers.

Proposition 15 Given any DM,η ∈ ∆X×{±1} and nonnegative, monotone increasing g,

φ ◦ η ∈ S
D,Univ,∗
push,01,g,

for any strictly monotone increasing φ : [0, 1]→ R.

We see that SD,Univ,∗
Bipart,01 ∩ S

D,Univ,∗
push,01,g 6= ∅, and so the (`01, g)-push maintains the optimal solutions

for the standard bipartite risk. This is not surprising: if one can exactly recover η (or a strictly
monotone transform thereof), then one can perfectly rank elements at the top of the ranked list.

For a general proper composite loss, it appears difficult to appeal to the optimal pair-scorer
implicitly derived in Proposition 13. For the special case of exponential loss, the optimal pair-scorer
immediately implies the form of the optimal univariate scorer.

Proposition 16 Pick any DM,η ∈ ∆X×{±1}. Let `exp(y, v) = e−yv be the exponential loss and
gp(x) = xp for any p > 0. Then, if D has finite support,

S
D,Univ,∗
push,`exp,gp =

{
1

p+ 1
(σ−1 ◦ η) + b : b ∈ R

}
.

We see that changing p results in a scaling of the link function Ψ = σ−1. One might then hope to
understand the p-norm push by considering a family of proper composite risks, where each member
of the family comprises some fixed proper loss composed with an appropriately scaled sigmoidal
link. However, for a proper composite risk, scaling of the link function simply corresponds to a
scaling of the prediction space of the scorer. Thus, even on a finite sample, and a restricted function
class, the family of proper composite risks have optimal solutions that are scalings of one another.

As with the `01 case, this is not surprising, and indicates that the p-norm push risk must be
understood in terms of its behaviour under a restricted function class or finite sample. Along these
lines, Ertekin and Rudin (2011, Theorem 1) showed that for a linear function class, the p-norm
push risk with exponential loss is equivalent to the proper composite risk corresponding to the p-
classification loss, given by `(v) =

(
e−v, 1pe

vp
)

. As we demonstrate in Appendix F, varying p in
the p-classification loss no longer results in a simple scaling, because the parameter p is embedded
in the underlying proper loss itself. This observation gives a means of designing alternate proper
composite losses for focussing at the head of the ranked list; we give some examples of such losses
in Table 1.

6. Four equivalent risks for bipartite ranking

Consider the following approaches to outputting a pair-scorer, given a strictly proper composite `:

(1) Minimise the `-classification risk LD` , and construct the difference pair-scorer.

(2) Minimise the `-bipartite ranking risk LDBipart,` over decomposable pair-scorers.

11
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Name `−1(v) `1(v) Ψ(η)

p-classification 1
pe
vp e−v 1

p+1 log η
1−η

Asymmetric A 2√
σ(−v)

2 tanh−1(
√
σ(−v)) log η

1−η

Asymmetric B

{
1
2e

v
2 v > 0

log
(
1+ev

2

)
+ 1

2 v ≤ 0

{
1
2e
− v

2 v > 0

log
(
1+e−v

2

)
v ≤ 0

log η
1−η

Table 1: Candidate proper composite alternatives to the p-norm push.

(1) Diff

(
argmin
s : X→R

E
(X,Y)∼D

[
e−Ys(X)

])
(2) Diff

(
argmin
s : X→R

E
X∼P,X′∼Q

[
e−(s(X)−s(X

′))
])

(3) argmin
sPair : X×X→R

E
X∼P,X′∼Q

[
e−sPair(X,X

′)
]

(4) Diff

(
argmin
s : X→R

E
X′∼Q

[(
EX∼P

[
e−(s(X)−s(X

′))
])p])

Table 2: Four methods for obtaining a pair-scorer in a bipartite ranking problem, using exponential loss. Our
results show that the all methods produce the same output.

(3) Minimise the `-bipartite ranking risk LDBipart,` over all pair-scorers.

(4) Minimise the p-norm push risk LDpush,`exp,gp over decomposable pair-scorers.

Superficially, these appear very different: method (4) is the only one that departs from the stan-
dard conditional risk framework, method (3) is the only one to use a pair-scorer during minimisation,
and method (1) is the only one to operate on single instances rather than pairs. However, our results
provide conditions under which all methods have the same output, meaning that the corresponding
risks have equivalent minimisers.

Proposition 17 Given any D ∈ ∆X×{±1} and strictly proper composite loss ` with inverse link
function Ψ−1(v) = 1

1+e−av for some a ∈ R \ {0}, methods (1), (2) and (3) produce the same pair-
scorer; if the support of D is finite and p = a − 1 for a > 1, method (4) also produces the same
pair-scorer.

Proof By Equation 8 and Corollary 9, methods (1) and (2) produce the same scorer Ψ ◦ η, up to a
translation which is nullified by the Diff operator. By Equation 11, this pair-scorer is equivalent to
that produced by method (3). Further, if p = a − 1 for a > 1, then by Proposition 16, method (4)
returns Ψ ◦ η up to a translation which is nullified by the Diff operator.

In hindsight, these equivalences are not surprising by virtue of the Bayes-optimal scorer for
each type of risk depending on the observation-conditional density η. They are not however a priori
obvious, given how ostensibly different the risks appear. To illustrate these superficial differences,
Table 2 provides a concrete example of the four methods when ` = `exp is the exponential loss,
whose link Ψ = 1

2σ
−1 satisfies the required condition.

6.1. Implications of the risk equivalences

Our definition of “equivalent” is that two risks have the same optimal scorer. This does not imply
that the corresponding methods are interchangeable in practice. A statistical caveat to these equiva-
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lences is that they ignore the issue of finite samples and a restricted function class. When one or both
of these issues is relevant, it may be that one of these methods is more preferable. A computational
caveat is that methods (2) – (4) rely on minimisation over pairs of examples. On a finite training set,
this requires roughly quadratic complexity, compared to the linear complexity of method (1).

With these caveats in mind, the results illuminate similarities between seemingly disparate ap-
proaches. For the problem of minimising the `-bipartite risk for an appropriate surrogate `, the
above provides evidence that minimising the `-classification risk is a suitable proxy. That is, per-
forming class-probability estimation is a suitable proxy for ranking; the quality of this reduction can
be quantified with surrogate regret bounds (Agarwal, 2013; Narasimhan and Agarwal, 2013).

6.2. Relation to existing work

Subsets of the above equivalences have been observed earlier under special cases. For the specific
case of exponential loss, the equivalence between methods (1) and (2) was made by Gao and Zhou
(2012, Lemma 4). For the special case of convex margin losses, the equivalence between methods
(2) and (3) was shown by Uematsu and Lee (2012). Rudin and Schapire (2009, Theorem 10),
Ertekin and Rudin (2011, Theorem 3) showed the equivalence between methods (1) and (2), and
Ertekin and Rudin (2011, Theorem 1) the equivalence between methods (1) and (4), holds when the
minimisation is over a linear hypothesis class and D has finite support.

7. Conclusion

We derived the Bayes-optimal scorers for bipartite ranking under the proper composite family of
losses, including as special cases the 0-1, logistic and exponential losses. This characterisation
helps establish consistency of minimisation of certain pairwise surrogate risks for the task of min-
imising the 0-1 bipartite risk. The theory of proper composite losses illuminated certain special
cases where this optimal scorer has an especially simple form, related to that of the optimal scorer
for the class-probability estimation risk. We further studied Bayes-optimal scorers for a generalised
family of bipartite risks, namely the p-norm push risk (Rudin, 2009). Consequently, we established
equivalences between the risks for four seemingly disparate approaches to bipartite ranking. We
believe our results illustrate the value of the proper loss machinery in studying ranking problems.
One can use this machinery to yield further insight into bipartite ranking, for example by relating the
optimal bipartite risk to an f -divergence (Reid and Williamson, 2011), and studying integral repre-
sentations analogous to those for proper composite risks (Reid and Williamson, 2010); we refer the
reader to (Menon and Williamson, 2014) for details.
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Appendix A. Proofs

Proof [Lemma 2] By Equation 6,

LDBipart,`(sPair) = EX∼P,X′∼Q

[
`1(sPair(X,X

′)) + `−1(sPair(X
′,X))

2

]
=

1

2
· EX∼P,X′∼Q

[
`1(sPair(X,X

′))
]

+
1

2
· EX∼P,X′∼Q

[
`−1(sPair(X

′,X))
]

=
1

2
· EX∼P,X′∼Q

[
`1(sPair(X,X

′))
]

+
1

2
· EX∼Q,X′∼P

[
`−1(sPair(X,X

′))
]

=
1

2
· E(X,X′)∼(P×Q)

[
`1(sPair(X,X

′))
]

+
1

2
· E(X,X′)∼(Q×P )

[
`−1(sPair(X,X

′))
]
,

where in the penultimate equation we have simply renamed the random variables in the second
expression.

By definition of Bipart(D), this is exactly LBipart(D)
` (sPair). As noted in the body of the paper,

this result is well-known for the case of `01 (Balcan et al., 2008; Kotlowski et al., 2011; Agarwal,
2013).

Proof [Lemma 3]
We show the result of Lemma 3, and additionally collect some identities about the distribution

Bipart(D). Suppose we have a distribution DP,Q,π = DM,η ∈ ∆X×{±1}. Let the random variable
triplet (X,X′,Z) be such that, for any x, x′ ∈ X and z ∈ {±1},

Pr[Z = z] =
1

2
Pr[X = x|Z = z] = Jz = 1KP (x) + Jz = −1KQ(x)

Pr[X′ = x′|Z = z] = Jz = 1KQ(x′) + Jz = −1KP (x′).

Further suppose that X,X′ are conditionally independent given Z. Then, the above summarise
a distribution Bipart(D) ∈ ∆X×X×{±1}, from which a sample (x, x′, z) may be drawn via the
following process:

• Draw z ∼ Ber(1/2)

• Draw x ∼ Jz = 1KP + Jz = −1KQ

• Draw x′ ∼ Jz = −1KP + Jz = 1KQ.

From these, we may derive other marginals and conditionals:

Pr[X = x,X′ = x′|Z = z] = Pr[X = x|Z = z] · Pr[X′ = x′|Z = z]

= Jz = 1KP (x)Q(x′) + Jz = −1KP (x′)Q(x)

Pr[X = x,X′ = x′] =
P (x)Q(x′) + P (x′)Q(x)

2

=
1

2π(1− π)
·M(x)M(x′) · (η(x)(1− η(x′)) + η(x′)(1− η(x)))
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Pr[Z = 1|X = x,X′ = x′] =
P (x)Q(x′)

P (x)Q(x′) + P (x′)Q(x)

=
1

1 + Q(x)
P (x) ·

P (x′)
Q(x′)

= σ(σ−1(Pr[Z = 1|X = x])− σ−1(Pr[Z = 1|X′ = x′]))

= σ(σ−1(Pr[Y = 1|X = x])− σ−1(Pr[Y = 1|X′ = x′]))

= σ((Diff(σ−1 ◦ η))(x, x′)).

The last two identities follows because

σ−1(η(x)) = σ−1(π) + log
P (x)

Q(x)
.

Proof [Proposition 4] The (⇐= ) direction is immediate, since SD,Univ,∗
Bipart,` 6= ∅ and thus Diff(SD,Univ,∗

Bipart,` ) 6=
∅. We show the ( =⇒ ) direction.

(⊆). Pick any s∗Pair ∈ S
D,∗
Bipart,` ∩ SDecomp. Then s∗Pair = Diff(s) for some s : X → R. By

optimality of s∗Pair,

(∀t : X→ R)LD,Univ
Bipart,`(s) = LDBipart,`(s

∗
Pair) ≤ LDBipart,`(Diff(t)) = LD,Univ

Bipart,`(t).

Thus s ∈ S
D,Univ,∗
Bipart,` , and so s∗Pair ∈ Diff(SD,Univ,∗

Bipart,` ).

(⊇). Pick any s∗ ∈ S
D,Univ,∗
Bipart,` , and let sPair = Diff(s∗). Then, by definition,

sPair ∈ Argmin
tPair∈SDecomp

LDBipart,`(tPair).

This is a constrained optimisation problem. When S
D,∗
Bipart,` ∩ SDecomp 6= ∅, there is at least one so-

lution to the unconstrained optimisation that lies in SDecomp, call it tPair. Clearly tPair is a feasible
solution for the constrained problem above. Thus, it must have an identical risk to sPair. But then
sPair is a solution to the unconstrained problem as well, and so sPair ∈ S

D,∗
Bipart,` ∩ SDecomp.

Proof [Corollary 5] ( =⇒ ) follows by Proposition 4, and ( ⇐= ) follows by definition of decom-
posability.

Proof [Proposition 6] Let A = S
D,∗
Bipart,01 ∩ SDecomp. By Equation 10,

A =
{
sPair ∈ SDecomp : η(x) 6= η(x′) =⇒ sign(sPair(x, x

′)) = sign(η(x)− η(x′))
}

= Diff
({
s : X→ R : η(x) 6= η(x′) =⇒ sign(s(x)− s(x′)) = sign(η(x)− η(x′))

})
= Diff ({s : X→ R : η = φ ◦ s for φ monotone increasing }) by Lemma 18.

Since A is nonempty, A = Diff(SD,Univ,∗
Bipart,01) by Proposition 4. For any sets of scorers S1, S2,

Diff(S1) = Diff(S2) =⇒ (∀s1 ∈ S1) (∃s2 ∈ S2, c ∈ R) s1 = s2 + c, i.e. the scorers in the
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two sets must be related by a linear translation. But if for a scorer s we have η = φ ◦ s for some
monotone φ, then it must also be true that η = φ̃◦ (s+c) where φ̃ : x 7→ φ(x−c) is also monotone.
Thus,

S
D,Univ,∗
Bipart,01 = {s : X→ R : η = φ ◦ s for φ monotone increasing } .

Proof [Implication direction of Proposition 8] We follow the general strategy of Uematsu and Lee
(2012, Theorem 7). If SD,∗Bipart,` ∩ SDecomp 6= ∅,

Ψ ◦ σ ◦Diff(σ−1 ◦ η) ∈ SDecomp.

We wish to determine the Ψ for which this holds. Let f = Ψ ◦ σ ◦ log, so that the above becomes

(∀x, x′ ∈ X) f

(
eσ
−1(η(x))

eσ−1(η(x′))

)
= g(x)− g(x′)

for some g : X→ R. Noting that g(x)− g(x′) = g(x)− g(x′′) + g(x′′)− g(x′) for any x′′ ∈ X,

(∀x, x′, x′′ ∈ X) f

(
eσ
−1(η(x))

eσ−1(η(x′))

)
= f

(
eσ
−1(η(x))

eσ−1(η(x′′))

)
+ f

(
eσ
−1(η(x′′))

eσ−1(η(x′))

)
.

We require this to hold for any D, and thus for any η. Therefore, equivalently, we have

(∀a, b ∈ R+) f(a · b) = f(a) + f(b).

The function f is continuous by assumed differentiability of Ψ. Thus the only solution to the equa-
tion is f(z) = 1

a · log z for some a ∈ R (Kannappan, 2009, Corollary 1.43), or equivalently that
Ψ−1(v) = σ(a · v) = 1

1+e−av . The case a = 0 is ruled out by assumed invertibility of Ψ.

Proof [Corollary 9] By Proposition 8 and Corollary 5,

Diff(SD,Univ,∗
Bipart,` ) = S

D,∗
Bipart,`.

Further, by Equation 11,

S
D,∗
Bipart,` = Diff

(
1

a
· σ−1 ◦ η

)
= Diff(Ψ ◦ η).

The result follows because

Diff(f) = Diff(g) ⇐⇒ (∃b ∈ R) f = g + b.

Proof [Proposition 10] For any s : X→ R, sPair : X× X→ R, define

regretD` (s) = LD` (s)− inf
t:X→R

LD` (t)
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regretDBipart,`(sPair) = LDBipart,`(sPair)− inf
tPair : X×X→R

LDBipart,`(tPair)

regretD,Univ
Bipart,`(s) = LDBipart,`(Diff(s))− inf

t:X→R
LDBipart,`(Diff(t)).

By the reduction of bipartite ranking to classification over pairs (Lemma 2),

regretDBipart,`(Diff(s)) = regret
Bipart(D)
` (Diff(s)).

Existing surrogate regret bounds for proper composite losses (Reid and Williamson, 2009) imply
that there exists some convex F` : [0, 1]→ R+ such that

F`

(
regret

Bipart(D)
01 (Diff(s))

)
≤ regret

Bipart(D)
` (Diff(s)),

or equivalently,
F`
(
regretDBipart,01(Diff(s))

)
≤ regretDBipart,`(Diff(s)).

Since `01 and ` induce a decomposable pair-scorer, the minimisations in the two regrets above are
effectively over SDecomp, i.e.,

regretDBipart,`(Diff(s)) = regretD,Univ
Bipart,`(s).

Thus, we can write the regret bound as

F`

(
regretD,Univ

Bipart,01(s)
)
≤ regretD,Univ

Bipart,`(s).

Proof [Proposition 11] We follow the general strategy of Uematsu and Lee (2012, Theorem 3). For
fixed D, let L(D) denote the space of all Lebesgue-measurable scorers s : X → R, with addition
and scalar multiplication defined pointwise, such that

LD,Univ
Bipart,`(s) = EX∼P,X′∼Q

[
φ(s(X)− s(X′))

]
<∞.

Then LD,Univ
Bipart,` : L(D)→ R is a functional whose minimisers may be determined by considering an

appropriate notion of functional derivative. We shall employ the Gâteaux variation. This coincides
with the standard directional derivative when the support of D is finite, where the minimisation is
effectively over finite dimensional vectors.

Pick any s, t ∈ L(D). For any ε > 0, define

Fs,t(ε) = LD,Univ
Bipart,`(s+ εt)

= EX∼P,X′∼Q
[
φ(s(X)− s(X′) + ε(t(X)− t(X′)))

]
.

The Gâteaux variation of LD,Univ
Bipart,` at s in the direction of t is (Troutman, 1996, pg. 45), (Giaquinta

and Hildebrandt, 2004, pg. 10)

δLD,Univ
Bipart,`(s; t) = lim

ε→0

LD,Univ
Bipart,`(s+ εt)− LD,Univ

Bipart,`(s)

ε
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= F ′s,t(0),

assuming the latter exists. To show that F ′s,t(0) exists, we will justify interchange of the derivative
and expectation. For any ε ∈ (0, 1] and x, x′ ∈ X, by convexity and nonnegativity of φ,∣∣∣∣φ((Diff(s+ εt))(x, x′))− φ((Diff(s))(x, x′))

ε

∣∣∣∣ ≤ ∣∣φ((Diff(s+ t))(x, x′))− φ((Diff(s))(x, x′))
∣∣

(13)

≤ φ((Diff(s+ t))(x, x′)) + φ((Diff(s))(x, x′)),

where Equation 13 is because φ(a+ εb) ≤ εφ(a+ b) + (1− ε)φ(a) for any a, b ∈ R.
By assumption, LD,Univ

Bipart,`(s+ t) and LD,Univ
Bipart,`(s) are both finite. Further,

lim
ε→0

φ(s(x)− s(x′) + ε(t(x)− t(x′)))− φ(s(x)− s(x′))
ε

= (t(x)− t(x′)) · φ′(s(x)− s(x′)).

Thus, by the dominated convergence theorem (Folland, 1999, pg. 56), we have

F ′s,t(0) = EX∼P,X′∼Q
[
(t(X)− t(X′)) · φ′(s(X)− s(X′))

]
(14)

= EX∼P,X′∼Q
[
t(X) · φ′(s(X)− s(X′))

]
− EX∼Q,X′∼P

[
t(X) · φ′(s(X′)− s(X))

]
(15)

=

∫
X

t(x) · r(x) dx,

where

(∀x ∈ X) r(x) = P (x) · EX′∼Q
[
φ′(s(x)− s(X′))

]
−Q(x) · EX∼P

[
φ′(s(X)− s(x))

]
.

In the splitting the expectation in Equations 14 and 15, we relied on the fact that the individual terms
are finite:

EX∼P,X′∼Q
[∣∣t(X) · φ′(s(X)− s(X′))

∣∣] < +∞
EX∼Q,X′∼P

[∣∣t(X) · φ′(s(X′)− s(X))
∣∣] < +∞.

When X is finite, the expectations are summations, and this is immediate by finiteness of each of
the terms in the sum. When X is infinite, we assumed that φ′ is bounded. Consequently,

EX∼P,X′∼Q
[∣∣t(X) · φ′(s(X)− s(X′))

∣∣] < sup
z∈R
|φ′(z)| · EX∼P [|t(X)|] ,

and similarly for the second term. Therefore we simply need to show that

EX∼P [|t(X)|] < +∞
EX′∼Q

[∣∣t(X′)∣∣] < +∞.

To show this, we lower bound the nonnegative convex function φ with its Taylor expansion at 0:

(∀x, x′ ∈ X) |t(x)− t(x′)| ≤ |φ(t(x)− t(x′))− φ(0)|
|φ′(0)|
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≤ 1

|φ′(0)|
· (φ(t(x)− t(x′)) + φ(0)) by the triangle inequality.

We can then bound the expectation of Diff(t):

EX∼P,X′∼Q
[∣∣t(X)− t(X′)

∣∣] ≤ 1

|φ′(0)|
· EX∼P,X′∼Q

[
φ(t(X)− t(X′)) + φ(0)

]
< +∞,

where we use the fact that t ∈ L(D), and φ′(0) 6= 0 since ` is strictly proper composite (Vernet
et al., 2011, Proposition 14). Unrolling the expectation,

EX∼P,X′∼Q
[∣∣t(X)− t(X′)

∣∣] =

∫
X×X

p(x)q(x′)|t(x)− t(x′)| d((x, x′))

=

∫
X

p(x) ·
(∫

X

q(x′)|t(x)− t(x′)| dx′
)
dx by Tonelli’s theorem

≥
∫
X

p(x) ·
(∫

X

q(x′)(|t(x′)| − |t(x)|) dx′
)
dx by the reverse

triangle inequality

=

∫
X

p(x) ·
(∫

X

q(x′)|t(x′)| dx′ − |t(x)|
)
dx

=:

∫
X

p(x) · u(x) dx.

Since the left hand side is finite, the function u must be finite almost everywhere. But u(x) =
EX′∼Q [|t(X′)|] − |t(x)|, where the first term does not depend on x. Thus, since t(x) is finite for
every x ∈ X, we must have EX′∼Q [|t(X′)|] < +∞. A similar argument, where the order of the
double integration is reversed, shows that EX∼P [|t(X)|] < +∞.

Now suppose s∗ : X → R minimises the functional LD,Univ
Bipart,`. By convexity of LD,Univ

Bipart,`, it is
necessary and sufficient that the Gâteaux variation is zero for every t ∈ L(D) (Gelfand and Fomin,
2000, Theorem 2), (Troutman, 1996, Proposition 3.3). That is,

(∀t ∈ L(D))

∫
X

t(x) · r(x) dx = 0. (16)

It is then necessary and sufficient that r is zero (almost) everywhere. Sufficiency is immediate; to
see necessity, let A ⊆ X be the set of points where r is nonzero. If A = ∅ we are done, so suppose
that A 6= ∅. For any A′ ⊆ A, let tA′ : x 7→ Jx ∈ A′K be the indicator function on the set. Then
tA′ ∈ L(D) because

EX∼P,X′∼Q
[
φ((Diff(t))(X,X′))

]
= EX∼P,X′∼Q

[
JX ∈ A′,X′ /∈ A′Kφ(1) + JX /∈ A′,X′ ∈ A′Kφ(−1)

]
= P (A′)Q(X \A′)φ(1) + P (X \A′)Q(A′)φ(−1)

<∞,

where the last line is since φ(z) <∞ for every z ∈ R. By assumption, Equation 16 holds for every
tA′ . But that implies

(∀A′ ⊆ A)

∫
A′
r(x) dx = 0,
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which in turn implies that r(x) ≡ 0 on A, which is a contradiction.
Thus, for s∗ to minimise the risk, it is necessary and sufficient that for (almost) every x0 ∈ X,

P (x0) · EX′∼Q
[
φ′(s∗(x0)− s∗(X′))

]
= Q(x0) · EX∼P

[
φ′(s∗(X)− s∗(x0))

]
,

which means for (almost) every x0 ∈ X,

η(x0)

1− η(x0)
· 1− π

π
=
P (x0)

Q(x0)

=
EX∼P [φ′(s∗(X)− s∗(x0))]
EX′∼Q [φ′(s∗(x0)− s∗(X′))]

=
EX∼P

[
`′1(s

∗(X)− s∗(x0))− `′−1(s∗(x0)− s∗(X))
]

EX′∼Q
[
−`′1(s∗(x0)− s∗(X′)) + `′−1(s

∗(X)− s∗(x0))
]

=
EX∼P

[
`′−1(s

∗(x0)− s∗(X))− `′1(s∗(X)− s∗(x0))
]

EX′∼Q
[
`′1(s

∗(x0)− s∗(X′))− `′−1(s∗(X)− s∗(x0))
]

=
EX∼P

[
`′−1(s

∗(x0)− s∗(X))
]

EX′∼Q [`′1(s
∗(x0)− s∗(X′))]

since ` is symmetric,

which means
η = fDs∗ ◦ s∗,

where fDs∗ is given by

(fDs∗)(v) =
πEX∼P

[
`′−1(v − s∗(X))

]
πEX∼P

[
`′−1(v − s∗(X))

]
− (1− π)EX′∼Q [`′1(v − s∗(X′))]

.

Proof [Corollary 12] We show that fDs∗ strictly monotone, by establishing the strict monotonicity
of

g(v) =
EX′∼Q [`′1(v − s∗(X′))]
EX∼P

[
`′−1(v − s∗(X))

] .
The derivative of this function is

g′(v) =
EX∼P,X′∼Q

[
`′−1(v − s∗(X))`′′1(v − s∗(X′))− `′′−1(v − s∗(X))`′1(v − s∗(X′))

](
EX∼P

[
`′−1(v − s∗(X))

])2 .

By strict convexity of `, the terms `′′1(v − s∗(X′)) and `′′−1(v − s∗(X)) are positive. Further, by
(Vernet et al., 2011, Proposition 15), `1 and `−1 are respectively increasing and decreasing, or vice-
versa. By assumption their derivatives cannot simultaneously be zero. Therefore the expectand is
always positive or negative for every v, and hence g′(v) is always strictly positive or negative. Thus
g is strictly monotone, which means fDs∗ is as well. Therefore, s∗ = (fDs∗)

−1 ◦ η.

Proof [Proposition 13] First, in the notation of the theorem statement,

LDpush,`,g(sPair) = EX′∼Q
[
g
(
FDsPair

(X′)
)]
.
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For fixed D, let L(D) denote the space of all Lebesgue-measurable pair-scorers sPair : X×X→ R,
with addition and scalar multiplication defined pointwise, such that LDpush,`,g(sPair) < ∞. As
before, we consider the Gâteaux variation of the functional. Pick any sPair, tPair ∈ L(D). For any
ε > 0, define

Fs,t(ε) = LDpush,`,g(sPair + εtPair)

= EX′∼Q
[
g
(
FDsPair+εtPair

(X′)
)]
.

Now consider

F ′s,t(0) = EX′∼Q

[
g′
(
FDsPair

(X′)
)
· EX∼P

[
tPair(X,X

′) · `
′
1(sPair(X,X

′))

2
+

tPair(X
′,X) ·

`′−1(sPair(X
′,X))

2

]]
=

1

2

∫
X×X

tPair(x, x
′) ·
(
P (x)Q(x′) · g′(FDsPair

(x′)) · `′1(sPair(x, x′))+

P (x′)Q(x) · g′(FDsPair
(x)) · `′1(sPair(x′, x)

)
dx dx′,

where as in the proof of Proposition 11, the interchange of derivative and expectation is justified
when the support of D is finite, or when the derivatives `′1, `

′
−1 are bounded.

For the optimal pair-scorer s∗Pair, the derivative must be zero for every tPair. A sufficient condi-
tion for this to hold is that the second term in the integrand is zero for (almost) every x, x′ ∈ X.

Now, since ` is strictly proper composite, for any η ∈ [0, 1], the solution to

η`′1(s) + (1− η)`′−1(s) = 0

is s = Ψ(η), by virtue of the above being the derivative of the conditional risk. Thus, the solution
to

a

a+ b
`′1(s) +

b

a+ b
`′−1(s) = 0

for a, b > 0 is s = Ψ(a/(a + b)) = Ψ(σ(log(a/b))). Letting a = g′
(
FDsPair

(x′)
)
· P (x)Q(x′) and

b = g′
(
FDsPair

(x)
)
·Q(x)P (x′), the optimal pair-scorer is, for every x, x′ ∈ X,

s∗Pair(x, x
′) = Ψ ◦ σ ◦ log

P (x)Q(x′)g′(FDsPair
(x′))

P (x′)Q(x)g′(FDsPair
(x))

= Ψ ◦ σ ◦
(
σ−1(η(x))− σ−1(η(x′))−GDs∗Pair

)
since

P (x)

Q(x)
=

η(x)

1− η(x′)
· 1− π

π
,

i.e.
s∗Pair = Ψ ◦ σ ◦

(
Diff(σ−1 ◦ η)−GDs∗Pair

)
.

The result follows by dividing through by the numerator.
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Proof [Proposition 14] We establish this by verifying that sPair = 1
p+1Diff(σ−1 ◦ η) satisfies the

implicit equation in Proposition 13. We begin with the term AD(x) as defined in Proposition 13.
Plugging in gp(x) = xp and

sPair =
1

p+ 1
· σ−1 ◦ ηPair =

1

p+ 1
·Diff(σ−1 ◦ η),

we get

(∀x ∈ X)ADsPair
(x) = EX∼P

[
`1(sPair(X, x)) + `−1(sPair(x,X))

2

]
= EX∼P

[
e−sPair(X,x) + esPair(x,X)

2

]

=
1

2
EX∼P

[(
ηPair(X, x)

1− ηPair(X, x)

)−1/(p+1)

+

(
ηPair(x,X)

1− ηPair(x,X)

)1/(p+1)
]

= EX∼P
[
exp((σ−1(η(x))− σ−1(η(X)))/(p+ 1))

]
= exp(σ−1(η(x))/(p+ 1)) · EX∼P

[
exp(−σ−1(η(X)))/(p+ 1))

]
,

where crucially the dependence on η is separated from the dependence on the rest of the distribution.
Thus, for gp(x) = xp,

(∀x, x′ ∈ X)
g′
(
ADsPair

(x)
)

g′
(
ADsPair

(x′)
) =

exp(σ−1(η(x)) · (p− 1)/(p+ 1))

exp(σ−1(η(x′)) · (p− 1)/(p+ 1))

with the result now a simple function of η, and

(∀x, x′ ∈ X) log
g′
(
ADsPair

(x)
)

g′
(
ADsPair

(x′)
) =

(p− 1)

(p+ 1)
· (σ−1(η(x))− σ−1(η(x′)).

Now recall that the link function for exponential loss is Ψ = 1
2σ
−1. Plugging the above into the

right hand side of Equation 12, we get

Ψ ◦ σ ◦ (Diff(σ−1 ◦ η)−BD
s∗Pair

) =

(
1

2
− p− 1

2(p+ 1)

)
Diff(σ−1 ◦ η)

=
1

p+ 1
Diff(σ−1 ◦ η)

= sPair.

Therefore sPair = 1
p+1Diff(σ−1 ◦ η) satisfies the implicit equation of Proposition 13, and hence

must be an optimal pair-scorer for exponential loss.
To see why exponential loss simplifies matters, we note that the risk can be decomposed into

LDpush,exp,g(Diff(s)) =
(
EX∼P

[
e−s(X)

])p
·
(
EX′∼Q

[
eps(X

′)
])
.

This decomposition into the product of two expectations simplifies the derivatives considerably.
In fact, an alternate strategy to determine the minimisers of the risk is to consider the scorer that
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maximises EX′∼Q

[
eps(X

′)
]

subject to
(
EX∼P

[
e−s(X)

])p
being a constant; this is reminiscent of the

Neyman-Pearson approach to arguing for the optimal scorers for the AUC, which incidentally is the
strategy we shall employ for proving Proposition 15.

Proof [Proposition 15] For any s : X→ R and t ∈ R, let

FNRD
s (t) = EX∼P

[
`01(1, s(X)− t)

]
= Pr

X∼P
[s(X) < t] +

1

2
Pr
X∼P

[s(X) = t]

FPRD
s (t) = EX′∼Q

[
`01(−1, s(X′)− t)

]
= Pr

X′∼Q

[
s(X′) > t

]
+

1

2
Pr

X′∼Q

[
s(X′) = t

]
denote the false-negative and false-positive rates respectively of s using a threshold t. Observe that
we can write:

LDpush,01,g(Diff(s)) = EX′∼Q
[
g
(
EX∼P

[
`01(1, s(X)− s(X′))

])]
= EX′∼Q

[
g
(
FNRD

s (s(X′))
)]

= EX′∼Q

[∫ ∞
−∞

δs(X′)(t) · g
(
FNRD

s (t)
)
dt

]
=

∫ ∞
−∞

EX′∼Q
[
δs(X′)(t) · g

(
FNRD

s (t)
)]
dt

=

∫ ∞
−∞

Pr
X′∼Q

[
s(X′) = t

]
· g
(
FNRD

s (t)
)
dt

=

∫ ∞
−∞
−(FPRD

s )′(t) · g
(
FNRD

s (t)
)
dt

=

∫ 1

0
g
(
FNRD

s ((FPRD
s )−1(α))

)
dα,

where δx0 denotes the Dirac delta function centred at x0, i.e. the generalised function satisfying∫
R f(x)δx0(x) dx = f(x0) for any f continuous at x0, and the interchange of expectation and

integration is valid by nonnegativity of the integrand. That is, the (`, g)-push risk can be interpreted
as the area under the parametric curve

{(FPRD
s (t), g(FNRD

s (t))) : t ∈ R}.

Following the Neyman-Pearson approach to ROC maximisation (Clémençon et al., 2008), we
equivalently wish to solve for each α ∈ [0, 1]

Argmin
s : X→R,t∈R

g(FNRD
s (t)) : FPRD

s (t) = α.

Since g is a monotone increasing function, it preserves the optimal solution of the case of g(x) = x
(although potentially introducing new ones), which is the standard Neyman-Pearson problem. This
means that for monotone increasing g, one family of optimal solutions is given by s∗ = φ◦η, where
φ is strictly monotone increasing.
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Proof [Proposition 16] By Proposition 14, the unique optimal pair-scorer is

s∗Pair =
1

p+ 1
Diff(σ−1 ◦ η) = Diff

(
1

p+ 1
(σ−1 ◦ η)

)
,

which is decomposable. Corollary 5 may be adapted here to argue that any optimal univariate scorer
s∗ must satisfy s∗Pair = Diff(s∗), and so s∗ = 1

p+1(σ−1 ◦ η) + b for some b ∈ R.

Appendix B. Assorted lemmas

We collect some assorted lemmas that are employed in the above proofs.

Lemma 18 Let f, g : X→ R. Then,

(∀x, x′ ∈ X) f(x) < f(x′) =⇒ g(x) < g(x′)

if and only if f = φ ◦ g for some monotone increasing φ : R→ R.

Proof (⇐= ). This is easily verified by the definition of monotonicity.
( =⇒ ). We will construct such a monotone increasing φ. For any y ∈ Im(g), let

I(y) = {x ∈ X : g(x) = y}

be the preimage of y under g. For any y ∈ R, let

φ(y) = min{f(x) : x ∈ I(y)}.

We will check that f = φ ◦ g, and that φ is monotone increasing.
First, note that for any x, x′ ∈ I(y), by definition g(x) = g(x′). By assumption,

g(x) ≥ g(x′) =⇒ f(x) ≥ f(x′)

and by symmetry
g(x) ≤ g(x′) =⇒ f(x) ≤ f(x′)

so that
g(x) = g(x′) =⇒ f(x) = f(x′).

Thus for any x, x′ ∈ I(y), f(x) = f(x′). Thus, for any x ∈ I(y),

φ(y) = f(x).

Now, for any x0 ∈ X,

φ(g(x0)) = min{f(x) : x ∈ I(g(x0))}
= f(x0).

Thus, f = φ ◦ g. To see that φ is monotone increasing, pick y < y′, and x ∈ I(y), x′ ∈ I(y′). Then
y = g(x) < g(x′) = y′. Since g(x) < g(x′) implies f(x) = φ(y) < φ(y′) = f(x′), we see that
y < y′ =⇒ φ(y) < φ(y′).
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Lemma 19 Let f, g : X→ R. Then,

(∀x, x′ ∈ X) sign(f(x)− f(x′)) = sign(g(x)− g(x′))

if and only if f = φ ◦ g for some strictly monotone increasing φ : R→ R.

Proof We can equivalently write the condition as

(∀x, x′ ∈ X) f(x) < f(x′) ⇐⇒ g(x) < g(x′).

Thus, by Lemma 19, f = φ1 ◦ g for some monotone increasing φ1, and g = φ2 ◦ f for some
monotone increasing φ2. Thus f = φ1 ◦ φ2 ◦ f , and so φ1 = φ−12 . This implies that φ1 and φ2 are
invertible, or equivalently, that they both correspond to strictly monotone increasing transforms.

Appendix C. Interpretation of (Uematsu and Lee, 2012) in terms of proper losses

The following are the results shown in (Uematsu and Lee, 2012).

Proposition 20 ((Uematsu and Lee, 2012, Theorem 3)) Suppose `(y, v) = φ(yv) for some φ :
R → R+, where φ is differentiable, monotone decreasing, convex, and φ′(0) < 0. For a given
distribution DM,η ∈ ∆X×{±1}, let

s∗ ∈ S
D,Univ,∗
Bipart,` .

Then,

(∀x, x′ ∈ X) η(x) 6= η(x′) =⇒ sign(Diff(s∗)(x, x′)) = sign(η(x)− η(x′)).

If φ is strictly convex, then the above also holds when η(x) = η(x′).

Proposition 21 ((Uematsu and Lee, 2012, Theorem 7)) Suppose `(y, v) = φ(yv) for some φ :

R → R+, where φ is differentiable, strictly monotone decreasing, convex, and f : s 7→ φ′(−s)
φ′(s) is

strictly increasing. Given any DM,η ∈ ∆X×{±1},

S
D,∗
Bipart,` ⊆ SDecomp

if and only if φ′(−s)/φ′(s) = eas for some a > 0.

We show how to interpret these in terms of proper composite losses. First, we show that the
conditions of their theorems imply that ` is a proper composite margin loss.

Proposition 22 Let φ be differentiable, monotone decreasing, strictly convex, and φ′(0) < 0. Then,
`(y, v) = φ(yv) is proper composite.

Proof Let φmeet the stated conditions. Since φ is convex and monotone decreasing with φ′(0) < 0,
then it must be true that

(∀v ∈ R)(φ′(v) 6= 0 ∨ φ′(−v) 6= 0).
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Further, the function

f(v) =
φ′(v)

φ′(−v)

is continuous by differentiability of φ, and monotone by monotonicity and convexity of φ, since

f ′(v) =
1

(φ′(v))2
·
(
φ′(−v)φ′′(v) + φ′′(−v)φ′(v)

)
≤ 0.

When φ is strictly convex, f is strictly monotone because the numerator above cannot be 0. Thus,
the conditions of Corollary 16 in (Vernet et al., 2011) hold, and so ` is proper composite.

Proposition 23 Let φ be differentiable, strictly monotone decreasing, convex, and f : s 7→ φ′(−s)
φ′(s)

is strictly increasing. Then, `(y, v) = φ(yv) is proper composite.

Proof The proof follows by the conditions of Corollary 16 in (Vernet et al., 2011), as before; with
invertibility f : s 7→ φ′(−s)

φ′(s) directly assumed rather than derived as a consequence of strict convex-
ity.

By Lemma 19, the statement of their Theorem 3 is equivalent to saying that s∗ is a strictly
monotone increasing transform of η. Thus, this result is equivalent to Corollary 12, except that the
latter explicitly provides the form of the link function relating η and s∗.

The following shows that the conditions in their Theorem 7 imply that the inverse link function
is of the form Ψ−1(v) = 1

1+e−av , which means the result is a special case of Proposition 8 where `
is a margin loss.

Lemma 24 Let ` be a differentiable proper composite margin loss with link function Ψ, so that
`(y, v) = φ(yv) for some differentiable φ : R→ R+. Then, for any a ∈ R \ {0},

Ψ−1(s) =
1

1 + e−as
⇐⇒ φ′(−s)/φ′(s) = eas.

Proof The link function for a differentiable proper composite loss satisfies

Ψ−1(s) =
1

1− `′1(s)
`′−1(s)

=
1

1 + φ′(s)
φ′(−s)

=
1

1 + e−as
.

Appendix D. Empirical illustration of Corollary 9

We present an empirical illustration of Corollary 9 for an asymmetric proper composite loss. We
work with an instance space X comprisingN isolated points {x1, . . . , xn}. We assume a distribution
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D such that the instance Mi = Pr[X = xi], and ηi = Pr[Y = 1|X = xi]. A scorer s : X → R is
then some vector in Rn. Given a loss `, the bipartite risk of the scorer s is

LD`,Bipart(s) =
N∑
i=1

N∑
j=1

[ηi(1− ηj) · (`1(si − sj) + `−1(sj − si)]

=

N∑
i=1

N∑
j=1

[ηi(1− ηj) · (`1(〈s, ei − ej〉) + `−1(〈s, ej − ei〉)] ,

where ei is the ith standard basis vector in Rn. The Bayes-optimal risk is simply the minimiser of
the above objective, and may be computed by numerical optimisation.

We perform 10 repetitions of the following experiment: for N = 10 instances, we draw ηi ∼
Beta(4, 3), Zi ∼ Beta(6, 2), and set Mi = Zi/

∑
j Zj . We then scale the η’s to lie in [0.01, 0.99],

which is necessary to ensure the attainability of the risk minimiser. Given this distribution, we
minimised the bipartite risk using L-BFGS, obtaining the Bayes-optimal scorer s∗. As the risk is
invariant to translations, we transform the solution so that its minimum value equals Ψ(0.01) (thus
agreeing with that of the expected optimal solution). We collect the corresponding pairs of (ηi, s

∗
i )

values for all 10 repetitions. We then plot the graph of the resulting η values versus the s∗ values. If
s∗ is a strictly monotone transform of η, then the plot will reflect this (as the different η values from
the trials represent different sampling points of the domain of this function).

Figure 1 shows the results where ` is the p-classification loss for p = 2,

`(v) =

(
e−v,

1

2
e2v
)
.

We see that the relationship between η and s∗ is strictly monotone. Also shown on the graph is
the plot of η versus Ψ ◦ η, where Ψ = 1

2σ
−1; this perfectly agrees with the observed s∗ values, as

predicted by the theory.

Appendix E. Empirical illustration of Corollary 12

We present an empirical illustration of Corollary 12, showing that for a proper composite loss whose
Bayes-optimal pair-scorer is non-decomposable, the optimal univariate scorer is a strictly monotone
transform of η, but that the transformation is distribution dependent. We repeat the setup of Ap-
pendix D, except that we now work with ` being the squared loss, `(y, v) = (1 − yv)2, and the
canonical boosting loss (Buja et al., 2005),

`(y, v) =
yv

2
+

√
1 +

v2

4
.

Squared loss employs the identity link, while the canonical boosting loss uses the link Ψ(η) =
2η−1√
η(1−η)

, and thus do not induce a decomposable pair-scorer.

Figure 2 shows that the relationship between η and s∗ for these losses across multiple trials is not
monotone, and significantly deviates from the optimal solution in the class-probability estimation
setting, viz. s∗ = Ψ(η) for Ψ the identity mapping. This indicates that in general, the relationship
between η and s∗ is distribution dependent. Figures 3 and 4 further studies the relationship between
the two quantities for each individual trial. We see that, for a given trial (or equivalently for a given
distribution), the relationship between η and s∗ is strictly monotone, as expected.
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Figure 1: Results of 10 simulation trials to illustrate Corollary 9 for the case of an asymmetric loss. Here, the
ηi and Mi values are varied across each trial, and the relationship between the (η, s∗) pairs across all trials is
plotted. The relationship exactly matches that of s∗ = Ψ(η).
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Figure 2: Results of 10 simulation trials to illustrate Proposition 11 for the case of squared and canonical
boosting losses. Here, the ηi and Mi values are varied across each trial, and the relationship between the
(η, s∗) pairs across all trials is plotted.

Appendix F. The p-classification loss and beyond

For any p > 0, the p-classification loss (Ertekin and Rudin, 2011)

`exp,p(v) =

(
1

p
evp, e−v

)
is proper composite, with inverse link function

Ψ−1(v) =
1

1− `′exp,p,1(v)

`′exp,p,−1(v)

=
1

1 + e−(p+1)v
= σ((p+ 1)v),

so that

Ψ(q) =
1

p+ 1
σ−1(q) = log

(
q

1− q

) 1
p+1

.
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Figure 3: Results of 9 simulation trials to illustrate Proposition 11 for the case of squared loss. Here, the ηi
and Mi values are varied across each trial, and each panel represents the relationship between η and s∗ for a
specific trial.
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Figure 4: Results of 9 simulation trials to illustrate Proposition 11 for the case of canonical boosting loss.
Here, the ηi and Mi values are varied across each trial, and each panel represents the relationship between η
and s∗ for a specific trial.

The underlying proper loss is

λp(q) = `exp,p(Ψ(q))
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=

((
1− q
q

) 1
p+1

,
1

p
·
(

q

1− q

)1− 1
p+1

)
.

This is a generalised version of the boosting loss (the case p = 1).
The above proper loss may be understood via its weight function (Shuford Jr. et al., 1966; Reid

and Williamson, 2010). Given a proper loss λ, its weight function w : [0, 1]→ R+ lets one express
λ as a weighted combination of cost-sensitive losses:

λ(y, v) =

∫ 1

0
w(c)`CS(c)(y, v) dc, (17)

where `CS(c) is the cost-sensitive loss with cost ratio c,

`CS(c)(y, v) = (1− c)Jy = 1 ∧ v ≤ cK + cJy = −1 ∧ v > cK.

The weight function describes the relative importance paid to various cost ratios. When w places
more weight on larger values of c, the loss intuitively favours accurate prediction of large values of
η.

The proper loss corresponding to p-classification may be understood via its weight function,

wp(c) = −
λ′p,1(c)

1− c
(by (Reid and Williamson, 2010, Theorem 1))

=
1

p+ 1
· 1

c
1+ 1

p+1 (1− c)2−
1
p+1

.

As p increases2, the loss is seen to place relatively more weight on larger values of c. Given the
equivalence to the p-norm push risk, we thus have some insight as to how the risk encourages
solutions to maximise accuracy at the head of the ranked list.

The weight function perspective suggests the construction of other proper composite losses suit-
able for maximising accuracy at the head of the ranked list. For example, consider the asymmetric
weight function

w(c) =
1

c(1− c)3/2

which, when composed with the sigmoid link, yields the loss

`A(v) =

(
2√
σ(−v)

, 2 tanh−1(
√
σ(−v))

)
.

As another example, consider the weight function

w(c) =

{
1

2c3/2(1−c)3/2 if c > 1
2

1
c(1−c) else,

2. Note that as p → ∞, we have the limiting weight function w∞(c) = 1
c(1−c)2 , which results in unbounded partial

losses. Nonetheless, the weight results in valid losses for every finite p ≥ 1.
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which, when composed with the sigmoid link, yields the loss

`B(v) =

({
1
2e
v/2 v > 0

log
(
1+e−v

2

)
+ 1

2 v ≤ 0
,

{
1
2e
−v/2 v > 0

log
(
1+e−v

2

)
+ 1

2 v ≤ 0

)
.

As with the p-classification loss, one can consider parameterised weight functions where the
skew is varied. One may also consider weight functions that place bounded mass for values of c less
than some parameterised threshold; for details, see (Menon and Williamson, 2014).

Appendix G. Experiments with the p-norm push

We present experiments that assess the efficacy of the proper composite losses in Table 1 (which
we call “Asymmetric A” and “Asymmetric B”) for the problem of maximising accuracy at the head
of the ranked list. We consider all combinations of the three risk types considered in this paper –
proper, bipartite, and p-norm push – and a selection of proper composite losses losses – logistic,
exponential, p-classification, Asymmetric A, and Asymmetric B. The aim of our experiments is not
to position the new losses as a superior alternative to the existing p-classification and p-norm push
approaches. Rather, we wish to demonstrate that the proper composite interpretation gives one way
of generating a family of losses for this problem.

We compare these methods on four UCI datasets: ionosphere, housing, german and
car. Each method was trained with a regularised linear model, where the training objective was
minimised using L-BFGS (Nocedal and Wright, 2006, pg. 177). For each dataset, we created 5
random train-test splits in the ratio 2 : 1. For each split, we performed 5-fold cross-validation on the
training set to tune the strength of regularisation λ ∈ {10−6, 10−5, . . . , 101}, and where appropriate
the constant p ∈ {1, 2, 4, 8, 16, 32}. We then evaluated performance on the test set, and report the
average across all splits. As performance measures, we used the AUC, MRR, DCG, AP, and PTop
(Agarwal, 2011; Boyd et al., 2012). For all measures, a higher score is better. Parameter tuning was
done based on the AP on the test folds.

The results are summarised in Tables 3 – 6. No single method clearly outperforms all others in
all metrics. However, we observe that the candidate proper composite losses are very competitive
with p-classification and the p-norm push, as evidenced from the average ranks across all datasets
reported in Table 7.
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n
g

dataset.
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M
ethod

A
U

C
M

R
R

D
C

G
A

P
PTop

ProperL
ogistic

0.9976
±

0.0012
(2)

0.0237
±

0.0261
(1)

0.1506
±

0.0226
(1)

0.9391
±

0.0370
(4)

13.2000
±

3.9623
(1)

ProperE
xponential

0.9976
±
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(2)
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(12)

0.1327
±
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(12)

0.9376
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(6)
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±
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(12)
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±

4.4721
(6)

B
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L
ogistic

0.9976
±

0.0013
(2)
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±

0.0098
(7)

0.1347
±
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(8)

0.9371
±

0.0375
(7)

12.8000
±
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(3)
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±

0.0012
(2)
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±
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(6)
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±

0.0370
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A
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(6)
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0.1418
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(4)

0.1444
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0.0140
(2)

0.9333
±

0.0340
(9)
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±

3.9115
(4)

Table
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esults
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“ranking
the
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Method AUC MRR DCG AP PTop
Proper Logistic 6.0000 7.7500 8.0000 7.7500 3.2500
Proper Exponential 5.2500 5.5000 5.7500 7.2500 4.5000
Proper P-Classification 7.0000 8.7500 8.5000 7.7500 4.5000
Proper Asymmetric A 5.2500 7.5000 7.5000 5.0000 1.5000
Proper Asymmetric B 4.7500 7.7500 7.5000 9.0000 6.2500

Bipartite Logistic 4.5000 7.0000 7.7500 6.2500 2.5000
Bipartite Exponential 6.7500 5.5000 6.2500 8.2500 4.0000
Bipartite P-Classification 5.2500 7.2500 7.5000 5.7500 3.0000
Bipartite Asymmetric A 3.0000 7.0000 6.7500 3.7500 2.5000
Bipartite Asymmetric B 8.0000 7.7500 9.0000 7.0000 3.2500

P-Norm Logistic 7.5000 9.0000 10.0000 7.0000 2.2500
P-Norm Exponential 6.7500 7.5000 7.2500 8.7500 4.7500
P-Norm Asymmetric A 7.0000 7.2500 7.7500 9.2500 3.7500
P-Norm Asymmetric B 3.2500 5.7500 5.5000 7.2500 5.2500

Table 7: Average ranks of various “ranking the best” methods for each performance measure across all
datasets.
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