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Abstract

We consider the problem of reconstructing sparse symmetric block models with two blocks
and connection probabilities a/n and b/n for inter- and intra-block edge probabilities re-
spectively. It was recently shown that one can do better than a random guess if and only
if (a − b)2 > 2(a + b). Using a variant of Belief Propagation, we give a reconstruction
algorithm that is optimal in the sense that if (a − b)2 > C(a + b) for some constant C
then our algorithm maximizes the fraction of the nodes labelled correctly. Along the way
we prove some results of independent interest regarding robust reconstruction for the Ising
model on regular and Poisson trees.

1. Introduction

1.1. Sparse Stochastic Block Models

Stochastic block models were introduced almost 30 years ago by Holland et al. (1983) in
order to study the problem of community detection in random graphs. In these models, the
nodes in a graph are divided into two or more communities, and then the edges of the graph
are drawn independently at random, with probabilities depending on which communities
the edge lies between. In its simplest incarnation – which we will study here – the model has
n vertices divided into two classes of approximately equal size, and two parameters: a/n is
the probability that each within-class edge will appear, and b/n is the probability that each
between-class edge will appear. Since their introduction, a large body of literature has been
written about stochastic block models, and a multitude of efficient algorithms have been
developed for the problem of inferring the underlying communities from the graph structure.
To name a few, we now have algorithms based on maximum-likelihood methods (Snijders
and Nowicki (1997)), belief propagation (Decelle et al. (2011)), spectral methods (McSherry
(2001)), modularity maximization (Bickel and Chen (2009)), and a number of combinatorial
methods (Bui et al. (1987); Dyer and Frieze (1989); Jerrum and Sorkin (1998); Condon and
Karp (2001)).

Early work on the stochastic block model mainly focused on fairly dense graphs: Dyer
and Frieze (1989); Snijders and Nowicki (1997); and Condon and Karp (2001) all gave algo-
rithms that will correctly recover the exact communities in a graph from the stochastic block
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model, but only when a and b are polynomial in n. McSherry (2001) broke this polynomial
barrier by giving a spectral algorithm which succeeds when a and b are logarithmic in n;
this was later equalled by Bickel and Chen (2009) using an algorithm based on modularity
maximization.

The O(log n) barrier is important because if the average degree of a block model is
logarithmic or larger, it is possible to exactly recover the communities with high probability
as n→∞. On the other hand, if the average degree is less than logarithmic then some fairly
straightforward probabilistic arguments show that it is not possible to completely recover
the communities. When the average degree is constant, as it will be in this work, then one
cannot get more than a constant fraction of the labels correct.

Despite these apparent difficulties, there are important practical reasons for considering
block models with constant average degree. Indeed, many real networks are very sparse. For
example, Leskovec et al. (2008) and Strogatz (2001) collected and studied a vast collection
of large network datasets, many of which had millions of nodes, but most of which had an
average degree of no more than 20; for instance, the LinkedIn network studied by Leskovec
et al. had approximately seven million nodes, but only 30 million edges. Moreover, the very
fact that sparse block models are impossible to infer exactly may be taken as an argument
for studying them: in real networks one does not expect to recover the communities with
perfect accuracy, and so it makes sense to study models in which this is not possible either.

Although sparse graphs are immensely important, there is not yet much known about
very sparse stochastic block models. In particular, there is a gap between what is known for
block models with a constant average degree and those with an average degree that grows
with the size of the graph. In the latter case, it is often possible – by one of the methods
mentioned above – to exactly identify the communities with high probability. On the other
hand, simple probabilistic arguments show that complete recovery of the communities is
not possible when the average degree is constant. Until very recently, there was only
one algorithm – due to Coja-Oghlan (2010), and based on spectral methods – which was
guaranteed to do anything at all in the constant-degree regime, in the sense that it produced
communities which have a better-than-50% overlap with the true communities.

Despite the lack of rigorous results, a beautiful conjectural picture has emerged in the
last few years, supported by simulations and deep but non-rigorous physical intuition. We
are referring specifically to work of Decelle et al. (2011), who conjectured the existence of
a threshold, below which is it not possible to find the communities better than by guessing
randomly. In the case of two communities of equal size, they pinpointed the location of the
conjectured threshold. This threshold has since been rigorously confirmed; a sharp lower
bound on its location was given by Mossel et al. (2013), while sharp upper bounds were
given independently by Massoulié (2014); Mossel et al. (2014a).

1.2. Our results: optimal reconstruction

Given that even above the threshold, it is not possible to completely recover the communities
in a sparse block model, it is natural to ask how accurately one may recover them. In Mossel
et al. (2013), we gave an upper bound on the recovery accuracy; here, we will show that
that bound is tight – at least, when the signal to noise ratio is sufficiently high – by giving
an algorithm which performs as well as the upper bound.
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Our algorithm, which is based on belief propagation (BP), is essentially an algorithm for
locally improving an initial guess at the communities. In our current analysis, we assume
that we are given a black-box algorithm for providing this initial guess; both Mossel et al.
(2014a) and Massoulié (2014) provide algorithms meeting our requirements. We should
mention that standard BP with random uniform initial messages, without our modifications,
and also without a good initial guess, is also conjectured by Decelle et al. (2011) to have
optimal accuracy. However, we do not know of any approach to analyze the vanilla version
of BP for this problem. Indeed, the performance of global BP on graphs is a major open
question (see, e.g., Ihler et al. (2005)) and even our local analysis is highly non-trivial.

We should point out that spectral algorithms – which, due to their efficiency, are very
popular algorithms for this model – empirically do not perform as well as BP on very
sparse graphs (see, e.g., Krzakala et al. (2013)). This is despite the recent appearance of
two new spectral algorithms, due to Krzakala et al. (2013) and Massoulié (2014), which were
specifically designed for clustering sparse block models. The algorithm of Krzakala et al.
(2013) is particularly relevant here, because it was derived by linearizing belief propagation;
empirically, it performs well all the way to the impossibility threshold, although not quite
as well as BP. Intuitively, the linear aspects of spectral algorithms (i.e., the fact that they
can be implemented – via the power method – using local linear updates) explain why they
cannot achieve optimal performance. Indeed, since the optimal local updates – those given
by BP – are non-linear, then any method based on linear updates will be suboptimal.

As a major part of our analysis, we prove a result about broadcast processes on trees,
which may be of independent interest. Specifically, we prove that if the signal-to-noise
ratio of the broadcast process is sufficiently high, then adding extra noise at the leaves
of a large tree does not hurt our ability to guess the label of the root given the labels of
the leaves. In other words, we show that for a certain model on trees, belief propagation
initialized with arbitrarily noisy messages converges to the optimal solution as the height
of the tree tends to infinity. We prove our result for regular trees and Galton-Watson trees
with Poisson offspring, but we conjecture that it also holds for general trees, and even if
the signal-to-noise ratio is low.

2. Definitions and main results

2.1. The block model

In this article, we restrict the stochastic block model to the case of two classes with roughly
equal size.

Definition 1 (Block Model) The block model on n nodes is constructed by first labelling
each node + or − with equal probability independently. Then each edge is included in
the graph independently, with probability a/n if its endpoints have the same label and b/n
otherwise. Here a and b are two positive parameters. We write G(n, a/n, b/n) for this
distribution of (labelled) graphs.

For us, a and b will be fixed, while n tends to infinity. More generally one may consider the
case where a and b may be allowed to grow with n.

As conjectured by Decelle et al. (2011), the relationship between (a − b)2 and (a + b)
turns out to be of critical importance for the reconstructability of the block model:
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Theorem 2 (Mossel et al. (2013, 2014a); Massoulié (2014)) For the block models
with parameters a and b it holds that

• If (a− b)2 ≤ 2(a+ b) then the node labels cannot be inferred from the unlabelled graph
with better than 50% accuracy (which could also be done just by random guessing).

• if (a−b)2 > 2(a+b) then it is possible to infer the labels with better than 50% accuracy.

2.2. Broadcasting on Trees

The proof in Mossel et al. (2013) will be important to us here, so we will introduce one of
its main ingredients, the broadcast process on a tree.

Consider an infinite, rooted tree. We will identify such a tree T with a subset of N∗, the
set of finite strings of natural numbers, with the property that if v ∈ T then any prefix of v
is also in T . In this way, the root of the tree is naturally identified with the empty string,
which we will denote by ρ. We will write uv for the concatenation of the strings u and v,
and Lk(u) for the kth-level descendents of u; that is, Lk(u) = {uv ∈ T : |v| = k}. Also, we
will write C(u) ⊂ N for the indices of u’s children relative to itself. That is, i ∈ C(u) if and
only if ui ∈ L1(u).

Definition 3 (Broadcast process on a tree) Given a parameter η 6= 1/2 in [0, 1] and
a tree T , the broadcast process on T is a two-state Markov process {σu : u ∈ T} defined as
follows: let σρ be + or − with probability 1

2 . Then, for each u such that σu is defined and
for each v ∈ L1(u), let σv = σu with probability 1− η and σv = −σρ otherwise.

This broadcast process has been extensively studied, where the major question is whether
the labels of vertices far from the root of the tree give any information on the label of the
root. For general trees, this question was solved definitively by Evans et al. (2000), after
many other contributions including those by Kesten and Stigum (1966); Bleher et al. (1995).
The complete statement of the theorem requires the notion of branching number, which we
would prefer not to define here (see Evans et al. (2000)). For our purposes it suffices to
know that a (d + 1)-regular tree has branching number d and that a Poisson branching
process tree with mean d > 1 has branching number d (almost surely, and conditioned on
non-extinction).

Theorem 4 (Tree reconstruction threshold, Evans et al. (2000)) Let θ = 1 − 2η
and d be the branching number of T . Then E[σρ | σu : u ∈ Lk(ρ)] → 0 in probability as
k →∞ if and only if dθ2 ≤ 1

The theorem implies in particular that if dθ2 > 1 then for every k there is an algorithm
which guesses σρ given σLk(ρ), and which succeeds with probability bounded away from 1/2.
If dθ2 ≤ 1 there is no such algorithm.

Janson and Mossel (2004) considered a version of the tree broadcast process that has
extra noise at the leaves:

Definition 5 (Noisy broadcast process on a tree) Given a broadcast process σ on a
tree T and a parameter δ ∈ [0, 1/2), the noisy broadcast process on T is the process {τu :
u ∈ T} defined by independently taking τu = −σu with probability δ and τu = σu otherwise.
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We observe that the noise present in σ and the noise present in τ have qualitatively
different roles, since the noise present in σ propagates down the tree while the noise present
in τ does not. Janson and Mossel (2004) showed that the range of parameters for which
σρ may be reconstructed from σLk

is the same as the range for which σρ may be recon-
structed from τLk

. In other words, additional noise at the leaves has no effect on whether
the root’s signal propagates arbitrarily far. One of our main results is a quantitative ver-
sion of this statement (Theorem 11): we show that for a certain range of parameters, the
presence of noise at the leaves does not even affect the accuracy with which the root can
be reconstructed.

2.3. The block model and broadcasting on trees

The connection between the community reconstruction problem on a graph and the root
reconstruction problem on a tree was first pointed out in Decelle et al. (2011) and made
rigorous in Mossel et al. (2013). The basic idea is the following:

• A neighborhood in G looks like a Galton-Watson tree with offspring distribution
Pois((a+ b)/2) (which almost surely has branching number d = (a+ b)/2).

• The labels on the neighborhood look as though they came from a broadcast process
with parameter η = b

a+b .

• With these parameters, θ2d = (a−b)2
2(a+b) , and so the threshold for community reconstruc-

tion is the same as the proven threshold for tree reconstruction.

This local approximation can be formalized as convergence locally on average, a type of
local weak convergence defined in Montanari et al. (2012). We should mention that in the
case of more than two communities (i.e. in the case that the broadcast process has more
than two states) then the picture becomes rather more complicated, and much less is known,
see Decelle et al. (2011); Mossel et al. (2013) for some conjectures.

2.4. Reconstruction probabilities on trees and graphs

Note that Theorem 4 only answers the question of whether one can achieve asymptotic
reconstruction accuracy better than 1/2. Here, we will be interested in more detailed
information about the actual accuracy of reconstruction, both on trees and on graphs.

Note that in the tree reconstruction problem, the optimal estimator of σρ given σLk(ρ) is
easy to write down: it is simply the sign of Xρ,k := 2Pr(σρ = + | σLk(ρ))− 1. Compared to
the trivial procedure of guessing σρ completely at random, this estimator has an expected
gain of E

∣∣Pr(σρ = + | σLk(ρ))−
1
2

∣∣. It is therefore natural to define:

Definition 6 (Tree reconstruction accuracy) Let T be an infinite Galton-Watson tree
with Pois((a + b)/2) offspring distribution, and η = b

a+b . Consider the broadcast process σ
on the tree with parameters a, b and define:

pT (a, b) =
1

2
+ lim
k→∞

E
∣∣∣∣Pr(σρ = + | σLk(ρ))−

1

2

∣∣∣∣ (1)

to be the probability of correctly inferring σρ given the “labels at infinity.”
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We remark that the limit always exists because the right-hand side is non-increasing in k.
Moreover, Theorem 4 implies that pT (a, b) > 1/2 if and only if (a− b)2 > 2(a+ b).

One of the main results of Mossel et al. (2013) is that the graph reconstruction problem is
harder than the tree reconstruction problem in the sense that for any community-detection
algorithm, the asymptotic accuracy of that algorithm is bounded by pT (a, b).

Definition 7 (Graph reconstruction accuracy) Let (G, σ) be a labelled graph on n
nodes. If f is a function that takes a graph and returns a labelling of it, we write

acc(f,G, σ) =
1

2
+

∣∣∣∣∣ 1n∑
v

1((f(G))v = σv)−
1

2

∣∣∣∣∣
for the accuracy of f in recovering the labels σ. For ε > 0, let

pG,n,ε(a, b) = sup
f

sup {p : Pr(acc(f,G, σ) ≥ p) ≥ ε} .

where the first supremum ranges over all functions f , and the probability is taken over
(G, σ) ∼ G(n, a/n, b/n). Let pG(a, b) = supε>0 lim supn→∞ pG,n,ε(a, b).

One should think of pG(a, b) as the optimal fraction of nodes that can be reconstructed
correctly by any algorithm (not necessarily efficient) that only gets to observe an unlabelled
graph. More precisely, for any algorithm and any p > pG(a, b), the algorithm’s probability
of achieving accuracy p or higher converges to zero as n grows. Note that the symmetry
between the + and − is reflected in the definition of acc (for example, in the appearance
of the constant 1/2), and also that acc is defined to be large if f gets most labels incorrect
(because there is no way for an algorithm to break the symmetry between + and −).

An immediate corollary of the analysis of Mossel et al. (2013) implies that graph recon-
struction is always less accurate than tree reconstruction:

Theorem 8 (Mossel et al. (2013)) pG(a, b) ≤ pT (a, b).

Note that Theorems 4 and 8 imply the first part of Theorem 2. We remark that Theo-
rem 8 is not stated explicitly in Mossel et al. (2013); because the authors were only inter-
ested in the case (a− b)2 ≤ 2(a+ b), the claimed result was that (a− b)2 ≤ 2(a+ b) implies
pG(a, b) = 1

2 . However, a cursory examination of the proof of (Mossel et al., 2013, Theorem
1) reveals that the claim was proven in two stages: first, they prove via a coupling argument
that pG(a, b) ≤ pT (a, b) and then they apply Theorem 4 to show that (a − b)2 ≤ 2(a + b)
implies pT (a, b) = 1

2 .

2.5. Our results

In this paper, we consider the high signal-to-noise case, namely the case that (a − b)2 is
significantly larger than 2(a+ b). In this regime, we give an algorithm (Algorithm 1) which
achieves an accuracy of pT (a, b).
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Theorem 9 There exists a constant C such that if (a− b)2 ≥ C(a+ b) then

pG(a, b) = pT (a, b),

Moreover, there is a polynomial time algorithm such that for all such a, b and every ε > 0,
with probability tending to one as n→∞, the algorithm reconstructs the labels with accuracy
pG(a, b)− ε.

A key ingredient of the proof is a procedure for amplifying a clustering that is a slightly
better than a random guess to obtain optimal clustering. In order to discuss this procedure,
we define the problem of “robust reconstruction” problem on trees.

Definition 10 (Robust tree reconstruction accuracy) Consider the noisy tree broad-
cast process with parameters η = a

a+b and δ ∈ [0, 1/2) on a Galton-Watson tree with offspring
distribution Pois((a+ b)/2). We define the robust reconstruction accuracy as:

p̃T (a, b) =
1

2
+ lim
δ→1/2

lim
k→∞

E
∣∣∣∣Pr(σρ = + | τLk(ρ))−

1

2

∣∣∣∣
In our main technical result we show that when a − b is large enough then in fact the

extra noise does not have any effect on the reconstruction accuracy.

Theorem 11 There exists a constant C such that if (a − b)2 ≥ C(a + b) then p̃T (a, b) =
pT (a, b).

We conjecture that pT = p̃T for any parameters, and also for more general trees; however,
our proof does not naturally extend to cover these cases.

2.6. Algorithmic amplification and robust reconstruction

Our second main result connects the community detection problem to the robust tree recon-
struction problem: we show that given a suitable algorithm for providing an initial guess at
the communities, the community detection problem is easier than the robust reconstruction
problem, in the sense that one can achieve an accuracy of p̃T (a, b).

Theorem 12 Consider an algorithm for reconstructing the block models which satisfies
that with high probability it labels 1

2 + δ of the nodes accurately. Then the algorithm can
be used in a black box manner to provide an algorithm whose reconstruction accuracy (with
high probability) is p̃T (a, b).

Combining Theorem 12 with Theorem 11 proves that our algorithm obtains accuracy pT
provided that (a−b)2 ≥ C(a+b). By Theorem 8 this accuracy is optimal, thereby justifying
the claim that our algorithm is optimal. We remark that Theorem 12 easily extends to other
versions of the block model (i.e., models with more clusters or unbalanced classes); however,
Theorem 11 does not. In particular, Theorem 9 does not hold for general block models. In
fact, one fascinating conjecture of Decelle et al. (2011) says that for general block models,
computational hardness enters the picture (whereas it does not play any role in our current
work).
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2.7. Algorithm Outline

Before getting into the technical details, let us give an outline of our algorithm: for every
node u, we remove a neighborhood (whose radius r is slowly increasing with n) of u from
the graph G. We then run a black-box community-detection algorithm on what remains
of G. This is guaranteed to produce some communities which are correlated with the true
ones, but they may not be optimally accurate. Then we return the neighborhood of u to
G, and we consider the inferred communities on the boundary of that neighborhood. Now,
the neighborhood of u is like a tree, and the true labels on its boundary are distributed
like σLr(u). The inferred labels on the boundary are hence distributed like τLr(u) for some
0 ≤ δ < 1/2, and so we can guess the label of u from them using robust tree reconstruction.
Since robust tree reconstruction succeeds with probability pT regardless of δ, our algorithm
attains this optimal accuracy even if the black-box algorithm does not.

To see the connection between our algorithm and belief propagation, note that find-
ing the optimal estimator for the tree reconstruction problem requires computing Pr(σu |
τLr(u)). On a tree, the standard algorithm for solving this is exactly belief propagation.
In other words, our algorithm consists of multiple local applications of belief propagation.
Although we believe that a single global run of belief propagation would attain the same
performance, these local instances are rather more feasible to analyze.

3. Robust Reconstruction on Regular Trees

The main technical effort of this paper is the proof of Theorem 11. Since the proof is quite
involved we will only give an outline, only in the case of d-regular trees (instead of the
Galton-Watson case claimed in Theorem 11), and without the sharp dependence of d on θ.
For the complete proof, see the full version of this paper (Mossel et al. (2014b)).

Theorem 13 Consider the broadcast process on the infinite a+b
2 = d-ary tree with param-

eter η = a
a+b . Set θ = 1 − 2η. For any 0 < θ∗ < 1, there is some d∗ = d∗(θ∗) such that if

θ ≥ θ∗ and d ≥ d∗ then p̃T (a, b) = pT (a, b).

We remark that the statement of Theorem 13 is not precise, because we have only
defined pT (a, b) for Galton-Watson trees. A more precise statement will follow shortly.

3.1. Magnetization

Define

Xu,k = Pr(σu = + | σLk(u))− Pr(σu = − | σLk(u))

xk = E(Xu,k | σu = +).

Here, we say that Xu,k is the magnetization of u given σLk(u). Note that by the homogeneity
of the tree, the definition of xk is independent of u. A simple application of Bayes’ rule (see
Lemma 1 of Borgs et al. (2006)) shows that (1 + xk)/2 is the probability of estimating σρ
correctly given σLk(ρ).
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We may also define the noisy magnetization Y :

Yu,k = Pr(σu = + | τLk(u))− Pr(σu = − | τLk(u)) (2)

yk = E(Yu,k | σu = +).

As above, (1+yk)/2 is the probability of estimating σρ correctly given τLk(ρ). In particular,
Theorem 13 may be re-stated (more precisely) as follows:

Theorem 14 Under the assumptions of Theorem 13, limk→∞ xk = limk→∞ yk.

We will prove Theorem 14 by studying certain recursions. Indeed, Bayes’ rule implies
the following recurrence for X (see, eg., Sly (2011)):

Xu,k =

∏
i∈C(u)(1 + θXui,k−1)−

∏
i∈C(u)(1− θXui,k−1)∏

i∈C(u)(1 + θXui,k−1) +
∏
i∈C(u)(1− θXui,k−1)

. (3)

3.2. The simple majority method

Our first step in proving Theorem 14 is to show that when θ2d is large, then both the
exact reconstruction and the noisy reconstruction do quite well. While it is possible to do
so by studying the recursion (3), such an analysis is actually quite delicate. Instead, we
will show this by studying a completely different estimator: the one which is equal to the
most common label among σLk(ρ). This estimator is easy to analyze, and it performs quite
well; since the estimator based on the sign of Xρ,k is optimal, it performs even better. The
study of the simple majority estimator is quite old, having essentially appeared in the paper
of Kesten and Stigum (1966) that introduced the tree broadcast model. Therefore, we omit
the proofs of what follows.

Suppose dθ2 > 1. Define Su,k =
∑

v∈Lk(u)
σv and set S̃u,k =

∑
v∈Lk(u)

τv. We will

attempt to estimate σρ by sgn(Sρ,k) or sgn(S̃ρ,k); when θ2d is large enough, these estimators
turn out to perform quite well. This may be shown by calculating the first two moments of
Su,k and S̃u,k.

Lemma 15 If θ2d > 1 then Var+ Sk
(E+Sk)2

k→∞→ 4η(1−η)
θ2d

and Var+ S̃k

(E+S̃k)2
k→∞→ 4η(1−η)

θ2d
.

By Chebyshev’s inequality, the estimators sgn(Sk) and sgn(S̃k) succeed with probability at

least 1− 4η(1−η)
θ2d2

as k →∞. Now, sgn(Yρ,k) is the optimal estimator of σρ given τLk
, and its

success probability is exactly (1 + yk)/2. Hence (1 + yk)/2 must be larger than the success
probability of sgn(S̃k) (and similarly for xk and sgn(Sk)). Putting this all together, we see

that xk and yk are both at least 1− 10η(1−η)
θ2d

for large k. Finally, we apply Markov’s inequality
to show that Xu,k and Yu,k are large with high probability (conditioned on σu = +).

Lemma 16 There is a constant C such that for all k ≥ K(δ) and all t > 0

Pr
(
Xu,k ≥ 1− t η

θ2d

∣∣∣ σu = +
)
≥ 1− Ct−1

Pr
(
Yu,k ≥ 1− t η

θ2d

∣∣∣ σu = +
)
≥ 1− Ct−1.

As we will see, Lemma 16 and the recursion (3) are really the only properties of Y that
we will use. This fact is actually important for the full proof of Theorem 9, where we will
take a slightly different definition of Y . See the full version for details.
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3.3. Analysis of the magnetization recurrence

In this section, we study the recurrence (3) and derive the following recurrence for the
distance between X and Y :

Proposition 17 For any 0 < θ∗ < 1, there is some d∗ = d∗(θ∗) such that for all θ ≥ θ∗,
d ≥ d∗, and k ≥ K(θ, d, δ),

E
√
|Xρ,k+1 − Yρ,k+1| ≤

1

2
E
√
|Xρ,k − Yρ,k|.

By sending k →∞, Proposition 17 immediately implies Theorem 13.
Let g : Rd → R denote the function

g(x) =

∏d
i=1(1 + θxi)−

∏d
i=1(1− θxi)∏d

i=1(1 + θxi) +
∏d
i=1(1− θxi)

. (4)

Then the recurrence (3) may be written as Xu,k+1 = g(Xu1,k, . . . , Xud,k). We will also
abbreviate (Xu1,k, . . . , Xud,k) by XL1(u),k, so that we may write Xu,k+1 = g(XL1(u),k). After
some calculations (involving differentiating g and applying the mean value theorem), we
have

|g(x)− g(y)| ≤
d∑
i=1

|xi − yi|max{mi(x),mi(y)}, (5)

where

mi(x) :=
1

η2

∏
j 6=i

1− θxj
1 + θxj

The point is that if σu = + (which we may assume, by symmetry) then for most v ∈ L1(u),
Xv,k will be close to 1 and so mi(XL1(u),k) will be small; applying the same logic to Y ,
we will deduce from (5) that |Xu,k+1 − Yu,k+1| = |g(XL1(u),k) − g(YL1(u),k)| is typically
much smaller than |Xui,k − Yui,k|. One difficulty in this analysis is that there is some low
probability of having many Xv,k close to −1. If θ is large, then mi(XL1(u),k) will be very
large on this event: so large that this low-probability event may have an effect after taking
expectations. One solution is to take the square root, which reduces the impact of this bad
event: √

|g(x)− g(y)| ≤
d∑
i=1

√
|xi − yi|max{

√
mi(x),

√
mi(y)}, (6)

Note that (conditioned on σu = +) Xui,k is independent of mi(XL1(u),k) because mi(x) does
not depend on xi. Taking expectations of (6), and using the fact that Xu,k+1 = g(XL1(u),k),
we obtain

E
(√
|Xu,k+1 − Yu,k+1|

∣∣∣σu = +

)
≤
∑
i

E
(√
|Xui,k − Yui,k|

∣∣∣σu = +

)
E
(√

max{mi(XL1(u),k),mi(YL1(u),k)}
∣∣∣σu = +

)
. (7)

10
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To prove Proposition 17, it therefore suffices to show that E(
√
mi(XL1(u),k) | σu =

+) and E(
√
mi(YL1(u),k) | σu = +) are both small. Since mi(XL1(u),k) is a product of

independent (when conditioned on σu) terms, it is enough to show that each of these terms
has small expectation. This is done using Lemma 16:

Lemma 18 For any 0 < θ∗ < 1, there is some d∗ = d∗(θ∗) and some λ = λ(θ∗) < 1 such
that for all θ ≥ θ∗, d ≥ d∗ and k ≥ K(θ, d, δ),

E

(√
1− θXui,k

1 + θXui,k

∣∣∣ σu = +

)
≤ min{λ, 4η1/4}.

Finally, applying Lemma 18 to (7) completes the proof of Proposition 17.

4. From trees to graphs

In this section, we will give our reconstruction algorithm and prove that it performs op-
timally. We begin by letting BBPartition denote the algorithm of Mossel et al. (2014a),
which satisfies the following guarantee, where V i denotes {v ∈ V (G) : σv = i}:

Theorem 19 Suppose that G ∼ G(n, an ,
b
n). There exists some 0 ≤ δ < 1

2 such that as
n → ∞, BBPartition a.a.s. produces a partition W+ ∪W− = V (G) such that |W+| =
|W−|+ o(n) = n

2 + o(n) and |W+∆V i| ≤ δn for some i ∈ {+,−}.

Remark 20 Theorem 19 does not appear in Mossel et al. (2014a) exactly as we have quoted
it. In the full version of this paper, we remark on how the result we have quoted (in par-
ticular, the condition |W+|, |W−| = n/2± o(n)) follows from Theorem 2.1 of Mossel et al.
(2014a).

Note that by symmetry, Theorem 19 also implies that |W−∆V j | ≤ δn for j 6= i ∈ {+,−}.
In other words, BBPartition recovers the correct partition up to a relabelling of the classes
and an error bounded away from 1

2 . Note that |W+∆V i| = |W−∆V j |. Let δ be the
(random) fraction of vertices that are mis-labelled.

For v ∈ G and R ∈ N, define B(v,R) = {u ∈ G : d(u, v) ≤ R} and S(v,R) = {u ∈
G : d(u, v) = R}. If B(v,R) is a tree (which it is a.a.s.), and τ is a labelling on S(v,R),
then we define Yv,R(τ) as follows: set Yu,0(τ) = τu(1 − 2δ) for u ∈ S(v,R) and then for
u ∈ S(v,R− k) with k ≥ 1, define Yu,k(τ) recursively by Yu,k = g(YL1(u),k−1).

11
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We remark that this definition requires knowing the exact δ that is guaranteed by
Theorem 19. In the full version, we show how to get by without knowing δ.

Algorithm 1: Optimal graph reconstruction algorithm

R← b 1
10(2(a+b)) log nc ;

Take U ⊂ V to be a random subset of size b
√
nc ;

Let u∗ ∈ U be a random vertex in U with at least
√

log n neighbors in V \ U ;
W+
∗ ,W

−
∗ ← ∅ ;

for v ∈ V \ U do
W+
v ,W

−
v ← BBPartition(G \B(v,R− 1) \ U) ;

if a > b then
relabel W+

v ,W
−
v so that u∗ has more neighbors in W+

v than W−v
else

relabel W+
v ,W

−
v so that u∗ has more neighbors in W−v than W+

v

end

Define ξ ∈ {+,−}S(v,R) by ξu = i if u ∈W i
v ;

Add v to W
sgn(Yv,R(ξ))
∗ ;

end
for v ∈ U do

Assign v to W+
∗ or W−∗ uniformly at random ;

end

As presented, our algorithm is not particular efficient (although it does run in polynomial
tiem) because we need to re-run BBPartition for almost every vertex in V . However, one
can modify Algorithm 1 to run in almost-linear time by processing o(n) vertices in each
iteration (a similar idea is used in Mossel et al. (2014a)). Since vanilla belief propagation is
much more efficient than Algorithm 1 and reconstructs (in practice) just as well, we have
chosen not to present the faster version of Algorithm 1.

Theorem 21 Algorithm 1 produces a partition W+
∗ ∪W−∗ = V (G) such that a.a.s. |W+

∗ ∆V i| ≤
(1 + o(1))n(1− pT (a, b)) for some i ∈ {+,−}.

Note that Theorem 8 shows that for any algorithm, |W+
∗ ∆V i| ≥ (1−o(1))n(1−pT (a, b))

a.a.s. Hence, it is enough to show that E|W+
∗ ∆V i| ≤ (1 + o(1))n(1 − pT (a, b)). Since

Algorithm 1 treats every node equally, it is enough to show that there is some i such that
for every v ∈ V i,

Pr(v ∈W+
∗ )→ pT (a, b) a.s. (8)

Moreover, since Pr(v ∈ U)→ 0, it is enough to show (8) for every v ∈ V i \ U .
For the remainder of the section, we will sketch the proof of (8). First, we will deal with

a technicality: in line 1, we are applying BBPartition to the subgraph of G induced by
V \ B(v,R − 1) \ U ; this induced subgraph is not exactly distributed according to a block
model. However, since B(v,R − 1) and U are both small sets it is possible to show that
BBPartition nevertheless produces a labelling satisfying the claim in Theorem 19.

Next, let us discuss the purpose of u∗ and line 1. Note that Algorithm 1 relies on
multiple applications of BBPartition, each of which is only guaranteed to give a good
labelling up to swapping + and −. In order to get a consistent labelling at the end, we

12
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need to “align” these multiple applications of BBPartition. This is the purpose of u∗:
since u∗ has high degree and BBPartition labels most vertices correctly, it follows from the
law of large numbers that with high probability, BBPartition gives most of u∗’s neighbors
the same label as u∗. (For this to hold, we need independence between the label of u∗
and the output of BBPartition; this is why we remove u∗ from the graph before running
BBPartition.)

From now on, suppose without loss of generality that σu∗ = +. Thanks to the previous
paragraph and Theorem 19, we see that the relabelling in lines 1 and 1 correctly aligns W+

v

with V +:

Lemma 22 There is some 0 ≤ δ < 1
2 such that for any v ∈ V \U , |W+

v ∆V +| ≤ δn a.a.s.,
with W+

v defined as in line 1 or line 1.

To complete the proof of (8) (and hence Theorem 21), we need to discuss the coupling
between graphs and trees. We will invoke a lemma from Mossel et al. (2013) which says
that a neighborhood in G can be coupled with a multi-type branching process. Indeed,
let T be a Galton-Watson tree with offspring distribution Pois((a + b)/2) and let σ′ be a
labelling on it, given by running the tree broadcast process with parameter η = b/(a + b).
We write TR for T ∪ NR; that is, the part of T which has depth at most R.

Lemma 23 For any fixed v ∈ G, there is a coupling between (G, σ) and (T, σ′) such that

(B(v,R), σB(v,R)) = (TR, σ
′
TR

) a.a.s.

Let us therefore examine the labelling {ξu : u ∈ S(v,R)} produced in line 1 of Algo-
rithm 1. Since ξ is independent of the edges from B(v,R−1) to G′, it follows that for every
neighbor w ∈ G′ of u ∈ B(v,R−1), we may generate (independently of the other neighbors)
ξw by flipping σw with probability (1 − o(1))δ. Hence, we see that ξ can be coupled a.a.s.
with τ ′, where τ ′w is defined by flipping the label of σ′w (independently for each w) with
probability δ. In other words, the joint distribution of B(v,R) and {ξu : u ∈ S(v,R)} is
a.a.s. the same as the joint distribution of TR and {τ ′u : u ∈ ∂TR}. Hence, by Theorem 11,

lim
n→∞

Pr(Yv,R(ξ) = σv) = pT (a, b).

By line 1 of Algorithm 1, this completes the proof of (8).
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