
JMLR: Workshop and Conference Proceedings vol 35:1–28, 2014

Localized Complexities for Transductive Learning

Ilya Tolstikhin ILIYA.TOLSTIKHIN@GMAIL.COM
Computing Centre of Russian Academy of Sciences, Russia

Gilles Blanchard GILLES.BLANCHARD@MATH.UNI-POTSDAM.DE
Department of Mathematics, University of Potsdam, Germany

Marius Kloft ∗ MKLOFT@CS.NYU.EDU

Department of Computer Science, Humboldt University of Berlin, Germany

Abstract
We show two novel concentration inequalities for suprema of empirical processes when sampling
without replacement, which both take the variance of the functions into account. While these
inequalities may potentially have broad applications in learning theory in general, we exemplify
their significance by studying the transductive setting of learning theory. For which we provide the
first excess risk bounds based on the localized complexity of the hypothesis class, which can yield
fast rates of convergence also in the transductive learning setting. We give a preliminary analysis
of the localized complexities for the prominent case of kernel classes.
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1. Introduction

The analysis of the stochastic behavior of empirical processes is a key ingredient in learning the-
ory. The supremum of empirical processes is of particular interest, playing a central role in various
application areas, including the theory of empirical processes, VC theory, and Rademacher com-
plexity theory, to name only a few. Powerful Bennett-type concentration inequalities on the sup-
norm of empirical processes introduced in Talagrand (1996) (see also Bousquet (2002a)) are at the
heart of many recent advances in statistical learning theory, including local Rademacher complexi-
ties (Bartlett et al., 2005; Koltchinskii, 2011b) and related localization strategies (cf. Steinwart and
Christmann, 2008, Chapter 4), which can yield fast rates of convergence on the excess risk.

These inequalities are based on the assumption of independent and identically distributed ran-
dom variables, commonly assumed in the inductive setting of learning theory and thus implicitly
underlying many prevalent machine learning algorithms such as support vector machines (Cortes
and Vapnik, 1995; Steinwart and Christmann, 2008). However, in many cases the i.i.d. assumption
breaks and substitutes for Talagrand’s inequality are required. For instance, the i.i.d. assumption is
violated when training and test data come from different distributions or data points exhibit (e.g.,
temporal) interdependencies (e.g., Steinwart et al., 2009). Both scenarios are typical situations in
visual recognition, computational biology, and many other application areas.
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Another example where the i.i.d. assumption is void—in the focus of the present paper—is
the transductive setting of learning theory, where training examples are sampled independent and
without replacement from a finite population, instead of being sampled i.i.d. with replacement. The
learner in this case is provided with both a labeled training set and an unlabeled test set, and the
goal is to predict the label of the test points. This setting naturally appears in almost all popu-
lar application areas, including text mining, computational biology, recommender systems, visual
recognition, and computer malware detection, as effectively constraints are imposed on the samples,
since they are inherently realized within the global system of our world. As an example, consider
image categorization, which is an important task in the application area of visual recognition. An
object of study here could be the set of all images disseminated in the internet, only some of which
are already reliably labeled (e.g., by manual inspection by a human), and the goal is to predict the
unknown labels of the unlabeled images, in order to, e.g., make them accessible to search engines
for content-based image retrieval.

From a theoretical view, however, the transductive learning setting is yet not fully understood.
Several transductive error bounds were presented in series of works (Vapnik, 1982, 1998; Blum
and Langford, 2003; Derbeko et al., 2004; Cortes and Mohri, 2006; El-Yaniv and Pechyony, 2009;
Cortes et al., 2009), including the first analysis based on global Rademacher complexities presented
in El-Yaniv and Pechyony (2009). However, the theoretical analysis of the performance of trans-
ductive learning algorithms still remains less illuminated than in the classic inductive setting: to
the best of our knowledge, existing results do not provide fast rates of convergence in the general
transductive setting.1

In this paper, we consider the transductive learning setting with arbitrary bounded nonnegative
loss functions. The main result is an excess risk bound for transductive learning based on the
localized complexity of the hypothesis class. This bound holds under general assumptions on the
loss function and hypothesis class and can be viewed as a transductive analogue of Corollary 5.3 in
Bartlett et al. (2005). The bound is very generally applicable with loss functions such as the squared
loss and common hypothesis classes. By exemplarily applying our bound to kernel classes, we
achieve, for the first time in the transductive setup, an excess risk bound in terms of the tailsum of
the eigenvalues of the kernel, similar to the best known results in the inductive setting. In addition,
we also provide new transductive generalization error bounds that take the variances of the functions
into account, and thus can yield sharper estimates.

The localized excess risk bound is achieved by proving two novel concentration inequalities for
suprema of empirical processes when sampling without replacement. The application of which goes
far beyond the transductive learning setting—these concentration inequalities could serve as a fun-
damental mathematical tool in proving results in various other areas of machine learning and learn-
ing theory. For instance, arguably the most prominent example in machine learning and learning
theory of an empirical process where sampling without replacement is employed is cross-validation
(Stone, 1974), where training and test folds are sampled without replacement from the overall pool
of examples, and the new inequalities could help gaining a non-asymptotic understanding of cross-
validation procedures. However, the investigation of further applications of the novel concentration
inequalities beyond the transductive learning setting is outside of the scope of the present paper.

1. An exception are the works of Blum and Langford (2003); Cortes and Mohri (2006), which consider, however, the
case where the Bayes hypothesis has zero error and is contained in the hypothesis class. This is clearly an assumption
too restrictive in practice, where the Bayes hypothesis usually cannot be assumed to be contained in the class.
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2. The Transductive Learning Setting and State of the Art

From a statistical point of view, the main difference between the transductive and inductive learning
settings lies in the protocols used to obtain the training sample S. Inductive learning assumes that
the training sample is drawn i.i.d. from some fixed and unknown distribution P on the product
space X ×Y , where X is the input space and Y is the output space. The learning algorithm chooses
a predictor h from some fixed hypothesis set H based on the training sample, and the goal is to
minimize the true risk EX×Y [`

(
h(X), Y

)
] → minh∈H for a fixed, bounded, and nonnegative loss

function ` : Y2 → [0, 1].
We will use one of the two transductive settings2 considered in Vapnik (1998), which is also

used in Derbeko et al. (2004); El-Yaniv and Pechyony (2009). Assume that a set XN consisting
of N arbitrary input points is given (without any assumptions regarding its underlying source). We
then sample m ≤ N objects Xm ⊆ XN uniformly without replacement from XN (which makes
the inputs in Xm dependent). Finally, for the input examples Xm we obtain their outputs Y m by
sampling, for each input X ∈ Xm, the corresponding output Y from some unknown distribution
P (Y |X). The resulting training set is denoted by Sm = (Xm,Y m). The remaining unlabeled set
Xu = XN \Xm, u = N −m is the test set. Note that both Derbeko et al. (2004) and El-Yaniv
and Pechyony (2009) consider a special case where the labels are obtained using some unknown but
deterministic target function φ : X → Y so that P

(
φ(X)|X

)
= 1. We will adopt the same assump-

tion here. The learner then chooses a predictor h from some fixed hypothesis setH (not necessarily
containing φ) based on both the labeled training set Sm and unlabeled test set Xu. For conve-
nience let us denote `h(X) = `

(
h(X), φ(X)

)
. We define the test and training error, respectively,

of hypothesis h as follows: Lu(h) = 1
u

∑
X∈Xu

`h(X) , L̂m(h) = 1
m

∑
X∈Xm

`h(X), where hat
emphasizes the fact that the training (empirical) error can be computed from the data. For technical
reasons that will become clear later, we also define the overall error of an hypothesis h with regard
to the union of the training and test sets as LN (h) = 1

N

∑
X∈XN

`h(X) (this quantity will play a
crucial role in the upcoming proofs). Note that for a fixed hypothesis h the quantity LN (h) is not
random, as it is invariant under the partition into training and test sets. The main goal of the learner
in transductive setting is to select a hypothesis minimizing the test error Lu(h) → infh∈H, which
we will denote by h∗u.

Since the labels of the test set examples are unknown, we cannot compute Lu(h) and need to
estimate it based on the training sample Sm. A common choice is to replace the test error minimiza-
tion by empirical risk minimization L̂m(h)→ minh∈H and to use its solution, which we denote by
ĥm, as an approximation of h∗u. For h ∈ H let us define an excess risk of h:

Eu(h) = Lu(h)− inf
g∈H

Lu(g) = Lu(h)− Lu(h∗u).

A natural question is: how well does the hypothesis ĥm chosen by the ERM algorithm approximate
the theoretical-optimal hypothesis h∗u?

To this end, we use Eu(ĥm) as a measure of the goodness of fit. Obtaining tight upper bounds
on Eu(ĥm)—so-called excess risk bounds—is thus the main goal of this paper. Another goal com-
monly considered in learning literature is the one of obtaining upper bounds on Lu(ĥm) in terms

2. The second setting assumes that both training and test sets are sampled i. i. d. from the same unknown distribution
and the learner is provided with the labeled training and unlabeled test sets. It is pointed out by Vapnik (1998) that
any upper bound on Lu(h)− L̂m(h) in the setting we consider directly implies a bound also for the second setting.

3



TOLSTIKHIN BLANCHARD KLOFT

of L̂m(ĥm), which measures the generalization performance of empirical risk minimization. Such
bounds are known as the generalization error bounds. Note that both ĥm and h∗u are random, since
they depend on the training and test sets, respectively. Note, moreover, that for any fixed h ∈ H
its excess risk Eu(h) is also random. Thus both tasks (of obtaining excess risk and generalization
bounds, respectively) deal with random quantities and require bounds that hold with high probabil-
ity.

The most common way to obtain generalization error bounds for ĥm is to introduce uniform
deviations over the classH:

Lu(ĥm)− L̂m(ĥm) ≤ sup
h∈H

Lu(h)− L̂m(h). (1)

The random variable appearing on the right side is directly related to the sup-norm of the empirical
process (Boucheron et al., 2013). It should be clear that, in order to analyze the transductive setting,
it is of fundamental importance to obtain high-probability bounds for functions f(Z1, . . . , Zm),
where {Z1, . . . , Zm} are random variables sampled without replacement from some fixed finite set.
Of particular interest are concentration inequalities for sup-norms of empirical processes, which we
present in Section 3.

2.1. State of the Art and Related Work

Error bounds for transductive learning were considered by several authors in recent years. Here
we name only a few of them3. The first general bound for binary loss functions, presented in
Vapnik (1982), was implicit in the sense that the value of the bound was specified as an outcome
of a computational procedure. The somewhat refined version of this implicit bound also appears
in Blum and Langford (2003). It is well known that generalization error bounds with fast rates
of convergence can be obtained under certain restrictive assumptions on the problem at hand. For
instance, Blum and Langford (2003) provide a bound that has an order of 1

min(u,m) in the realizable
case, i.e., when φ ∈ H (meaning that the hypothesis having zero error belongs to H). However,
such an assumption is usually unrealistic: in practice it is usually impossible to avoid overfitting
when choosingH so large that it contains the Bayes classifier.

The authors of Cortes and Mohri (2006) consider a transductive regression problem with bounded
squared loss and obtain a generalization error bound of the order

√
L̂m(ĥm) logN

min(m,u) , which also
does not attain a fast rate. Several PAC-Bayesian bounds were presented in Blum and Langford
(2003); Derbeko et al. (2004) and others. However their tightness critically depends on the prior
distribution over the hypothesis class, which should be fixed by the learner prior to observing the
training sample. Transductive bounds based on algorithmic stability were presented for classifica-
tion in El-Yaniv and Pechyony (2006) and for regression in Cortes et al. (2009). However both
are roughly of the order min(u,m)−1/2. Finally, we mention the results of El-Yaniv and Pechy-
ony (2009) based on transductive Rademacher complexities. However, the analysis was based on
the global Rademacher complexity combined with a McDiarmid-style concentration inequality for
sampling without replacement and thus does not yield fast convergence rates.

3. For an extensive review of transductive error bounds we refer to Pechyony (2008).
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3. Novel Concentration Inequalities for Sampling Without replacement

In this section, we present two new concentration inequalities for suprema of empirical processes
when sampling without replacement. The first one is a sub-Gaussian inequality that is based on
a result by Bobkov (2004) and closely related to the entropy method (Boucheron et al., 2013).
The second inequality is an analogue of Bousquet’s version of Talagrand’s concentration inequal-
ity (Bousquet, 2002b,a; Talagrand, 1996) and is based on the reduction method first suggested in
Hoeffding (1963).

Next we state the setting and introduce the necessary notation. Let C = {c1, . . . , cN} be some
finite set. For m ≤ N let {Z1, . . . , Zm} and {X1, . . . , Xm} be sequences of random variables
sampled uniformly without and with replacement from C, respectively. Let F be a (countable4 )
class of functions f : C → R, such that E[f(Z1)] = 0 and f(x) ∈ [−1, 1] for all f ∈ F and x ∈ C.
It follows that E[f(X1)] = 0 since Z1 and X1 are identically distributed. Define the variance
σ2 = supf∈F V[f(Z1)]. Note that σ2 = supf∈F E[f2(Z1)] = supf∈F V[f(X1)]. Let us define the
supremum of the empirical process for sampling with and without replacement, respectively:5

Qm = sup
f∈F

m∑
i=1

f(Xi), Q′m = sup
f∈F

m∑
i=1

f(Zi).

The random variableQm is well studied in the literature and there are remarkable Bennett-type con-
centration inequalities for Qm, including Talagrand’s inequality (Talagrand, 1996) and its versions
due to Bousquet (2002a,b) and others.6 The random variable Q′m, on the other hand, is much less
understood, and no Bennett-style concentration inequalities are known for it up to date.

3.1. The New Concentration Inequalities

In this section, we address the lack of Bennett-type concentration inequalities for Q′m by presenting
two novel inequalities for suprema of empirical processes when sampling without replacement.

Theorem 1 (Sub-Gaussian concentration inequality for sampling without replacement) For any ε ≥ 0,

P
{
Q′m − E[Q′m] ≥ ε

}
≤ exp

{
−(N + 2)ε2

8N2σ2

}
< exp

{
− ε2

8Nσ2

}
. (2)

The same bound also holds for P {E[Q′m]−Q′m ≥ ε}. Also for all t ≥ 0 the following holds with
probability greater than 1− e−t:

Q′m ≤ E[Q′m] + 2
√

2Nσ2t. (3)

Theorem 2 (Talagrand-type concentration inequality for sampling without replacement) Define v =
mσ2 + 2E[Qm]. For u > −1 define φ(u) = eu − u− 1, h(u) = (1 + u) log(1 + u)− u. Then for

4. Note that all results can be translated to the uncountable classes, for instance, if the empirical process is separable,
meaning that F contains a dense countable subset. We refer to page 314 of Boucheron et al. (2013) or page 72 of
Bousquet (2002b).

5. The results presented in this section can be also generalized to supf∈F
∣∣∑m

i=1 f(Zi)
∣∣ using the same techniques.

6. For completeness we present one such inequality for Qm as Theorem 17 in Appendix A. For the detailed review of
concentration inequalities for Qm we refer to Section 12 of Boucheron et al. (2013).
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any ε ≥ 0:

P
{
Q′m − E[Qm] ≥ ε

}
≤ exp

(
−vh

( ε
v

))
≤ exp

(
− ε2

2v + 2
3ε

)
.

Also for any t ≥ 0 following holds with probability greater than 1− e−t:

Q′m ≤ E[Qm] +
√

2vt+
t

3
.

The appearance of E[Qm] in the last theorem might seem unexpected on the first view. Indeed, one
usually wants to control the concentration of a random variable around its expectation. However, it
is shown in the lemma below that in many cases E[Qm] will be close to E[Q′m]:

Lemma 3
0 ≤ E[Qm]− E[Q′m] ≤ 2

m3

N
.

The above lemma is proved in Appendix B. It shows that for m = o(N2/5) the order of E[Qm] −
E[Q′m] does not exceed

√
m, and thus Theorem 2 can be used to control the deviations ofQ′m above

its expectation E[Q′m] at a fast rate. However, generally E[Q′m] could be smaller than E[Qm], which
may potentially lead to significant gap, in which case Theorem 1 is the preferred choice to control
the deviations of Q′m around E[Q′m].

3.2. Discussion

It is worth comparing the two novel inequalities for Q′m to the best known results in the literature.
To this end, we compare our inequalities with the McDiarmid-style inequality recently obtained in
El-Yaniv and Pechyony (2009) (and slightly improved in Cortes et al. (2009)):

Theorem 4 (El-Yaniv and Pechyony (2009)7) For all ε ≥ 0:

P
{
Q′m − E[Q′m] ≥ ε

}
≤ exp

{
− ε2

2m

(
N − 1/2

N −m

)(
1− 1

2 max(m,N −m)

)}
. (4)

The same bound also holds for P {E[Q′m]−Q′m ≥ ε}.

To begin with, let us notice that Theorem 4 does not account for the variance supf∈F V[f(X1)],
while Theorems 1 and Theorem 2 do. As it will turn out in Section 4, this refined treatment
of the variance σ2 allows us to use localization techniques, facilitating to obtain sharp estimates
(and potentially, fast rates) also in the transductive learning setup. The comparison between con-
centration inequalities (2) of Theorem 2 and (4) of Theorem 4 is as follows: note that the term
1 − 1

2 max(m,N−m) is negligible for large N , so that slightly re-writing the inequalities boils down

to comparing − ε2

8mσ2
m
N and − ε2

2m

(
N−1/2
N−m

)
. For m = o(N) (which in a way transforms sampling

without replacement to sampling with replacement), the second inequality clearly outperforms the
first one. However, for the case when m = Ω(N) (frequently used in the transductive setting),

7. This bound does not appear explicitly in El-Yaniv and Pechyony (2009); Cortes et al. (2009), but can be immediately
obtained using Lemma 2 of El-Yaniv and Pechyony (2009) for Q′m with β = 2.
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say N = 2m, the comparison depends on the relation between −ε2/(16mσ2) and −ε2/m and the
result of Theorem 1 outperforms the one of El-Yaniv and Pechyony for σ2 ≤ 1/16. The comparison
between Theorems 2 and 4 for both cases (m = o(N) and m = Ω(N)) depends on the value of σ2.

Theorem 2 is a direct analogue of Bousquet’s version of Talagrand’s inequality (see Theorem 17
in Appendix A of the supplementary material), frequently used in the learning literature. It states
that the upper bound on Qm, provided by Bousquet’s inequality, also holds for Q′m. Now we
compare Theorems 1 and 2. First of all note that the deviation bound (3) does not have the term
2E[Qm] ≥ 0 under the square root in contrast to Theorem 2. As will be shown later, in some
cases this fact can result in improved constants when applying Theorem 1. Another nice thing about
Theorem 1 is that it provides upper bounds for bothQ′m−E[Q′m] and E[Q′m]−Q′m, while Theorem 2
upper bounds only Q′m − E[Q′m]. The main drawback of Theorem 1 is the factor N appearing in
the exponent. Later we will see that in some cases it is more preferable to use Theorem 2 because
of this fact.

We also note that, if m = Ω(N) or m = o(N2/5), we can control the deviations of Q′m around
E[Q′m] with inequalities that are similar to i.i.d. case. It is an open question, however, whether this
can be done also for other regimes of m and N . It should be clear though that we can obtain at least
as good rates as in the inductive setting using Theorem 2. To summarize the discussion, when N
is large and m = o(N), Theorems 2 or 4 (depending on σ2 and the order of E[Qm] − E[Q′m]) can
be significantly tighter than Theorem 1. However, if m = Ω(N), Theorem 1 is more preferable.
Further discussions are presented in Appendix C.

3.3. Proof Sketch

Here we briefly outline the proofs of Theorems 1 and 2. Detailed proofs are given in Appendix B
of the supplementary material.

Theorem 2 is a direct consequence of Bousquet’s inequality and Hoefding’s reduction method.
It was shown in Theorem 4 of Hoeffding (1963) that, for any convex function f , the following
inequality holds:

E

[
f

(
m∑
i=1

Zi

)]
≤ E

[
f

(
m∑
i=1

Xi

)]
.

Although not stated explicitly in Hoeffding (1963), the same result also holds if we sample from
finite set of vectors instead of real numbers (Gross and Nesme, 2010). This reduction to the i.i.d.
setting together with some minor technical results is enough to bound the moment generating func-
tion of Q′m and obtain a concentration inequality using Chernoff’s method (for which we refer to
the Section 2.2 of Boucheron et al. (2013)).

The proof of Theorem 1 is more involved. It is based on the sub-Gaussian inequality presented
in Theorem 2.1 of Bobkov (2004), which is related to the entropy method introduced by M. Ledoux
(see Boucheron et al. (2013) for references). Consider a function g defined on the partitions XN =
(Xm ∪ Xu) of a fixed finite set XN of cardinality N into two disjoint subsets Xm and Xu of
cardinalities m and u, respectively, where N = m + u. Bobkov’s inequality states that, roughly
speaking, if g is such that the Euclidean length of its discrete gradient |∇g(Xm ∪Xu)|2 is bounded
by a constant Σ2, and if the partitions (Xm ∪ Xu) are sampled uniformly from the set of all such
partitions, then g(Xm ∪Xu) is sub-Gaussian with parameter Σ2.
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3.4. Applications of the New Inequalities

The novel concentration inequalities presented above can be generally used as a mathematical tool
in various areas of machine learning and learning theory where suprema of empirical processes
over sampling without replacement are of interest, including the analysis of cross-validation and
low-rank matrix factorization procedures as well as the transductive learning setting. Exemplifying
their applications, we show in the next section—for the first time in the transductive setting of
learning theory—excess risk bounds in terms of localized complexity measures, which can yield
sharper estimates than global complexities.

4. Excess Risk Bounds for Transductive Learning via Localized Complexities

We start with some preliminary generalization error bounds that show how to apply the concentra-
tion inequalities of Section 3 to obtain risk bounds in the transductive learning setting. Note that (1)
can be written in the following way:

Lu(ĥm)− L̂m(ĥm) ≤ sup
h∈H

Lu(h)− L̂m(h) =
N

u
· sup
h∈H

LN (h)− L̂m(h),

where we used the fact that N ·LN (h) = m · L̂m(h) +u ·Lu(h). Note that for any fixed h ∈ H, we
have LN (h)− L̂m(h) = 1

m

∑
X∈Xm

(
LN (h)− `h(X)

)
, where Xm is sampled uniformly without

replacement from XN . Note that we clearly have LN (h) − `h(X) ∈ [−1, 1] and E[LN (h) −
`h(X)] = LN (h) − E[`h(X)] = 0. Thus we can use the setting described in Section 3, with XN

playing the role of C and considering the function class FH = {fh : fh(X) = LN (h)− `h(X), h ∈
H} associated with H, to obtain high-probability bounds for supfh∈FH

∑
X∈Xm

fh(X) = m ·
suph∈H

(
LN (h) − L̂m(h)

)
. Note that in Section 3 we considered unnormalized sums, hence we

obtain a factor of m in the above equation. As already noted, for fixed h, LN (h) is not random; also
centering random variable does not change its variance. Keeping this in mind, we define

σ2
H = sup

fh∈FH
V[fh(X)] = sup

h∈H
V[`h(X)] = sup

h∈H

 1

N

∑
X∈XN

(
`h(X)− LN (h)

)2 . (5)

Using Theorems 1 and 2, we can obtain the following results that hold without any assumptions
on the learning problem at hand, except for the boundedness of the loss function in the interval
[0, 1]. Our first result of this section follows immediately from the new concentration inequality of
Theorem 1:

Theorem 5 For any t ≥ 0 with probability greater than 1− e−t the following holds:

∀h ∈ H : LN (h)− L̂m(h) ≤ E
[

sup
h∈H

(
LN (h)− L̂m(h)

)]
+ 2

√
2

(
N

m2

)
σ2
Ht,

where σ2
H was defined in (5).

Let {ξ1, . . . , ξm} be random variables sampled with replacement from XN and denote

Em = E

[
sup
h∈H

(
LN (h)− 1

m

m∑
i=1

`h(ξi)

)]
.
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The following result follows from Theorem 2 by simple calculus. We provide the detailed proof in
the supplementary material.

Theorem 6 For any t ≥ 0 with probability greater than 1− e−t the following holds:

∀h ∈ H : LN (h)− L̂m(h) ≤ 2Em +

√
2σ2
Ht

m
+

4t

3m
,

where σ2
H was defined in (5).

Remark 7 Note that Em is an expected sup-norm of the empirical process naturally appearing in
inductive learning. Using the well-known symmetrization inequality (see Section 11.3 of Boucheron
et al. (2013)), we can upper bound it by twice the expected value of the supremum of the Rademacher
process. In this case, the last theorem thus gives exactly the same upper bound on the quantity
suph∈H

(
LN (h) − L̂m(h)

)
as the one of Theorem 2.1 of Bartlett et al. (2005) (with α = 1 and

(b− a) = 1).

Here we provide some discussion on the two generalization error bounds presented above. Note
that σ2

H ≤ 1/4, since σ2
H is the variance of a random variable bounded in the interval [0, 1]. We

conclude that the bound of Theorem 6 is of the order m−1/2, since the typical order8 of Em is also
m−1/2. Note that repeating the proof of Lemma 3 we immediately obtain the following corollary:

Corollary 8 Let {ξ1, . . . , ξm} be random variables sampled with replacement from XN . For any
countable set of functions F defined on XN the following holds:

E

[
sup
f∈F

E[f(X)]− 1

m

∑
X∈Xm

f(X)

]
≤ E

[
sup
f∈F

E[f(X)]− 1

m

m∑
i=1

f(ξi)

]
.

The corollary shows that for m = Ω(N) the bound of Theorem 5 also has the order m−1/2. How-
ever, if m = o(N), the convergence becomes slower and it can even diverge for m = o(N1/2).

Remark 9 The last corollary enables us to use also in the transductive setting all the established
techniques related to the inductive Rademacher process, including symmetrization and contraction
inequalities. Later in this section, we will employ this result to derive excess risk bounds for kernel
classes in terms of the tailsum of the eigenvalues of the kernel, which can yield a fast rate of conver-
gence. However, we should keep in mind that there might be a significant gap between E[Qm] and
E[Q′m], in which case such a reduction can be loose.

4.1. Excess Risk Bounds

The main goal of this section is to analyze to what extent the known results on localized risk bounds
presented in series of works (Koltchinskii and Panchenko, 1999; Massart, 2000; Bartlett et al., 2005;
Koltchinskii, 2006) can be generalized to the transductive learning setting. These results essentially
show that the rate of convergence of the excess risk is related to the fixed point of the modulus of
continuity of the empirical process associated with the hypothesis class. Our main tools to this end

8. For instance if F is finite it follows from Theorems 2.1 and 3.5 of Koltchinskii (2011a).

9



TOLSTIKHIN BLANCHARD KLOFT

will be the sub-Gaussian and Bennett-style concentration inequalities of Theorems 1 and 2 presented
in the previous section.

From now on it will be convenient to introduce the following operators, mapping functions f
defined on XN to R:

Ef =
1

N

∑
X∈XN

f(X), Êmf =
1

m

∑
X∈Xm

f(X).

Using this notation we have: LN (h) = E`h and L̂m(h) = Êm`h.
Define the excess loss class F∗ = {`h− `h∗N , h ∈ H}. Throughout this section, we will assume

that the loss function ` and hypothesis classH satisfy the following assumptions:

Assumptions 10

1. There is a function h∗N ∈ H satisfying LN (h∗N ) = infh∈H LN (h).

2. There is a constant B > 0 such that for every f ∈ F∗ we have Ef2 ≤ B · Ef .

3. As before the loss function ` is bounded in the interval [0, 1].

Here we shortly discuss these assumptions. Assumption 10.1 is quite common and not restrictive.
Assumption 10.2 can be satisfied, for instance, when the loss function ` is Lipschitz and there is a
constant T > 1 such that 1

N

∑
X∈XN

(
h(X) − h∗N (X)

)2 ≤ T
(
LN (h) − LN (h∗N )

)
for all h ∈ H.

These conditions are satisfied for example for the quadratic loss `(y, y′) = (y−y′)2 with uniformly
bounded convex classes H (for other examples we refer to Section 5.2 of Bartlett et al. (2005)
and Section 2.1 of Bartlett et al. (2010)). Assumption 10.3 could be possibly relaxed using some
analogues of Theorems 1 and 2 that hold for classes F with unbounded functions9.

Next we present the main results of this section, which can be considered as an analogues of
Corollary 5.3 of Bartlett et al. (2005). The results come in pairs, depending on whether Theorem 1
or 2 is used in the proof. We will need the notion of a sub-root function, which is a nondecreasing
and nonnegative function ψ : [0,∞)→ [0,∞), such that r → ψ(r)/

√
r is nonincreasing for r > 0.

It can be shown that any sub-root function has a unique and positive fixed point.

Theorem 11 Let H and ` be such that Assumptions 10 are satisfied. Assume there is a sub-root
function ψm(r) such that

B E

[
sup

f∈F∗:Ef2≤r
(Ef − Êmf)

]
≤ ψm(r). (6)

Let r∗m be a fixed point of ψm(r). Then for any t > 0 with probability greater than 1− e−t we have:

LN (ĥm)− LN (h∗N ) ≤ 51
r∗m
B

+ 17Bt

(
N

m2

)
.

We emphasize that the constants appearing in Theorem 11 are slightly better than the ones appearing
in Corollary 5.3 of Bartlett et al. (2005). This result is based on Theorem 1 and thus shares the
disadvantages of Theorem 5 discussed above: the bound does not converge for m = o(N−1/2).
However, by using Theorem 2 instead of Theorem 1 in the proof, we can replace the factor of
N/m2 appearing in the bound by a factor of 1/m at a price of slightly worse constants:

9. Adamczak (2008) show a version of Talagrand’s inequality for unbounded functions in the i.i.d. case.
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Theorem 12 Let H and ` be such that Assumptions 10 are satisfied. Let {ξ1, . . . , ξm} be random
variables sampled with replacement from XN . Assume there is a sub-root function ψm(r) such that

B · E

[
sup

f∈F∗:Ef2≤r

(
Ef − 1

m

m∑
i=1

f(ξi)

)]
≤ ψm(r). (7)

Let r∗m be a fixed point of ψm(r). Then for any t > 0, with probability greater than 1 − e−t, we
have:

LN (ĥm)− LN (h∗N ) ≤ 901
r∗m
B

+
t(16 + 25B)

3m
.

We also note that in Theorem 12 the modulus of continuity of the empirical process over sampling
without replacement appearing in the left-hand side of (6) is replaced with its inductive analogue. As
follows from Corollary 8, the fixed point r∗m of Theorem 11 can be smaller than that of Theorem 12
and thus, for large N and m = Ω(N) the first bound can be tighter. Otherwise, if m = o(N),
Theorem 12 can be more preferable.

Proof sketch: Now we briefly outline the proof of Theorem 11. It is based on the peeling technique
and consists of the steps described below (similar to the proof of the first part of Theorem 3.3 in
Bartlett et al. (2005)). The proof of Theorem 12 repeats the same steps with the only difference
being that Theorem 2 is used on Step 2 instead of Theorem 1. The detailed proofs are presented in
Section D of the supplementary material.

STEP 1 First we fix an arbitrary r > 0 and introduce the rescaled version of the centered loss
class: Gr =

{
r

∆(r,f)f, f ∈ F
∗
}

, where ∆(r, f) is chosen such that the variances of the functions
contained in Gr do not exceed r.

STEP 2 We can use Theorem 1 to obtain the following upper bound on Vr = supg∈Gr(Eg− Êmg)

which holds with probability greater than 1− e−t: Vr ≤ E[Vr] + 2
√

2t
(
N
m2

)
r.

STEP 3 Using the peeling technique (which consists in dividing the class F∗ into slices of func-
tions having variances within a certain range), we are able to show that E[Vr] ≤ 5ψm(r)/B. Also,
using the definition of sub-root functions, we conclude that ψm(r) ≤

√
rr∗m for any r ≥ r∗m, which

gives us Vr ≤
√
r
(

5
√
r∗m
B + 2

√
2t
(
N
m2

))
.

STEP 4 Now we can show that by properly choosing r0 > r∗m we can get that, for any K > 1, it
holds Vr0 ≤ r0

KB . Using the definition of Vr, we obtain that the following holds, with probability
greater than 1− e−t:

∀f ∈ F∗, ∀K > 1 : Ef − Êmf ≤
max

(
r0, Ef

2
)

r0

r0

KB
=

max
(
r0, Ef

2
)

KB
.

STEP 5 Finally it remains to upper bound Ef for the two cases Ef2 > r0 and Ef2 ≤ r0 (which
can be done using Assumption 10.2), to combine those two results, and to notice that Êmf ≤ 0 for
f(X) = `ĥm(X)− `h∗N (X). �

We finally present excess risk bounds for Eu(ĥm). The first one is based on Theorem 11:

11
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Corollary 13 Under the assumptions of Theorem 11, for any t > 0, with probability greater than
1− 2e−t, we have:

Eu(ĥm) ≤ N

u

(
51
r∗m
B

+ 17Bt
N

m2

)
+
N

m

(
51
r∗u
B

+ 17Bt
N

u2

)
.

The following version is based on Theorem 12 and replaces the factors N/m2 and N/u2 appearing
in the previous excess risk bound by 1/m and 1/u, respectively:

Corollary 14 Under the assumptions of Theorem 12, for any t > 0, with probability greater than
1− 2e−t, we have:

Eu(ĥm) ≤ N

u

(
901

K

B
r∗m +

t(16 + 25B)

3m

)
+
N

m

(
901

K

B
r∗u +

t(16 + 25B)

3u

)
.

Proof sketch Corollary 13 can be proved by noticing that h∗u is an empirical risk minimizer (similar
to ĥm, but computed on the test set). Thus, repeating the proof of Theorem 11, we immediately
obtain the same bound for h∗u as in Theorem 11 with r∗m and N/m2 replaced by r∗u and N/u2,
respectively. This shows that the overall errors LN (ĥm) and LN (h∗u) are close to each other. It
remains to apply an intermediate step, obtained in the proof of Theorem 11. Corollary 14 is proved
in a similar way. The detailed proofs are presented in Appendix D. �

In order to get a more concrete grasp of the key quantities r∗m and r∗u in Corollary 14, we
can directly apply the machinery developed in the inductive case by Bartlett et al. (2005) to get
an upper bound. For concreteness, we consider below the case of a kernel class. Observe that,
by an application of Corollary 8 to the left-hand side of (6), the bounds below for the inductive
r∗m, r

∗
u of Corollary 14 are valid as well for their transductive siblings of Corollary 13; though by

doing so we lose essentially any potential advantage (apart from tighter multiplicative constants)
of using Theorem 11/Corollary 13 over Theorem 12/Corollary 14. As pointed out in Remark 9,
the regime of sampling without replacement could lead potentially to an improved bound (at least
when m = Ω(N)). Whether it is possible to take advantage of this fact and develop tighter bounds
specifically for the fixed point of (6) is an open question and left for future work.

Corollary 15 Let k be a positive semidefinite kernel on X with supx∈X k(x, x) ≤ 1, and Ck the
associated reproducing kernel Hilbert space. LetH := {f ∈ Ck : ‖f‖ ≤ 1}, and F∗ the associated
excess loss class. Suppose that Assumptions 10 are satisfied and assume moreover that the loss
function ` is L-Lipschitz in its first variable. Let KN be the N ×N normalized kernel Gram matrix
with entries (KN )ij := 1

N k(Xi, Xj), where XN = (X1, . . . , XN ); denote λ1,N ≥ . . . ≥ λN,N its
ordered eigenvalues. Then, for k = u or k = m:

r∗k ≤ cL min
0≤θ≤k

θ
k

+

√
1

k

∑
i≥θ

λi,N

 ,

where cL is a constant depending only on L.

This result is obtained as a direct application of the results of Bartlett et al., 2005, Section 6.3;
Mendelson, 2003, the only important point being that the generating distribution is the uniform
distribution on XN . Similar to the discussion there, we note that r∗m and r∗u are at most of order
1/
√
m and 1/

√
u, respectively, and possibly much smaller if the eigenvalues have a fast decay .

12
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Remark 16 The question of transductive convergence rates is somewhat delicate, since all results
stated here assume a fixed set XN , as reflected for instance in the bound of Corollary 15 depending
on the eigenvalues of the kernel Gram matrix of the set XN . In order to give a precise meaning to
rates, one has to specify how XN evolves as N grows. A natural setting for this is Vapnik (1998)’s
second transductive setting where XN is i.i.d. from some generating distribution. In that case we
think it is possible to adapt once again the results of Bartlett et al. (2005) in order to relate the
quantities r∗m(N) to asymptotic counterparts as N → ∞, though we do not pursue this avenue in
the present work.

5. Conclusion

In this paper, we have considered the setting of transductive learning over a broad class of bounded
and nonnegative loss functions. We provide excess risk bounds for the transductive learning setting
based on the localized complexity of the hypothesis class, which hold under general assumptions on
the loss function and the hypothesis class. When applied to kernel classes, the transductive excess
risk bound can be formulated in terms of the tailsum of the eigenvalues of the kernels, similar to the
best known estimates in inductive learning. The localized excess risk bound is achieved by proving
two novel and very general concentration inequalities for suprema of empirical processes when
sampling without replacement, which are of potential interest also in various other application areas
in machine learning and learning theory, where they may serve as a fundamental mathematical tool.

For instance, sampling without replacement is commonly employed in the Nyström method
(Kumar et al., 2012), which is an efficient technique to generate low-rank matrix approximations
in large-scale machine learning. Another potential application area of our novel concentration in-
equalities could be the analysis of randomized sequential algorithms such as stochastic gradient
descent and randomized coordinate descent, practical implementations of which often deploy sam-
pling without replacement (Recht and Re, 2012). Very interesting also would be to explore whether
the proposed techniques could be used to generalize matrix Bernstein inequalities (Tropp, 2012)
to the case of sampling without replacement, which could be used to analyze matrix completion
problems (Koltchinskii et al., 2011). The investigation of application areas beyond the transductive
learning setting is, however, outside of the scope of the present paper.
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Appendix A. Bousquet’s version of Talagrand’s concentration inequality

Here we use the setting and notations of Section 3.

Theorem 17 (Bousquet (2002b)) Let v = mσ2 + 2E[Qm] and for u > −1 let φ(u) = eu−u− 1,
h(u) = (1 + u) log(1 + u) − u. Then for any λ ≥ 0 the following upper bound on the moment
generating function holds:

E
[
eλ(Qm−E[Qm])

]
≤ evφ(λ). (8)

We also have for any ε ≥ 0:

P {Qm − E[Qm] ≥ ε} ≤ exp
{
−vh

( ε
v

)}
. (9)

Noting that h(u) ≥ u2

2(1+u/3) for u > 0, one can derive the following more illustrative version:

P {Qm − E[Qm] ≥ ε} ≤ exp

{
− ε2

2(v + ε/3)

}
. (10)

Also for all t ≥ 0 the following holds with probability greater than 1− e−t:

Qm ≤ E[Qm] +
√

2vt+
t

3
. (11)

Note that Bousquet (2002a) provides similar bounds for Qm = supf∈F |
∑m

i=1 f(Xi)|.

Appendix B. Proofs from Section 3

First we are going to prove Theorem 2, which is a direct consequence of Bousquet’s inequality of
Theorem 17. It is based on the following reduction theorem due to Hoeffding (1963):

Theorem 18 (Hoeffding (1963)) 10 Let {U1, . . . , Um} and {W1, . . . ,Wm} be sampled uniformly
from a finite set of d-dimensional vectors {v1, . . . ,vN} ⊂ Rd with and without replacement, re-
spectively. Then, for any continuous and convex function F : Rd → R, the following holds:

E

[
F

(
m∑
i=1

Wi

)]
≤ E

[
F

(
m∑
i=1

Ui

)]
.

Also we will need the following technical lemma:

Lemma 19 Let x = (x1, . . . , xd)
T ∈ Rd. Then the following function is convex for all λ > 0

F (x) = exp

(
λ sup
i=1,...,d

xi

)
.

10. Hoeffding initially stated this result only for real valued random variables. However all the steps of proof hold also
for vector-valued random variables. For the reference see Section D of Gross and Nesme (2010).
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Proof Let us show that, if g : R → R is a convex and nondecreasing function and f : Rd → R is
convex, then g

(
f(x)

)
is also convex. Indeed, for α ∈ [0, 1] and x′,x′′ ∈ Rd:

g
(
f
(
αx′ + (1− α)x′′

))
≤ g
(
αf(x′) + (1− α)f(x′′)

)
≤ αg

(
f(x′)

)
+ (1− α)αg

(
f(x′′)

)
.

Considering the fact that g(y) = eλy is convex and increasing for λ > 0, it remains to show that
f(x) = supi=1,...,d(xi) is convex. For all α ∈ [0, 1] and x′,x′′ ∈ Rd, the following holds:

sup
i=1,...,d

(
αx′i + (1− α)x′′i

)
≤ α sup

i=1,...,d
x′i + (1− α) sup

i=1,...,d
x′′i ,

which concludes the proof.

We will proove Theorem 2 for a finite class of functions F = {f1, . . . , fM}. The result for
uncountable case follows by taking a limit of a sequence of finite sets.

Proof of Theorem 2: Let {U1, . . . , Um} and {W1, . . . ,Wm} be sampled uniformly from a finite
set of M -dimensional vectors {v1, . . . ,vN} ⊂ RM with and without replacement respectively,
where vj =

(
f1(cj), . . . , fM (cj)

)T. Using Lemma 19 and Theorem 18, we get that for all λ > 0:

E
[
eλQ

′
m

]
= E

exp

λ sup
j=1,...,M

(
m∑
i=1

Wi

)
j

 ≤ E

exp

λ sup
j=1,...,M

(
m∑
i=1

Ui

)
j

 = E
[
eλQm

]
,

(12)
where the lower index j indicates the j-th coordinate of a vector. Using the upper bound (8) on the
moment generating function of Qm provided by Theorem 17, we proceed as follows:

E
[
eλQ

′
m

]
≤ E

[
eλQm

]
≤ eλE[Qm]+vφ(λ),

or, equivalently,
E
[
eλ(Q′m−E[Q′m])

]
≤ eλ(E[Qm]−E[Q′m])+vφ(λ).

Using Chernoff’s method, we obtain for all ε ≥ 0 and λ > 0:

P
{
Q′m − E[Q′m] ≥ ε

}
≤

E
[
eλ(Q′m−E[Q′m])

]
eλε

≤ exp
(
λ(E[Qm]− E[Q′m]) + vφ(λ)− λε

)
. (13)

The term on the right-hand side of the last inequality achieves its minimum for

λ = log

(
v + ε− E[Qm] + E[Q′m]

v

)
. (14)

Thus we have the technical condition ε ≥ E[Qm] − E[Q′m]. Otherwise we set λ = 0 and obtain
a trivial bound equal to 1. The inequality E[Qm] ≥ E[Q′m] also follows from Theorem 18 by
exploiting the fact that the supremum is a convex function (which we showed in the proof of Lemma
19). Inserting (14) into (13), we obtain the first inequality of Theorem 2. The second inequality
follows from observing that h(u) ≥ u2

2(1+u/3) for u > 0. The deviation inequality can then be
obtained using standard calculus. For details we refer to Section 2.7.2 of Bousquet (2002b). �.
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Remark 20 It should be noted that Klein and Rio (2005) derive an upper bound on E
[
e−λ(Qm−E[Qm])

]
for λ ≥ 0. This upper bound on the moment generating function together with Chernoff’s method
leads to an upper bound on P {E[Qm]−Qm ≥ ε}. However, the proof technique used in Theorem 2
cannot be used in this case, since Lemma 19 does not hold for negative λ.

Proof of Lemma 3: We have already proved the first inequality of the lemma. Regarding the
second one, using the definitions of E[Qm] and E[Q′m], we have:

E[Qm]− E[Q′m] =
1

Nm

∑
x1,...,xm

sup
f∈F

m∑
i=1

f(xi) +

(
1

Nm
− (N −m)!

N !

) ∑
z1,...,zm

sup
f∈F

m∑
i=1

f(zi),

where the first sum is over all ordered sequences {x1, . . . , xm} ⊂ C containing duplicate elements,
while the second sum is over all ordered sequences {z1, . . . , zm} ⊂ C with no duplicates. Note that
the second sum has exactly m! · CmN summands, which means that the first one has Nm −m! · CmN
summands. Considering the fact that 1

Nm ≤ (N−m)!
N ! and f(x) ∈ [−1, 1] for all x ∈ C, we obtain:

E[Qm]− E[Q′m] ≤ m
(
Nm −m! · CmN

Nm

)
+m

(
(N −m)!

N !
− 1

Nm

)
m! · CmN

= 2m

(
Nm −m! · CmN

Nm

)
= 2m− 2m

(
1 ·
(

1− 1

N

)
· · ·
(

1− m− 1

N

))
≤ 2m− 2m

(
1− m− 1

N

)m
= 2m

(
m− 1

N

)(
1 +

(
1− m− 1

N

)
+ · · ·+

(
1− m− 1

N

)m−1
)

≤ 2m

(
m− 1

N

)
m

≤ 2
m3

N
,

which was to show. �

In order to prove Theorem 1, we need to state the result presented in Theorem 2.1 of Bobkov
(2004) and derive its slightly modified version. From now on we will follow the presentation in
Bobkov (2004).

Let us consider the following subset of discrete cube, which we call the slice:

Dn,k =
{
x = (x1, . . . , xn) ∈ {0, 1}n : x1 + · · ·+ xn = k

}
.

Neighbors are points that differ exactly in two coordinates. Thus every point x ∈ Dn,k has exactly
k(n− k) neighbours {sijx}i∈I(x),j∈J(x), where

I(x) = {i ≤ n : xi = 1}, J(x) = {j ≤ n : xj = 0},
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and (sijx)r = xr for r 6= i, j, (sijx)i = xj , (sijx)j = xi. For any function g defined on Dn,k and
x ∈ Dn,k, let us introduce the following quantity:

V g(x) =
∑
i∈I(x)

∑
j∈J(x)

(
g(x)− g(sijx)

)2
,

which can be viewed as the Euclidean length of the discrete gradient |∇g(x)|2 of the function g.
The following result can be found in Theorem 2.1 of Bobkov (2004):

Theorem 21 (Bobkov (2004)) Consider the real-valued function g defined on Dn,k and the uni-
form distribution µ over the set Dn,k. Assume there is a constant Σ2 ≥ 0 such that V g(x) ≤ Σ2 for
all x. Then for all ε ≥ 0:

µ{g(x)− E[g(x)] ≥ ε} ≤ exp

{
−(n+ 2)ε2

4Σ2

}
.

The same upper bound also holds for µ{E[g(x)]− g(x) ≥ ε}.

Using the notations of Section 3, we define the following function g : DN,m → R:

g(x) = sup
f∈F

∑
i∈I(x)

f(ci). (15)

Note that, if x is distributed uniformly over the set DN,m, the random variables Q′m and g(x) are
identically distributed. Thus we thus can use Theorem 21 to derive concentration inequalities for
Q′m. However, it is not trivial to bound the quantity V g(x). Instead we define the following quantity,
related to V g(x):

V g
+(x) =

∑
i∈I(x)

∑
j∈J(x)

(
g(x)− g(sijx)

)2
1{g(x) ≥ g(sijx)},

where 1{A} is an indicator function. Now we state the following modified version of Theorem 21:

Theorem 22 Consider a real-valued function g defined on Dn,k and the uniform distribution µ
over the set Dn,k. Assume there is a constant Σ2 ≥ 0 such that V g

+(x) ≤ Σ2 for all x. Then for all
ε ≥ 0:

µ{g(x)− E[g(x)] ≥ ε} ≤ exp

{
−(n+ 2)ε2

8Σ2

}
.

The same upper bound also holds for µ{E[g(x)]− g(x) ≥ ε}.

Proof We are going to follow the steps of the proof of Theorem 21, presented in Bobkov (2004).
The author shows that, for any real-valued function g defined on Dn,k, the following holds:

(n+ 2)
(
E
[
eg(x) log eg(x)

]
− E

[
eg(x)

]
E
[
log eg(x)

])
≤ E

 ∑
i∈I(x)

∑
j∈J(x)

(
g(x)− g(sijx)

)(
eg(x) − eg(sijx)

) . (16)
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Note that for any a, b ∈ R:

(a− b)(ea − eb) ≤ ea + eb

2
(a− b)2. (17)

We can re-write the right-hand side of inequality (16) in the following way:

E

 ∑
i∈I(x)

∑
j∈J(x)

(
g(x)− g(sijx)

)(
eg(x) − eg(sijx)

)
= 2 · E

 ∑
i∈I(x)

∑
j∈J(x)

(
g(x)− g(sijx)

)(
eg(x) − eg(sijx)

)
1{g(x) ≥ g(sijx)}

 .
Using (17), we get:

E

 ∑
i∈I(x)

∑
j∈J(x)

(
g(x)− g(sijx)

)(
eg(x) − eg(sijx)

)
≤ 2 · E

 ∑
i∈I(x)

∑
j∈J(x)

(
eg(x) + eg(sijx)

)
2

(
g(x)− g(sijx)

)2
1{g(x) ≥ g(sijx)}


≤ 2 · E

 ∑
i∈I(x)

∑
j∈J(x)

eg(x)
(
g(x)− g(sijx)

)2
1{g(x) ≥ g(sijx)}


= 2E

[
V g

+(x)eg(x)
]
.

Thus we obtain the following inequality:

(n+ 2)
(
E
[
eg(x) log eg(x)

]
− E

[
eg(x)

]
E
[
log eg(x)

])
≤ 2E

[
V g

+(x)eg(x)
]
.

Applying this inequality to λg, where λ ∈ R, we get:

(n+2)
(
E
[
eλg(x) log eλg(x)

]
−E
[
eλg(x)

]
E
[
log eλg(x)

])
≤ 2E

[
V λg

+ (x)eλg(x)
]
≤ 2Σ2λ2E

[
eλg(x)

]
.

(18)
As mentioned in the proof of Theorem 21 in Bobkov (2004), inequality (18) implies the following
upper bound on the moment generating function:

E
[
eλ(g(x)−E[g(x)])

]
≤ e

2Σ2λ2

n+2 . (19)

This fact is known as the Herbst argument and plays an important role in the entropy method
(Boucheron et al., 2013). Now we apply Chernoff’s method, which gives us for all λ, ε ≥ 0:

µ {g(x)− E[g(x)] ≥ ε} ≤
E
[
eλ(g(x)−E[g(x)])

]
eλε

≤ e
2Σ2λ2

n+2
−λε.

We conclude the proof by choosing λ = ε(n+2)
4Σ2 .
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An upper bound for µ{E[g(x)]− g(x) ≥ ε} can be obtained using (19) for λ < 0:

µ {E[g(x)]− g(x) ≥ ε} = µ
{
λ
(
g(x)− E[g(x)]

)
≥ −λε

}
≤

E
[
eλ(g(x)−E[g(x)])

]
e−λε

≤ e
2Σ2λ2

n+2
+λε.

Now it remains to choose λ = − ε(n+2)
4Σ2 .

We will need the following technical result:

Lemma 23 For any sequence of real numbers {x1, . . . , xn} the following holds:

1

n2

∑
1≤i<j≤n

(xi − xj)2 =
1

n

n∑
i=1

(
xi −

1

n

n∑
j=1

xj

)2

.

Proof Notice that it holds:

1

n

n∑
i=1

(
xi −

1

n

n∑
j=1

xj

)2

=
1

n

n∑
i=1

x2
i −

2

n
xi

n∑
j=1

xj +
1

n2

(
n∑
j=1

xj

)2


=
1

n

 n∑
i=1

x2
i −

2

n

n∑
i=1

xi

n∑
j=1

xj +
1

n2

n∑
i=1

(
n∑
j=1

xj

)2


=
1

n

 n∑
i=1

x2
i −

1

n

(
n∑
j=1

xj

)2


=
1

n2

(
(n− 1)

n∑
i=1

x2
i − 2

∑
1≤i<j≤n

xixj

)

=
1

n2

∑
1≤i<j≤n

(xi − xj)2.

Now we are ready to prove Theorem 1.

Proof of Theorem 1: We will apply Theorem 22 for the function g(x) defined in (15), where x
is distributed uniformly over DN,m. As noted above this will lead to a concentration inequality for
Q′m, since Q′m and g(x) are distributed identically. Hence, all we need is to obtain an upper bound
on V g

+(x).
To this end, let us consider two functions g1, g2 : A → R, defined on some set A. Assume that

supa∈A g1(a) = g1(ā) for some ā ∈ A. Then the following holds:(
sup
a∈A

g1(a)− sup
a∈A

g2(a)

)2

1

{
sup
a∈A

g1(a) ≥ sup
a∈A

g2(a)

}
≤
(
g1(ā)− g2(ā)

)2
. (20)
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Let us assume that, for x ∈ DN,m, the supremum in the definition (15) of g(x) is achieved for
f̄ ∈ F . Then we have:

V g
+(x) =

∑
i∈I(x)

∑
j∈J(x)

(g(x)− g(sijx))2
1 {g(x) ≥ g(sijx)}

≤
∑
i∈I(x)

∑
j∈J(x)

( ∑
k∈I(x)

f̄(ck)−
∑

k∈I(sijx)

f̄
(
ck
))2

=
∑
i∈I(x)

∑
j∈J(x)

(
f̄(ci)− f̄(cj)

)2

≤
∑

1≤i<j≤N

(
f̄(ci)− f̄(cj)

)2

= N2V
[
f̄(X1)

]
,

where the first inequality follows from (20) and the second inequality follows from Lemma 23. Now
note that, since the function f̄ depends on the choice of x, the following holds for all x ∈ DN,m:

V g
+(x) ≤ N2 sup

f∈F
V[f(X1)] = N2σ2.

We conclude the proof by an application of Theorem 22. �

Appendix C. Further discussions on Section 3

First we note that the result of Theorem 4 is uniformly sharper than what could have been ob-
tained for Qm using McDiarmid’s inequality, by a factor of N−1/2

N−m (fraction of the training sample)
in the exponent. This suggests that when sampling without replacement things are more concen-
trated than when sampling with replacement. This general phenomenon is pointed out by several
authors: Serfling (1974) obtains a refinement of Hoeffding’s inequality, El-Yaniv and Pechyony
(2009) improves McDiarmid’s inequality, and Bardenet and Maillard (2013) improve Bennet’s and
Bernstein’s inequalities in the same way for sampling without replacement—opposed to the fact
that the results of Theorems 1 and 2 unfortunately do not improve the known analogues for Qm.
This drawback can possibly be overcome by a more detailed analysis. This direction is left for the
future work.

Appendix D. Proofs for Section 4

Proof of Theorem 6: Applying Theorem 2, we get that with probability greater than 1− e−t:

sup
h∈H

(
LN (h)− L̂m(h)

)
≤ Em +

√
2
(
σ2
H + 2Em

) t
m

+
t

3m
,
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which can be further simplified using
√
a+ b ≤

√
a +
√
b and then

√
ab ≤ a+b

2 in the following
way:

sup
h∈H

(
LN (h)− L̂m(h)

)
≤ Em +

√
2σ2
Ht

m
+ 2

√
Emt

m
+

t

3m

≤ 2Em +

√
2σ2
Ht

m
+

4t

3m
.

�

The proof of Theorem 11 is based on the following intermediate result appearing in the proof of
Theorem 3.3 in Bartlett et al. (2005). We state it as a lemma:

Lemma 24 (Peeling Lemma using Theorem 1) Assume the conditions of Theorem 11 hold. Fix
some λ > 1. For w(r, f) = min{rλk : k ∈ N, rλk ≥ Ef2}, define the following rescaled version
of excess loss class:

Gr =

{
r

w(r, f)
f : f ∈ F∗

}
.

Then for any r > r∗m and t > 0, with probability greater than 1− e−t, we have:

sup
g∈Gr

Eg − Êmg ≤
√
r

(
5

√
r∗m
B

+ 2

√
2t
N

m2

)
. (21)

Proof We can repeat exactly the same steps presented in the proof of the first part of Theorem 3.3
of Bartlett et al. (2005) (see pages 15–16), but using Theorem 1 in place of Talagrand’s inequality.

Clearly, for any f ∈ F∗, we have

V[f(X)] = Ef2 − (Ef)2 ≤ Ef2. (22)

Let us now fix some λ > 1 and r > 0 and introduce the following rescaled version of excess loss
class:

Gr =

{
r

w(r, f)
f : f ∈ F∗

}
,

where w(r, f) = min{rλk : k ∈ N, rλk ≥ Ef2}. Let us consider functions f ∈ F∗ such that
Ef2 ≤ r, meaning w(r, f) = r. The functions g ∈ Gr corresponding to those functions satisfy
g = f and thus V[g(X)] = V[f(X)] ≤ Ef2 ≤ r. Otherwise, if Ef2 > r, then w(r, f) = λkr,
and thus the functions g ∈ Gr corresponding to them satisfy g = f/λk and Ef2 ∈ (rλk−1, rλk].
Thus we have V[g] = V[f ]/λ2k ≤ Ef2/λ2k ≤ r. We conclude that, for any g ∈ Gr, it holds
V[g(x)] ≤ r.

Now we want to upper bound the following quantity:

Vr = sup
g∈Gr

Eg − Êmg.

Note that any f ∈ F∗ satisfies f(X) ∈ [−1, 1], and, consequently, all g ∈ Gr satisfy g(X) ∈
[−1, 1]. Notice that

1

2

(
Eg − Êmg

)
=

1

m

∑
X∈Xm

Eg − g(X)

2
.
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Note that (Eg − g(X))/2 ∈ [−1, 1] and also E [Eg − g(X)] = 0. Since Eg is not random, using
(22), we also have

V[(Eg − g(X))/2] = V[g(x)]/4 ≤ r/4
for all g ∈ Gr. We can now apply either Theorem 1 or Theorem 2 for the following function class:
{(Eg− g(X))/2, g ∈ Gr}. Here we present the proof based on Theorem 1. Applying it we get that
for all t > 0 with probability greater than 1− e−t, we have:

1

2
sup
g∈Gr

Eg − Êmg ≤
1

2
E

[
sup
g∈Gr

Eg − Êmg

]
+ 2

√
2t

(
N

m2

)
1

4
sup
g∈Gr

V[g(X)]

≤ 1

2
E

[
sup
g∈Gr

Eg − Êmg

]
+

√
2t

(
N

m2

)
r

or, rewriting,

Vr ≤ E[Vr] + 2

√
2t

(
N

m2

)
r. (23)

Now we set F∗(x, y) = {f ∈ F∗ : x ≤ Ef2 ≤ y}. Note that by the assumptions of the theorem,
for f ∈ F∗, we have V[f(X)] ≤ Ef2 ≤ B ·Ef ≤ B. Define k to be the smallest integer such that
rλk+1 ≥ B. Notice that, for any sets A and B, we have:

E

[
sup

g∈A∪B
Eg − Êmg

]
≤ E

[
sup
g∈B

Eg − Êmg

]
+ E

[
sup
g∈A

Eg − Êmg

]
.

Indeed, since supremum is a convex function, we can use Jensen’s inequality to show that each of
the terms is positive. Then we have:

E[Vr] = E

[
sup
g∈Gr

Eg − Êmg

]

≤ E

[
sup

f∈F∗(0,r)
Ef − Êmf

]
+ E

[
sup

f∈F∗(r,B)

r

w(r, f)
(Ef − Êmf)

]

≤ E

[
sup

f∈F∗(0,r)
Ef − Êmf

]
+

k∑
j=0

E

[
sup

f∈F∗(rλj ,rλj+1)

r

w(r, f)
(Ef − Êmf)

]

≤ E

[
sup

f∈F∗(0,r)
Ef − Êmf

]
+

k∑
j=0

λ−jE

[
sup

f∈F∗(rλj ,rλj+1)

(Ef − Êmf)

]

≤ ψm(r)

B
+

1

B

k∑
j=0

λ−jψ(rλj+1)

where in the last step we used the assumptions of the theorem. Now since ψm is sub-root, for any
β ≥ 1, we have ψm(βr) ≤

√
βψm(r). Thus

E[Vr] ≤
ψm(r)

B

1 +
√
λ

k∑
j=0

λ−j/2

 .
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Taking λ = 4 the r.h.s. is upper bounded by 5ψm(r)/B. Finally we note that for r ≥ r∗m we have
that, for all r ≥ r∗m, it holds ψm(r) ≤

√
r/r∗mψm(r∗m) =

√
rr∗m and thus

E[Vr] ≤
5

B

√
rr∗m.

Inserting this upper bound into (23), we conclude the proof.

Proof of Theorem 11: Using Lemma 24, we obtain that, for any r > r∗m, t > 0, and λ > 1, with
probability greater than 1− e−t, we have:

sup
g∈Gr

Eg − Êmg ≤
√
r

(
5

√
r∗m
B

+ 2

√
2t
N

m2

)
, (24)

where we introduced the rescaled excess loss class:

Gr =

{
r

w(r, f)
f : f ∈ F∗

}
,

and w(r, f) = min{rλk : k ∈ N, rλk ≥ Ef2}. Now we want to chose r0 > r∗m in such a way that
the upper bound of (24) becomes of a form r0/(λBK). We achieve this by setting:

r0 = K2λ2

(
5
√
r∗m + 2B

√
2t
N

m2

)2

> r∗m.

Inserting r = r0 into (24) we obtain:

sup
g∈Gr0

Eg − Êmg ≤
r0

λBK
. (25)

Moreover, using (u+ v)2 ≤ 2(u2 + v2), we have

r0 ≤ 50K2λ2r∗m + 16K2λ2B2t

(
N

m2

)
. (26)

Recall that, for any r > 0 and all g ∈ Gr, the following holds with probability 1:

Eg − Êmg ≤ sup
g∈Gr

Eg − Êmg.

Using definition of Gr, we get that, for all f ∈ F∗, the following holds with probability 1:

E

(
r

w(r, f)
f

)
− Êm

(
r

w(r, f)
f

)
≤ sup

g∈Gr
Eg − Êmg,

or, equivalently,

Ef − Êmf ≤
w(r, f)

r
sup
g∈Gr

Eg − Êmg.
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Setting r = r0 and using (25), we obtain that with probability greater than 1− e−t

∀f ∈ F∗, ∀K > 1 : Ef − Êmf ≤
w(r0, f)

r0

r0

λKB
=
w(r0, f)

λKB
.

Now we will use Assumption 10.2. If, for f ∈ F∗, Ef2 ≤ r0 then w(r0, f) = r0 and using (26)
we obtain:

Ef − Êmf ≤
w(r0, f)

λKB
=

r0

λKB
≤ 50

K

B
λr∗m + 16λKBt

(
N

m2

)
or, rewriting,

Ef ≤ Êmf + 50
K

B
λr∗m + 16λKBt

(
N

m2

)
. (27)

If otherwiseEf2 > r0, thenw(r0, f) = λir0 for certain value of i > 0 and alsoEf2 ∈ (r0λ
i−1, r0λ

i].
Then we have:

Ef − Êmf ≤
w(r0, f)

λKB
=

λir0

λKB
=
λ · (λi−1r0)

λKB
≤ Ef2

KB
≤ Ef

K
.

Thus
Ef ≤ K

K − 1
Êmf. (28)

Combining (27) and (28), we finally get that with probability greater than 1− e−t

∀f ∈ F∗,∀K > 1 : Ef ≤ inf
K>1

K

K − 1
Êmf + 50

K

B
λr∗m + 16λKBt

(
N

m2

)
. (29)

In the very last step, we recall the definition of F∗ and put f̂m = `ĥm − `h∗N . Notice that

Êmf̂m = Êm`ĥm − Êm`h∗N
= L̂m(ĥm)− L̂m(h∗N ) ≤ 0,

while
Ef̂m = LN (ĥm)− LN (h∗N ),

which concludes the proof. �

Let {ξ1, . . . , ξm} be random variables sampled with replacement from XN . Denote

Er,m = E

[
sup

f∈F∗:Ef2≤r

(
Ef − 1

m

m∑
i=1

f(ξi)

)]
. (30)

Repeating the proof of peeling Lemma 24 and using Theorem 2 instead of Theorem 1 we immedi-
ately obtain the following result:

Lemma 25 (Peeling Lemma using Theorem 2) Let H and ` be such that Assumptions 10 are satis-
fied. Assume there is a sub-root function ψm(r) such that

B · Er,m ≤ ψm(r),
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where Er,m was defined in (30). Let r∗m be a fixed point of ψm(r).
Fix some λ > 1. Then, for any r > r∗m and t > 0, with probability greater than 1 − e−t, we

have:

sup
g∈Gr

Eg − Êmg ≤
√
r

(
15

√
r∗m
B

+

√
2t

m

)
+

8t

3m
, (31)

where for w(r, f) = min{rλk : k ∈ N, rλk ≥ Ef2} we define the following rescaled version of
excess loss class:

Gr =

{
r

w(r, f)
f : f ∈ F∗

}
.

Proof of Theorem 12 is based on the peeling Lemma 25 and is similar to the one of Theorem 11.

Proof of Corollary 13: Note that, since h∗u is also an empirical risk minimizer (computed on the
test set), the results of Theorems 11 and 12 also hold for h∗u with every m in the statement replaced
by u. Also note that the following holds almost surely:

0 ≤ LN (ĥm)− LN (h∗N )

= LN (ĥm)− LN (h∗N )− L̂m(ĥm) + L̂m(h∗N ) + L̂m(ĥm)− L̂m(h∗N )

≤ LN (ĥm)− LN (h∗N )− L̂m(ĥm) + L̂m(h∗N )

=
u

N

(
Lu(ĥm)− Lu(h∗N )− L̂m(ĥm) + L̂m(h∗N )

) (32)

and

0 ≤ LN (h∗u)− LN (h∗N )

= LN (h∗u)− LN (h∗N )− Lu(h∗u) + Lu(h∗N ) + Lu(h∗u)− Lu(h∗N )

≤ LN (h∗u)− LN (h∗N )− Lu(h∗u) + Lu(h∗N )

=
m

N

(
L̂m(h∗u)− L̂m(h∗N )− Lu(h∗u) + Lu(h∗N )

)
,

where last equations in both cases use the following:

N · LN (h) = m · L̂m(h) + u · Lu(h).

Now we are going to use inequality (29) obtained in the proof of Theorem 11. Using the last
equation in (32) and, subsequently, employing (29) for f = `ĥm − `h∗N , where we subtract Êmf
from both sides of (29), we obtain:

0 ≤ Lu(ĥm)− Lu(h∗N )− L̂m(ĥm) + L̂m(h∗N )

≤ N

u

 inf
K>1

1

K − 1
L̂m(ĥm − h∗N )︸ ︷︷ ︸

≤0

+50
K

B
λr∗m + 16λKBt

N

m2

 ,
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which holds with probability greater than 1− e−t. As noted above the same argument can be used
for h∗u, which gives that the following holds:

0 ≤ L̂m(h∗u)− L̂m(h∗N )− Lu(h∗u) + Lu(h∗N )

≤ N

m

 inf
K>1

1

K − 1
Lu(h∗u − h∗N )︸ ︷︷ ︸

≤0

+50
K

B
λr∗u + 16λKBt

N

u2

 ,

with probability greater than 1− e−t. The union bound gives us that both inequalities hold simulta-
neously with probability greater than 1− 2e−t. Or, equivalently,

0 ≤ Lu(ĥm)− Lu(h∗N )− L̂m(ĥm) + L̂m(h∗N ) ≤ N

u

(
50Kλ

r∗m
B

+ 16λKBt
N

m2

)
and

0 ≤ L̂m(h∗u)− L̂m(h∗N )− Lu(h∗u) + Lu(h∗N ) ≤ N

m

(
50Kλ

r∗u
B

+ 16λKBt
N

u2

)
.

Summing these two inequalities we obtain

0 ≤ Lu(ĥm)− Lu(h∗u)− L̂m(ĥm) + L̂m(h∗u)

≤ N

u

(
50λK

r∗m
B

+ 16λKBt
N

m2

)
+
N

m

(
50λK

r∗u
B

+ 16λKBt
N

u2

)
.

Using the fact that ĥm and h∗u are the empirical risk minimizers on the training and test sets, respec-
tively, we finally get:

0 ≤ Lu(ĥm)− Lu(h∗u)

≤ L̂m(ĥm)− L̂m(h∗u) +
N

u

(
50λK

r∗m
B

+ 16λKBt
N

m2

)
+
N

m

(
50λK

r∗u
B

+ 16λKBt
N

u2

)
≤ N

u

(
50λK

r∗m
B

+ 16λKBt
N

m2

)
+
N

m

(
50λK

r∗u
B

+ 16λKBt
N

u2

)
.

�
Proof of Corollary 14 repeats the same steps using Theorem 12 instead of Theorem 11.

We also provide the following auxiliary result:

Corollary 26 Under the assumptions of Theorem 11, for any t > 0 and any K > 1, with proba-
bility greater than 1− 2e−t, we have:

|LN (ĥm)− LN (h∗u)| ≤ max

(
2K

r∗m
B

+ 16KBt

(
N

m2

)
, 2K

r∗u
B

+ 16KBt

(
N

u2

))
≤ 2K

r∗m + r∗u
B

+ 16KBtN

(
1

m2
+

1

u2

)
. (33)

Proof Notice that LN (h∗u) − LN (h∗N ) ≥ 0 as well as LN (ĥm) − LN (h∗N ) ≥ 0 and then combine
Theorem 11 with its analogue for h∗u in a union bound.
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