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Abstract
We consider online prediction with expert advice. Over the course of many trials, the goal of
the learning algorithm is to achieve small additional loss (i.e. regret) compared to the loss of the
best from a set of K experts. The two most popular algorithms are Hedge/Weighted Majority and
Follow the Perturbed Leader (FPL). The latter algorithm first perturbs the loss of each expert by
independent additive noise drawn from a fixed distribution, and then predicts with the expert of
minimum perturbed loss (“the leader”) where ties are broken uniformly at random. To achieve the
optimal worst-case regret as a function of the loss L∗ of the best expert in hindsight, the two types
of algorithms need to tune their learning rate or noise magnitude, respectively, as a function of L∗.

Instead of perturbing the losses of the experts with additive noise, we randomly set them to 0 or
1 before selecting the leader. We show that our perturbations are an instance of dropout — because
experts may be interpreted as features — although for non-binary losses the dropout probability
needs to be made dependent on the losses to get good regret bounds. We show that this simple,
tuning-free version of the FPL algorithm achieves two feats: optimal worst-case O(

√
L∗ lnK +

lnK) regret as a function of L∗, and optimal O(lnK) regret when the loss vectors are drawn i.i.d.
from a fixed distribution and there is a gap between the expected loss of the best expert and all
others.

A number of recent algorithms from the Hedge family (AdaHedge and FlipFlop) also achieve
this, but they employ sophisticated tuning regimes. The dropout perturbation of the losses of the
experts result in different noise distributions for each expert (because they depend on the expert’s
total loss) and curiously enough no additional tuning is needed: the choice of dropout probability
only affects the constants.
Keywords: Online learning, regret bounds, expert setting, Follow the Leader, Follow the Perturbed
Leader, Dropout

1. Introduction

We address the following online sequential prediction problem, known as prediction with expert
advice (see e.g. Littlestone and Warmuth, 1994; Vovk, 1998): in each trial t = 1, 2, . . . the algorithm
(randomly) chooses one of K experts as its predictor before being told the loss vector `t ∈ [0, 1]K

of all experts. Let LT,k be the cumulative loss of the k-th expert after T rounds, and let L∗ =
mink LT,k be the cumulative loss of the best expert. Then the goal for the algorithm is to minimize
the difference between its expected cumulative loss and L∗, which is known as the regret. In this
paper, we consider not just the standard worst-case setting, in which losses are generated by an
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adversary that tries to maximize the regret, but also a setting with easier data, in which loss vectors
are sampled from a fixed probability distribution.

The simplest algorithm is to Follow the Leader (FTL), i.e. to choose an expert of minimal
cumulative loss, with ties broken uniformly at random. This algorithm works well for probabilistic
data, but unfortunately its regret will grow linearly with L∗ and T on worst-case data, which means
that it is not able to learn. This problem can be avoided by the Weighted Majority algorithm or its
stratified version, the Hedge algorithm (Littlestone and Warmuth, 1994; Freund and Schapire, 1997),
which chooses expert k with probability proportional to the exponential weight exp(−ηLt−1,k) in
trial t, for some positive learning rate η. For the appropriate tuning of η, Hedge is guaranteed to
achieve sublinear regret of order O(

√
L∗ lnK + lnK), which is worst-case optimal (Cesa-Bianchi

et al., 1997; Jiazhong et al., 2013).
In addition to using exponential weights, there is a second method that can achieve sublinear

worst-case regret: perturb the cumulative losses of the experts by independent additive noise from
a fixed distribution and then apply FTL to the perturbed losses. For exponentially distributed noise
with its parameter appropriately chosen as a function of L∗, the resulting Follow the Perturbed
Leader (FPL) algorithm can also guarantee regret O(

√
L∗ lnK+lnK) (Kalai and Vempala, 2005).

FPL can also exactly simulate Hedge with any learning rate η by using log-exponential random
variables for the noise that are scaled as a function of η (Kuzmin and Warmuth, 2005; Kalai, 2005).

Instead of using additive noise, we perturb the loss vector of the current trial: for binary losses
`t ∈ {0, 1}K , we set each component `t,k to zero with fixed probability α. As we explain in
Section 2, this is equivalent to dropout (Hinton et al., 2012), because `t,k may be interpreted as the
k-th feature value at trial t. Surprisingly, this simple method achieves the same optimal regret bound
for any value of α ∈ (0, 1), without tuning.

We can also handle the general case when the loss vector `t takes values in the continuous range
[0, 1]K . In this case, we show that, on worst-case data, the vanilla dropout procedure that simply
sets coordinates of the loss vector to zero, gets a suboptimal Ω(K) dependence on the number of
experts K. However, by binarizing the dropout loss, by which we mean setting the loss `t,k of the
k-th expert to 1 with probability (1 − α)`t,k and to 0 otherwise, FPL again achieves the optimal
regret of O(

√
L∗ lnK + lnK).

Most Hedge or FPL algorithms depend on a learning rate or noise parameter η > 0, which
needs to be tuned in terms of L∗ to get the worst-case bound O(

√
L∗ lnK + lnK). A simple way

is to maintain an estimate of L∗ and tune η based on the current estimate. As soon as the loss of
the best expert exceeds the current estimate, the estimate is doubled and the algorithm re-tuned (see
e.g. Cesa-Bianchi et al., 1996, 1997). This method achieves the optimal regret for Hedge and the
related previous versions of FPL, albeit with a large constant factor.

Much fancier tuning methods were introduced by Auer et al. (2002). Amongst others, their
techniques have recently led to the AdaHedge and FlipFlop algorithms (van Erven et al., 2011;
de Rooij et al., 2014), which work well in the case when the loss vector is drawn i.i.d. from a fixed
distribution. In this case they achieve constant regret O(lnK) when there is a gap between the loss
of the best expert and the expected loss of all others. Surprisingly, we can show that FPL based on
the binarized dropout perturbations also achieves regret O(lnK) in the i.i.d. case, without the need
of any tuning.

On the other side of the spectrum, there exists another simple perturbation based on Random
Walk Perturbation (RWP) (Devroye et al., 2013): simply add an independent Bernoulli coin flip to
each loss component in each trial (without any tuning). We highly benefited from the techniques
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used in the analysis of this version of FPL. However, we can show that RWP already has Ω(
√
T )

regret in the noise-free case L∗ = 0, where T is the number of trials. In contrast, FPL with binarized
dropout perturbation achieves constant regret of order O(lnK). It seems that since the perturbation
of the loss of expert k depends on the total current loss of expert k, this makes FPL more adaptive
and no additional tuning is required.

Our research opens up a large number of questions regarding tuning-free methods for learning
with the linear loss.

1. Does FPL with dropout perturbations lead to efficient algorithms with close to optimal regret
for shifting experts or for various combinatorial expert settings such as the online shortest path
problem (Takimoto and Warmuth, 2003)? See (Devroye et al., 2013) for a similar discussion.

2. Are there other versions of dropout (such as dropping the entire loss vector with probability
α) that achieve the same feats as the dropout perturbations used in this paper?

3. There is a natural matrix generalization of the expert setting (Warmuth and Kuzmin, 2011).
Is there a version of dropout perturbation that avoids the expensive matrix decompositions
used by all algorithms with good regret bounds for this generalization (Hazan et al., 2010)
and replaces the matrix decompositions by maximum eigenvector calculations?

4. Wager et al. (2013) consider a Follow the Regularized Leader type algorithm for the batch
setting. They use a regularizer that is a variation of the squared Euclidean distance, which
they motivate as FTL on an approximation to the expected dropout loss. Although this use
of dropout is entirely different from ours, it would be interesting to know whether it leads to
novel regret or generalization bounds.

Outline The paper is organized as follows. In Section 2 we formally define dropout perturbation,
and explain how dropping loss components `t,k is the same as dropping features. Section 3 contains
the core of our paper: We prove that the regret of FPL with binarized dropout perturbations is
bounded by O(

√
L∗ lnK + lnK). Even though our algorithm is simple to state, this proof is quite

involved at this point. We construct a worst-case sequence of losses using a sequence of reductions.
This sequence consists of two regimes and we prove bounds for each regime separately, which
we then combine. We also clarify the difference to the RWP algorithm, which provably does not
achieve this bound. Then, in Section 4, we show that dropout perturbation automatically adapts to
i.i.d. loss vectors, for which it gets constant regret of order O(lnK). Some of the proof details are
postponed to the appendix.

2. Dropout Perturbation

Setting Online prediction with expert advice (Cesa-Bianchi and Lugosi, 2006) is formalized as
a repeated game between the algorithm and an adversary. At each iteration t = 1, . . . , T , the
algorithm randomly picks an expert k̂t ∈ {1, . . . ,K} according to a probability distribution wt =
(wt,1, . . . , wt,K) of its choice. Then, the loss vector `t ∈ [0, 1]K is revealed by the adversary, and
the algorithm suffers loss `t,k̂t . Let LT,k =

∑T
t=1 `t,k be the cumulative loss of expert k. Then

the goal of the algorithm is to minimize its regret, which is the difference between its expected
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Algorithm 1: Follow the Leader with Binarized Dropout Perturbation (BDP)
Parameter : Dropout probability α ∈ (0, 1)
Initialization: L̃0,k = 0 for all k = 1, . . . ,K.

for t = 1 to T do
Pick expert k̂t = argmink L̃t−1,k (with ties broken uniformly at random).
Observe loss vector `t and suffer loss `t,k̂t .

Draw ˜̀t,k according to (2.1), independently for all k.
Update L̃t,k = L̃t−1,k + ˜̀t,k for all k.

end

cumulative loss and the cumulative loss of the best expert chosen in hindsight:

RT = E
[ T∑
t=1

`t,k̂t

]
− L∗, where L∗ = min

k
LT,k.

The expectation is taken with respect to the random choices of the algorithm, i.e. E
[∑T

t=1 `t,k̂t

]
=∑T

t=1wt · `t. For the process that generates the losses, we will consider two different models: In
the worst-case setting, studied in Section 3, we need to guarantee small regret for every possible
sequence of losses `1, . . . , `T ∈ [0, 1]K , including the sequence that is the most difficult for the
algorithm; in the independent, identically distributed (i.i.d.) setting, considered in Section 4, we
assume the loss vectors `t ∈ [0, 1]K all come from a fixed, but unknown probability distribution,
which makes it possible to give stronger guarantees on the regret.

Follow the Perturbed Leader The general class of Follow the Perturbed Leader (FPL) algo-
rithms (Kalai and Vempala, 2005; Hannan, 1957) is defined by the choice

k̂t = argmin
k

{
Lt−1,k + ξt−1,k

}
,

where ξt−1,k is an additive random perturbation of the cumulative losses, which is chosen indepen-
dently for every expert k. Kalai and Vempala (2005) consider exponential and uniform distributions
for ξt−1,k that depend on a parameter η > 0, and in the RWP algorithm of (Devroye et al., 2013)
ξt−1,k ∼ Binomial(1/2, t)− t/2 is a binomial variable on t outcomes with success probability 1/2
that is centered around its mean.

Binarized Dropout Perturbations We introduce an instance of FPL based on binarized dropout
perturbation (BDP). For any dropout probability α ∈ (0, 1), the binarized dropout perturbation of
loss `t,k is defined as:

˜̀
t,k =

{
1 with probability (1− α)`t,k,
0 otherwise.

(2.1)

Let L̃T,k =
∑T

t=1
˜̀
t,k be the cumulative BDP loss for expert k. Then the BDP algorithm (see

Algorithm 1) chooses
k̂t = argmin

k
L̃t−1,k,
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with ties broken uniformly at random. BDP is conceptually very simple. Computationally, it might
be of interest that it does sparse updates, which only operate on non-zero features: if `t,k = 0, then˜̀
t,k = 0 as well, so, if one uses the same variable to store L̃t−1,k and L̃t,k, then no update to the

internal state of the algorithm is required. There is a parameter α, but this parameter only affects
the constants in the theorems, so simply setting it to α = 1/2 without any tuning already gives
good performance. BDP may be viewed as an instance of FPL with the additive data-dependent
perturbations

ξt−1,k = L̃t−1,k − Lt−1,k.

If the losses are binary, α = 1/2 and the cumulative loss grows approximately as Lt−1,k ≈ t−1 for
all experts k, then ξt−1,k is approximately distributed as Binomial(1/2, t−1)−(t−1). Consequently,
in this special case BDP is very similar to RWP because shifts by a constant do not change the
minimizer k̂t.

Standard Dropout Perturbations Dropout is normally defined as dropping hidden units or fea-
tures in a neural network while training the parameters of the network on batch data using Gradient
Descent (Hinton et al., 2012; Wang and Manning, 2013; Wager et al., 2013). In each iteration,
hidden units or features are dropped with a fixed probability. We are in the single neuron case, in
which each expert may be identified with a feature and the standard dropout perturbations (without
binarization) become1: ˜̀s

t,k =

{
`t,k with probability 1− α,
0 otherwise.

For binary losses, standard dropout perturbation is the same as BDP, but for general losses in the
interval [0, 1] they are different. We initially tried to prove our results for standard dropout pertur-
bation, but it turns out that this approach cannot achieve the right dependence on the number of
experts:

Theorem 2.1 Consider the FPL algorithm based on standard dropout perturbation with parameter
α ∈ (0, 1). Then, for any B > 0 and any K ≥ 2, there exists a loss sequence `1, . . . , `T with
`t ∈ [0, 1]K for which L∗ ≤ B, while the algorithm incurs regret at least 1

2(K − 1).

Proof Take ε and δ to be very small positive numbers specified later. The sequence is constructed as
follows. First, all experts except expert 1 incur losses ε for a number of iterations that is sufficiently
large that, with probability (w.p.) at least 1− δ, the algorithm will choose expert 1 as a leader. Note
that the required number of iterations depends on δ, K and α, but it does not depend on ε. Then,
expert 1 incurs unit loss (and so does the algorithm w.p. 1 − δ), while all other experts incur no
loss. Next, all experts except expert 2 incur losses ε for sufficiently many iterations that, w.p. at
least 1 − δ, the algorithm will choose expert 2 as a leader. Then, expert 2 incurs unit loss (and so
does the algorithm w.p. 1 − δ), while all other experts incur no loss. This process is then repeated
for k = 3, 4, . . . ,K − 1. At the end of the game, the algorithm incurred loss at least K − 1 w.p.

1. The loss w · `t in round t that we consider here is linear in the weights w. For a general convex loss of the form
ft(w · xt), where xt is the feature vector at round t, learning the weights w is often achieved by locally linearizing
the loss with a first-order Taylor expansion: ft(wt · xt) − ft(w · xt) ≤ wt · `t − w · `t for the surrogate loss
`t,k = f ′t(wt ·xt)xt,k. (See the discussion in Section 4.1 of Kivinen and Warmuth (1997) and Section 2.4 of Shalev-
Shwartz (2011).) Thus, experts correspond to features, and setting the k-th feature xt,k to 0 is equivalent to setting
`t,k to 0.
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at least 1 − (K − 1)δ, while expert K incurred no more loss than Tε. Taking δ small enough that
δ < 1

2(K−1) , the expected loss of the algorithm is at least 1
2(K−1). Finally, we take ε small enough

to satisfy 0 < Tε ≤ B, which gives L∗ ≤ B.

For the case that L∗ ≤ B ≤ lnK, a better bound of order O(
√
L∗ lnK + lnK) = O(lnK)

is possible. So we see that standard dropout leads to a suboptimal algorithm, and therefore we use
binarized dropout for the rest of the paper.

3. Regret Bounded in Terms of the Cumulative Loss of the Best Expert

We will prove that the regret for the BDP algorithm is bounded by O(
√
L∗ lnK + lnK):

Theorem 3.1 For any sequence of losses taking values in [0, 1] with mink LT,k = L∗, the regret of
the BDP algorithm is bounded by

RT ≤
1

α2(1− α)

(
4
√

2L∗ ln(3K) + 3 ln(1 + L∗)
)

+
ln(3K)

α(1− α)2
+

3

α
.

Since RWP is similar to BDP and is known to have regret bounded by O(
√
T lnK), one might try

to show that the regret for RWP satisfies the stronger bound O(
√
L∗ lnK + lnK) as well, but this

turns out to be impossible:

Theorem 3.2 For every T > 0, there exists a loss sequence `1, . . . , `T for which L∗ = 0, while
RWP suffers Ω(

√
T ) regret.

This theorem, proved in Section A.1 of the appendix, shows that there is a fundamental differ-
ence between RWP and BDP, and that the data dependent perturbations used in BDP are crucial to
obtaining a bound in terms of L∗.

We now turn to proving Theorem 3.1, starting with the observation that it is in fact sufficient to
prove the theorem only for binary losses:

Lemma 3.3 Let a ≥ 0 and b be any constants. If the regret for the BDP algorithm is bounded by

RT ≤ a
√
L∗ + b (3.1)

for all sequences of binary losses, then it also satisfies (3.1) for any sequence of losses with values
in the whole interval [0, 1].

Proof Let `1, . . . , `T be an arbitrary sequence of loss vectors with components `t,k taking values
in the whole interval [0, 1]. We need to show that the regret for this sequence satisfies (3.1). To this
end, let `′1, . . . , `

′
T be an alternative sequence of losses that is generated randomly from `1, . . . , `T

by letting

`′t,k =

{
0 with probability 1− `t,k,
1 with probability `t,k,

independently for all t and k. Accordingly, let a prime on any quantity denote that it is evaluated on
the alternative losses. For example, L′T,k =

∑T
t=1 `

′
t,k is the cumulative alternative loss for expert

k. Let wt be the probability distribution on experts induced by the internal randomization of the
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BDP algorithm, i.e. wt,k = P (k̂t = k), and let w′t be its counterpart on the alternative losses.
Then, because the BDP algorithm internally generates a binary sequence of losses with the same
probabilities as `′t,k, we have E`′1,...,`

′
t−1

[w′t] = wt, and, independently, E`′t
[`′t] = `t. Consequently,

E[w′t · `′t] = wt · `t and E[L̂′T ] = L̂T , where L̂T and L̂′T are the expected (with respect to the
internal randomization) cumulative losses of the algorithm on the original and the alternative losses,
respectively. Applying (3.1) for the alternative losses and taking expectations, it now follows by
Jensen’s inequality that

E[L̂′T ]− E[min
k
L′T,k] ≤ aE

[√
min
k
L′T,k

]
+ b ≤ a

√
E[min

k
L′T,k] + b

E[L̂′T ]−min
k

E[L′T,k] ≤ a
√

min
k

E[L′T,k] + b

L̂T −min
k
LT,k ≤ a

√
min
k
LT,k + b.

Thus, from now on, we assume the losses are binary, i.e. `t,k ∈ {0, 1}.
Following the standard approach for FPL algorithms of Kalai and Vempala (2005), we start by

bounding the regret by applying the so-called be-the-leader lemma to the perturbed losses. Like in
the analysis of Devroye et al. (2013), the result simplifies, because we can relate the expectation of
the perturbed losses back to the original losses:

Lemma 3.4 (be-the-leader) For any sequence of loss vectors `1, . . . , `T , the regret for the BDP
algorithm is bounded by

RT ≤
1

1− α

T∑
t=1

E
[˜̀
t,k̂t
− ˜̀t,k̂t+1

]
,

where ˜̀1, . . . , ˜̀T are the dropout perturbed losses and k̂t is the random expert chosen by the BDP
algorithm based on the perturbed losses before trial t.

Proof The expected regret is given by

RT =

T∑
t=1

E
[
`t,k̂t

]
−min

k
LT,k =

T∑
t=1

1

1− α
E
[˜̀
t,k̂t

]
−min

k

1

1− α
E
[
L̃t,k

]

≤ 1

1− α
E

 T∑
t=1

˜̀
t,k̂t
−min

k
L̃T,k

 ≤ 1

1− α
E

 T∑
t=1

(˜̀
t,k̂t
− ˜̀t,k̂t+1

) ,
where the second equality holds because k̂t only depends on ˜̀1, . . . , ˜̀t−1, which are independent
of ˜̀t, and E

[˜̀
t,k

]
= (1 − α)`t,k; and the last inequality is from the be-the-leader lemma, applied

to the perturbed losses, which shows that
∑T

t=1
˜̀
t,k̂t+1

≤ mink L̃T,k (Kalai and Vempala, 2005,
Equation 4), (Cesa-Bianchi and Lugosi, 2006, Lemma 3.1).
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Every single term in the bound from Lemma 3.4 may be bounded further as follows:

E
[˜̀
t,k̂t
− ˜̀t,k̂t+1

]
= (1− α)

K∑
k=1

Pr(k̂t = k 6= k̂t+1 | ˜̀t,k = `t,k) E
[˜̀
t,k̂t
− ˜̀t,k̂t+1

| k̂t = k 6= k̂t+1, ˜̀t,k = `t,k
]

≤ (1− α)
K∑
k=1

Pr(k̂t = k 6= k̂t+1 | ˜̀t,k = `t,k) `t,k. (3.2)

In the case considered by Kalai and Vempala (2005), this expression can be easily controlled, be-
cause, for their specific choice of perturbations, the conditional probability

Pm,k = Pr(k̂t+1 6= k | k̂t = k, ˜̀t,k = `t,k,min
j 6=k

L̃t,k = m)

is small, uniformly for allm (see the second display on p. 298 of their paper), which is easy to show,
because Pm,k depends only on the cumulative loss and the perturbations for a single expert k. Thus
their choice of perturbations is what makes their analysis simple. Unfortunately, in our case and also
for the RWP algorithm of Devroye et al. (2013), this simple approach breaks down, because, for the
perturbations we consider, the probability Pm,k may be large for some m (although such m will
have small probability). We therefore cannot use a uniform bound on Pm,k, and as a consequence
our proof is more complicated.

We also cannot follow the line of reasoning of Devroye et al., because it relies on the fact that, at
any time t, the perturbation for every expert has a standard deviation of order

√
t. For our algorithm

this is only true if the cumulative losses for the experts grow at least at a linear rate ct for some
absolute constant c > 0, which need not be the case in general. Put differently, if the expert losses
grow sublinearly, then our perturbations are too small to use the approach of Devroye et al..

Thus, we cannot use any of the existing approaches to control (3.2) for arbitrary losses, and,
instead, we proceed as follows:

1. Given any integers L1, . . . , LK , we find a canonical worst-case sequence of losses, which
maximizes the regret of the BDP algorithm among all binary loss sequences of arbitrary
length T such that LT,k = Lk for all experts k.

2. We bound (3.2) on this sequence.

3.1. The Canonical Worst-case Sequence

We will show that the worst-case regret is achieved for a sequence of unit vectors: let uk ∈ {0, 1}K
denote the unit vector (0, . . . , 0, 1, 0, . . . , 0) where the 1 is in the k-th position. This restriction to
unit vectors has been used before (Abernethy and Warmuth, 2010; Koolen and Warmuth, 2010),
but here we go one step further. We build a canonical worst-case sequence of unit vectors from the
following alternating schemes:

Definition 3.5 For any k ∈ {1, . . . ,K}, we call a sequence of loss vectors uk, . . . ,uK a k..K-
alternating scheme.
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To simplify the notation in the proofs, we will henceforth assume that the experts are numbered
from best to worst, i.e. L1 ≤ . . . ≤ LK . In the canonical worst-case sequence, alternating schemes
are repeated as follows:

Definition 3.6 (Canonical Worst-case Sequence) Let L1 ≤ . . . ≤ LK be nonnegative integers.
Among all sequences of binary losses of arbitrary length T such that LT,k = Lk for all k, we call
the following sequence the canonical worst-case sequence:

• First repeat the 1..K-alternating scheme L1 times;

• then repeat the 2..K-alternating scheme L2 − L1 times;

• then repeat the 3..K-alternating scheme L3 − L2 times;

• and so on until finally we repeat the K..K-alternating scheme (which consists of just the unit
vector uK) LK − LK−1 times.

Note that the canonical worst-case sequence always consists of LK alternating schemes. For exam-
ple, the canonical worst-case sequence for cumulative losses L1 = 2, L2 = 3, L3 = 6 consists of
the following L3 = 6 alternating schemes:1

0
0

 ,

0
1
0

 ,

0
0
1


︸ ︷︷ ︸
1..3-alternating scheme

,

1
0
0

 ,

0
1
0

 ,

0
0
1


︸ ︷︷ ︸
1..3-alternating scheme

,

0
1
0

 ,

0
0
1


︸ ︷︷ ︸

2..3-alternating scheme

,

0
0
1


︸ ︷︷ ︸
3..3-a.s.

,

0
0
1


︸ ︷︷ ︸
3..3-a.s.

,

0
0
1


︸ ︷︷ ︸
3..3-a.s.

.

For the BDP algorithm, the following three operations do not increase the regret of a sequence
of binary losses (see Section A.2 of the appendix for proofs):

1. If more than one expert gets loss in a single trial, then we split that trial into K trials in which
we hand out the losses for the experts in turn (Lemma A.1).

2. If, in some trial, all experts get loss 0, then we remove that trial (Lemma A.2).

3. If, in two consecutive trials t and t+1, `t = uk and `t+1 = uk′ for some experts k 6= k′ such
that Lt−1,k ≥ Lt−1,k′ , then we swap the trials, setting `t = uk′ and `t+1 = uk (Lemma A.3).

These operations can be used to turn any sequence of binary losses into the canonical worst-case
sequence:

Lemma 3.7 Let L1 ≤ . . . ≤ LK be nonnegative integers. Among all sequences of binary losses of
arbitrary length T such that LT,k = Lk for all k, the regret of the BDP algorithm is (non-uniquely)
maximized by its regret on the canonical worst-case sequence.

Proof Start with an arbitrary sequence of binary losses such that LT,k = Lk. By repeated appli-
cation of operations 1 and 2, we turn this loss sequence into a sequence of unit vectors. We then
repeatedly apply the swapping operation 3 to any trials t and t+1 such that `t = uk and `t+1 = uk′

for k 6= k′ where we have strict inequality Lt−1,k > Lt−1,k′ . We do this until no such consecu-
tive trials remain. This arrives at the canonical worst-case sequence except that the unit vectors
within each alternating scheme may be permuted. However, by applying property 3 for the case
Lt−1,k = Lt−1,k′ , we can sort each alternating scheme into the canonical order.

Together with Lemma 3.3, the previous lemma implies that we just need to bound the regret of the
BDP algorithm on the canonical worst-case loss sequence.

9
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3.2. Regret on the Canonical Worst-case Sequence

By Lemma 3.4 and (3.2), the regret for the BDP algorithm is bounded by

RT ≤
T∑
t=1

K∑
k=1

Pr(k̂t = k 6= k̂t+1 | ˜̀t,k = `t,k)`t,k. (3.3)

On the canonical worst-case sequence, `t,k will be zero for all but a single expert k, which we can
exploit to abbreviate notation: let k̂+t denote the leader (with ties still broken uniformly at random)
on the perturbed cumulative losses if we would add 1 unit of loss to the perturbed cumulative loss
L̃t−1,k̂t of the expert selected by the BDP algorithm; and define the event

At =
{
k̂t = k 6= k̂+t

}
for the expert k such that `t,k = 1.

Then (3.3) simplifies to

RT ≤
T∑
t=1

Pr(At). (3.4)

We split the LT,K alternating schemes of the canonical worst-case sequence into two regimes,
and use different techniques to bound Pr(At) in each case. Let r ≤ LT,K − LT,1 be some nonneg-
ative integer, which we will optimize later:

1. The first regime consists of the initial LT,1 + r alternating schemes, where the difference in
the cumulative loss between all experts is relatively small (at most r).

2. The second regime consists of the remaining LT,K − r−LT,1 alternating schemes. Now any
expert that is still receiving losses will have a cumulative loss that is at least r larger than
the cumulative loss of expert 1, and r will be chosen large enough to ensure that, with high
probability, no such expert will the leader.

The First Regime

Define the lead pack
Dt = {k : L̃t−1,k < min

j
L̃t−1,j + 2},

which is the random set of experts that might potentially be the leader in trials t or t+1. As observed
by Devroye et al. (2013), there can only be a leader change at time t if Dt contains more than one
expert. Our goal will be to control the probability that this happens using the following lemma
(proved in Section A.3.1), which is an adaptation of Lemma 3 of Devroye et al.:

Lemma 3.8 Suppose Lt−1,k ≥ L > 0 for all k. Then

Pr(|Dt| > 1) ≤ 1

α(1− α)

(√2 lnK

L
+

3

L

)
.

Unfortunately, we cannot apply Lemma 3.8 immediately: in the first regime there are K trials for
each of the first LT,1 repetitions of the 1..K-alternating scheme, and applying Lemma 3.8 to all of
these trials would already give a bound of order K

√
LT,1 lnK, which overshoots the right rate by

a factor of K. To avoid this factor, we only apply the lemma once per alternating scheme, which is
made possible by the following result:

10
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Lemma 3.9 Suppose an alternating scheme starts at trial s and ends at trial v. Then

v∑
t=s

Pr(At) ≤
1

α
(v − s+ 1) Pr(Av+1) ≤

1

α
Pr(k̂v+1 6= k̂+v+1) ≤

1

α
Pr(|Dv+1| > 1).

Proof The first inequality follows from Lemmas A.4 and A.5 in Section A.3.2 of the appendix,
which show that

Pr(As) ≤ Pr(As+1) ≤ . . . ≤ Pr(Av) ≤
1

α
Pr(Av+1).

Let k = K − (v − s) be the first expert in the alternating scheme. At time v + 1 a new alternating
scheme will start, so that the situation is entirely symmetrical between all experts that are part of the
current alternating scheme:

Pr(Av+1) = Pr(k̂v+1 = k′ 6= k̂+v+1) for all k′ ∈ {k, . . . ,K}.

This implies the second inequality:

(v − s+ 1) Pr(Av+1) =
K∑
k′=k

Pr(k̂v+1 = k′ 6= k̂+v+1)

= Pr(k̂v+1 ∈ {k, . . . ,K}, k̂v+1 6= k̂+v+1) ≤ Pr(k̂v+1 6= k̂+v+1).

Finally, the last inequality follows by definition of the lead pack.

Applying either Lemma 3.8 or the trivial bound Pr(|Dt| > 1) ≤ 1 only to the trials v + 1 that
immediately follow an alternating scheme, we obtain the following result for the first regime of the
canonical worst-case sequence (see Section A.3.3 for the proof):

Lemma 3.10 Suppose the first regime ends with trial v. Then

v∑
t=1

Pr(At) ≤
1

α

(
1

α(1− α)

(
2
√

2LT,1 lnK + 3 ln(1 + LT,1)
)

+ r + 1

)
.

The Second Regime

We proceed to bound the probability of the event At during the second regime of the canonical
worst-case sequence, using that

Pr(At) ≤ Pr(k̂t = k) for the expert k such that `t,k = 1.

This probability will be easy to control, because during the second regime the difference in cumula-
tive loss between expert 1 and the experts that are still receiving losses, is sufficiently large that the
BDP algorithm will prefer expert 1 over these experts with high probability.

Lemma 3.11 Suppose the second regime starts in trial s. Then

T∑
t=s

Pr(At) ≤ K
2LT,1 + 3r

2(1− α)2r
exp

(
−2(1− α)2r2

2LT,1 + r

)
.

11
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Proof Let t be a trial during the L-th alternating scheme, for some L in the second regime, and let
kt be the expert that gets loss in trial t. Then, by Hoeffding’s inequality,

Pr(At) ≤ Pr(k̂t = kt) ≤ Pr
(
L̃t−1,kt ≤ L̃t−1,1

)
≤ exp

(
−2(1− α)2(L− LT,1 − 1)2

L+ LT,1 − 1

)

= exp

(
−2(1− α)2(L− LT,1 − 1)2

2LT,1 + L− LT,1 − 1

)
≤ exp

(
−2(1− α)2r(L− LT,1 − 1)

2LT,1 + r

)
,

where the last inequality follows from the fact that x
a+x is increasing in x for x ≥ 0 and a > 0. Let

s(L) and v(L) denote the first and the last trial in the L-th alternating scheme. Then, summing up
over all trials in the second regime, we get

T∑
t=s

Pr(At) =

LT,K∑
L=LT,1+r+1

v(L)∑
t=s(L)

Pr(At) ≤
LT,K∑

L=LT,1+r+1

v(L)∑
t=s(L)

exp

(
−2(1− α)2r(L− LT,1 − 1)

2LT,1 + r

)

≤ K
LT,K∑

L=LT,1+r+1

exp

(
−2(1− α)2r(L− LT,1 − 1)

2LT,1 + r

)
= K

LT,K−LT,1−1∑
x=r

exp

(
−2(1− α)2rx

2LT,1 + r

)

≤ K exp

(
−2(1− α)2r2

2LT,1 + r

)
+K

∞∑
x=r+1

exp

(
−2(1− α)2rx

2LT,1 + r

)
.

Here the second term is bounded by:∫ ∞
r

exp

(
−2(1− α)2rx

2LT,1 + r

)
dx =

2LT,1 + r

2(1− α)2r
exp

(
−2(1− α)2r2

2LT,1 + r

)
.

Putting things together we obtain

T∑
t=s

Pr(At) ≤ K exp

(
−2(1− α)2r2

2LT,1 + r

)
+K

2LT,1 + r

2(1− α)2r
exp

(
−2(1− α)2r2

2LT,1 + r

)

≤ K
2LT,1 + 3r

2(1− α)2r
exp

(
−2(1− α)2r2

2LT,1 + r

)
,

which was to be shown.

The First and the Second Regime Together Combining the bounds for the first and second
regimes from Lemmas 3.10 and 3.11, and optimizing r, we obtain the following result, which is
proved in Section A.3.4 of the appendix:

Lemma 3.12 On a canonical worst-case sequence of any length T for which LT,1 = L∗,

T∑
t=1

Pr(At) ≤
1

α2(1− α)

(
4
√

2L∗ ln(3K) + 3 ln(1 + L∗)
)

+
ln(3K)

α(1− α)2
+

3

α
.

Plugging this bound into (3.4) completes the proof of Theorem 3.1.
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4. Constant Regret on IID Losses

In this section we show that our BDP algorithm has optimal O(lnK) regret when the loss vectors
are drawn i.i.d. from a fixed distribution and there is a fixed gap γ between the expected loss of the
best expert and all others.

Theorem 4.1 Let γ ∈ (0, 1] and δ ∈ (0, 1] be constants, and let k∗ be a fixed expert. Suppose the
loss vectors `t are independent random variables such that the expected differences in loss satisfy

min
k 6=k∗

E[`t,k − `t,k∗ ] ≥ γ for all t. (4.1)

Then, with probability at least 1− δ, the regret of the BDP algorithm is bounded by a constant:

RT ≤
8

(1− α)2γ2
ln

8K

(1− α)2γ2δ
+ 3. (4.2)

As discussed in the proof in Section B.1, it is possible to improve the dependence on γ at the
cost of getting a more complicated expression.
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Additional Material for “Follow the Leader with Dropout Perturbations”

Appendix A. Proof Details for Section 3

A.1. Proof of Theorem 3.2

Proof We prove the theorem by explicit construction of the sequence. We take K = 2 experts.
The loss sequence is such that expert 1 never gets any loss (hence L∗ = LT,1 = 0), while expert 2
gets losses ε1, ε2, . . . , εT , where εt = 1√

t
. This means that its cumulative loss Lt,2 =

∑t
s=1

1√
s

is

bounded by 2
√
t+ 1 − 2 ≤ Lt,2 ≤ 2

√
t+ 1. We now bound the total loss of the RWP algorithm

from below.
Consider the situation just before trial t. Then expert 2 has accumulated at most Lt−1,2 ≤ 2

√
t

loss so far. The expected loss of the algorithm in this iteration is εt times the probability that
expert 1 becomes the leader. This probability is at least P (ξt−1,1 > ξt−1,2 + 2

√
t), where ξt,k ∼

Binomial(1/2, t) − t/2. Consequently, Ut = ξt−1,1 − ξt−1,2 + t is distributed as Binomial(12 , 2t).
Therefore, the expected loss of the algorithm in iteration t is lower bounded by

E
[
`t,k̂t

]
≥ εtP (Ut > 2

√
t+ t) = εtP

(
Ut − t√
t/2

> 2
√

2

)
.

We first give a rough idea of what happens. Due to Central Limit Theorem, the probability on the
right hand side is approximately P (Y > 2

√
2), where Y ∼ N(0, 1). Summing over trials we get

that the expected cumulative loss of the algorithm is approximately LT,2 ·P (Z > 2
√

2) = Ω(
√
T ).

To be more precise, we use the Berry-Esséen theorem, which says that forX ∼ Binomial(n, p),
and Y ∼ N(0, 1), for any z,∣∣∣∣∣∣P

(
X − np√
np(1− p)

> z

)
− P (Y > z)

∣∣∣∣∣∣ ≤ f(p)√
n
,

where f(p) depends on p, but not on n. Using this fact with n = 2t and p = 1
2 results in

P

(
Ut − t√
t/2

> 2
√

2

)
− P (Y > 2

√
2) ≥ − c√

t

for some constant c. Therefore the expected cumulative loss of the algorithm can be lower bounded
by

P (Y > 2
√

2)LT,2 −
T∑
t=1

εt
c√
t
≥ P (Y > 2

√
2)LT,2 − c(lnT + 1) = Ω(

√
T ),

which proves the theorem.
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A.2. Operations to Reduce to the Canonical Worst-case Sequence

In this section we prove that the three operations on losses from Section 3.1 can only ever increase
the regret of the BDP algorithm. As proved in Lemma 3.7, this implies that the canonical worst-
case sequence maximizes the regret among all sequences of binary losses with the same cumulative
losses L1, . . . , LK .

THE UNIT RULE HOLDS

We can assume without loss of generality that in every round exactly one expert gets loss. We
call this the unit rule. It follows from two results, which will be proved in this subsection: first,
Lemma A.1 shows that, if multiple experts get loss in the same trial, then the regret can only increase
if we split that trial into multiple consecutive trials in which the experts get their losses in turn.
Secondly, it is shown by Lemma A.2 that rounds in which all experts get zero loss do not change
the regret, and can therefore be ignored in the analysis. (Although we only need them for binary
losses, both lemmas hold for general losses with values in [0, 1].)

Lemma A.1 (One Expert Gets Loss Per Trial) Suppose `1, . . . , `t−1, `t, `t+1, . . . , `T is a sequence
of losses. Now consider the alternative sequence of losses `1, . . . , `t−1, `

1
t , . . . , `

K
t , `t+1, . . . , `T

with

`kt,k′ =

{
`t,k if k′ = k,
0 otherwise,

for k, k′ = 1, . . . ,K. Then the regret of the BDP algorithm on the original lossesRT never exceeds
its regret on the alternative lossesR′T :

RT ≤ R′T .

Proof The cumulative loss of the best expert L∗ is the same on both sequences of losses, so we only
need to consider the cumulative loss of the BDP algorithm. On trials 1, . . . , t− 1 and t+ 1, . . . , T
the algorithm’s probability distributions on experts are the same for both sequences of losses, so we
only need to compare its expected loss on `t with its expected losses on `1t , . . . , `

K
t . To this end, we

observe that the algorithm’s probability of choosing expert k given losses `1, . . . , `t−1 is no more
than its probability of choosing that expert given losses `1, . . . , `t−1, `1t , . . . , `

k−1
t , because during

the trials `1t , . . . , `
k−1
t expert k has received no loss whereas experts 1, . . . , k − 1 have respectively

received losses `t,1, . . . , `t,k−1, which implies that the algorithm’s expected loss can only increase
on the alternative sequence of losses.

Lemma A.2 (Ignore All-zero Loss Vectors) Suppose `1, . . . , `t−1, `t, `t+1, . . . , `T is a sequence
of losses such that `t,k = 0 for all k. Then the regret of the BDP algorithm is the same on the
subsequence `1, . . . , `t−1, `t+1, . . . , `T with trial t removed.

Proof Both the best expert and the BDP algorithm have loss 0 on trial t. Trial t also does not
influence the actions of the BDP algorithm for any trial t′ 6= t. Hence the regret does not change if
trial t is removed.
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SWAPPING ARGUMENT

We call a loss vector `t a unit loss if there exists a single k such that `t,k = 1 while `t,k′ = 0 for all
k′ 6= k.

Let k̂t denote the expert that is randomly selected by the BDP algorithm (based on some past
losses `1, . . . , `t−1) to predict trial t.

Let Binomial(p, n) denote the distribution of a binomial random variable on n trials with success
probability p.

Lemma A.3 (Swapping) Suppose that `1, . . . , `t−1, `t, `t+1, `t+2, . . . , `T is a sequence of unit
losses with `t,k = `t+1,k′ = 1 for k 6= k′ and that Lt−1,k′ ≤ Lt−1,k. Now consider the alternative
sequence of losses `1, . . . , `t−1, `t+1, `t, `t+2, . . . , `T in which `t and `t+1 are swapped. Then the
regret of the BDP algorithm on the original losses RT never exceeds its regret on the alternative
lossesR′T :

RT ≤ R′T .

Proof The cumulative loss of the best expert L∗ is the same on both sequences of losses, so we only
need to consider the cumulative loss of the BDP algorithm. On trials 1, . . . , t− 1 and t+ 1, . . . , T
the algorithm’s weights are the same for both sequences of loss, so we only need to compare its loss
on `t, `t+1 in the original sequence with its loss on `t+1, `t in the alternative sequence.

Let Pr and Pr ′ respectively denote probability with respect to the algorithm’s randomness on
the original and on the alternative losses. Since we assumed unit losses, we need to show that

Pr(k̂t = k) + Pr(k̂t+1 = k′) ≤ Pr ′(k̂t = k′) + Pr ′(k̂t+1 = k). (A.1)

As will be made precise below, we can express all these probabilities in terms of binomial ran-
dom variables L̃t−1,j ∼ Binomial(1 − α,Lt−1,j) for j = 1, . . . ,K that represent the cumula-
tive perturbed losses for the experts after t − 1 trials, and an additional Bernoulli variable X ∼
Binomial(1 − α, 1) that represents whether the next loss is dropped out (depending on context, X
is either ˜̀t,k or ˜̀t,k′). It will also be convenient to define the derived values

M = min
j 6=k,k′

L̃t−1,j , C = |{j 6= k, k′ : L̃t−1,j = M}|,

which represent the minimum perturbed loss and the number of experts achieving that minimum
among all experts except k and k′. We will show that

Pr(k̂t = k |M = m,C = c,X = x) + Pr(k̂t+1 = k′ |M = m,C = c,X = x)

− Pr ′(k̂t = k′ |M = m,C = c,X = x)− Pr ′(k̂t+1 = k |M = m,C = c,X = x) (A.2)
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is nonpositive for all m, c and x, from which (A.1) follows. In terms of the random variables we
have defined, these conditional probabilities are

Pr(k̂t = k |M = m,C = c,X = x) = Pr(L̃k < L̃k′ , L̃k < m) + Pr(L̃k = L̃k′ < m)
1

2

+ Pr(L̃k = m < L̃k′)
1

c+ 1
+ Pr(L̃k = m = L̃k′)

1

c+ 2
,

Pr(k̂t+1 = k′ |M = m,C = c,X = x) = Pr(L̃k′ < L̃k + x, L̃k′ < m) + Pr(L̃k′ = L̃k + x < m)
1

2

+ Pr(L̃k′ = m < L̃k + x)
1

c+ 1
+ Pr(L̃k′ = m = L̃k + x)

1

c+ 2
,

Pr ′(k̂t = k′ |M = m,C = c,X = x) = Pr(L̃k′ < L̃k, L̃k′ < m) + Pr(L̃k′ = L̃k < m)
1

2

+ Pr(L̃k′ = m < L̃k)
1

c+ 1
+ Pr(L̃k′ = m = L̃k)

1

c+ 2
,

Pr ′(k̂t+1 = k |M = m,C = c,X = x) = Pr(L̃k < L̃k′ + x, L̃k < m) + Pr(L̃k = L̃k′ + x < m)
1

2

+ Pr(L̃k = m < L̃k′ + x)
1

c+ 1
+ Pr(L̃k = m = L̃k′ + x)

1

c+ 2
,

where for notational convenience, we skipped the subscript t− 1 in L̃t−1,j for all j. For x = 0, we
see immediately that (A.2) is 0, so it remains only to consider the case x = 1. For that case, (A.2)
simplifies to

Pr(L̃k < L̃k′ , L̃k < m)− Pr(L̃k < L̃k′ + 1, L̃k < m)

+ Pr(L̃k′ < L̃k + 1, L̃k′ < m)− Pr(L̃k′ < L̃k, L̃k′ < m)

+
1

2

(
Pr(L̃k′ = L̃k + 1 < m)− Pr(L̃k = L̃k′ + 1 < m)

)
+

1

c+ 1

(
Pr(L̃k = m < L̃k′)− Pr(L̃k = m < L̃k′ + 1)

)
+

1

c+ 1

(
Pr(L̃k′ = m < L̃k + 1)− Pr(L̃k′ = m < L̃k)

)
+

1

c+ 2

(
Pr(L̃k′ = m = L̃k + 1)− Pr(L̃k = m = L̃k′ + 1)

)
= −Pr(L̃k = L̃k′ < m) + Pr(L̃k′ = L̃k < m)

+
1

2

(
Pr(L̃k′ = L̃k + 1 < m)− Pr(L̃k = L̃k′ + 1 < m)

)
− 1

c+ 1

(
Pr(L̃k = m = L̃k′) + Pr(L̃k′ = m = L̃k)

)
+

1

c+ 2

(
Pr(L̃k′ = m = L̃k + 1)− Pr(L̃k = m = L̃k′ + 1)

)
=

1

2

m−1∑
a=1

(
Pr(L̃k′ = a = L̃k + 1)− Pr(L̃k = a = L̃k′ + 1)

)
+

1

c+ 2

(
Pr(L̃k′ = m = L̃k + 1)− Pr(L̃k = m = L̃k′ + 1)

)
.
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To prove that this is nonpositive, it is sufficient to show that

Pr(L̃k′ = a = L̃k + 1)− Pr(L̃k = a = L̃k′ + 1) ≤ 0 (A.3)

for all nonnegative integers a. Abbreviate L = Lt−1,k and L′ = Lt−1,k′ . If a = 0 or a > L′, then
the left-most probability is 0 and (A.3) holds. Alternatively, for a ∈ {1, . . . , L′}, the left-hand side
of (A.3) is equal to((

L′

a

)(
L

a− 1

)
−
(

L′

a− 1

)(
L

a

))
(1− α)2a−1αL+L

′−2a+1,

so it is enough to show that (
L′

a

)(
L

a− 1

)
−
(

L′

a− 1

)(
L

a

)
≤ 0.

But this holds, because the left-hand side is equal to

L′!L!

a!(L′ − a)!(a− 1)!(L− a+ 1)!
− L′!L!

(a− 1)!(L′ − a+ 1)!a!(L− a)!

=
L′!L!

a!(L′ − a+ 1)!(a− 1)!(L− a+ 1)!

(
(L′ − a+ 1)− (L− a+ 1)

)
=

L′!L!

a!(L′ − a+ 1)!(a− 1)!(L− a+ 1)!

(
L′ − L

)
≤ 0,

because L′ = Lt−1,k′ ≤ Lt−1,k = L by assumption.

A.3. Bounding Leader Changes on the Canonical Worst-case Sequence

A.3.1. PROOF OF LEMMA 3.8

Proof Within this proof, abbreviate L̃k = L̃t−1,k. Let Vk ∼ Binomial(1 − α,L) and Wk ∼
Binomial(1− α,Lt−1,k − L), and assume L̃k = Vk +Wk. Also define p(v) = Pr(V1 = v). Then

Pr(|D| = 1) =
K∑
k=1

Pr(min
j 6=k

L̃j ≥ L̃k + 2) =
K∑
k=1

L∑
v=0

p(v) Pr(min
j 6=k

L̃j ≥ v +Wk + 2)

≥
L−2∑
v=0

K∑
k=1

p(v) Pr(min
j 6=k

L̃j ≥ v +Wk + 2) =

L∑
v=2

K∑
k=1

p(v − 2) Pr(min
j 6=k

L̃j ≥ v +Wk)

=
L∑
v=2

p(v − 2)

p(v)

K∑
k=1

p(v) Pr(min
j 6=k

L̃j ≥ v +Wk)︸ ︷︷ ︸
f(v)

. (A.4)
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Let S = {k : L̃k ≤ minj L̃j} be the set of leaders. Then

f(v) =

K∑
k=1

Pr(min
j 6=k

L̃j ≥ L̃k, Vk = v) ≥ Pr(∃k : min
j 6=k

L̃j ≥ L̃k, Vk = v)

= Pr(∃k : min
j
L̃j ≥ L̃k, Vk = v) ≥ Pr(min

k∈S
Vk = v),

where the first inequality follows by the union bound, and the second because the latter event implies
the former. We remark that S is never empty, so that the minimum is always well-defined. We also
have

p(v − 2)

p(v)
=

(
L
v−2
)
(1− α)v−2αL−v+2(
L
v

)
(1− α)vαL−v

=
α2

(1− α)2
· v(v − 1)

(L− v + 2)(L− v + 1)
.

Let g(v) = max{ v(v−1)
(L−v+2)(L−v+1) , 0}. Then, since g(0) = g(1) = 0, (A.4) is at least as large as

α2

(1− α)2

L∑
v=0

g(v) Pr(min
k∈S

Vk = v) =
α2

(1− α)2
E[g(V )]

for V = mink∈S Vk. The function g(v) may be written as

g(v) = h1(v)h2(v) for h1(v) =
v

L− v + 2
, h2(v) =

v − 1

L− v + 1
.

For v ≥ 1, both h1 and h2 are nonnegative, nondecreasing and convex, which implies that g(v) also
has these properties. Moreover, since g(v) = 0 for v ∈ [0, 1] all properties extend to all v ≥ 0.
Suppose that E[V ] ≥ (1 − α)L − B for some B ≥ 0. Then Jensen’s inequality and monotonicity
of g imply that

α2

(1− α)2
E[g(V )] ≥ α2

(1− α)2
g(E[V ]) ≥ α2

(1− α)2
g
(

(1− α)L−B
)

≥

(
αL− α

1−αB
)(
αL− α

1−α(B + 1)
)

(αL+B + 2)(αL+B + 1)
=

(
1−

1
1−αB + 2

αL+B + 2

)(
1−

1
1−α(B + 1)

αL+B + 1

)

≥ 1−
1

1−αB + 2

αL+B + 2
−

1
1−α(B + 1)

αL+B + 1
≥ 1− 2B + 3

(1− α)αL
.

Putting everything together, we find that

Pr(|Dt| > 1) = 1− Pr(|Dt| = 1) ≤ 2B + 3

(1− α)αL
, (A.5)

so that it remains to find a good bound B. Let Yk = L− Vk ∼ Binomial(α,L). Then

−E[V ] + (1− α)L = E
[

max
k∈S

(
(1− α)L− Vk

)]
≤ E

[
max
k

(
(1− α)L− Vk

)]
= E

[
max
k

(
Yk − αL

)]
≤
√
L lnK

2
=: B,

where the last inequality follows by a standard argument for sub-Gaussian random variables (see,
for example, Lemmas A.13 and A.1 in the textbook by Cesa-Bianchi and Lugosi (2006)). Plugging
this bound into (A.5) leads to the desired result.
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A.3.2. PROOF DETAILS FOR LEMMA 3.9

Suppose that t is a trial during the first regime in which expert k gets a unit of loss. First we consider
the case that k is not the last expert in a round of the alternating scheme:

Lemma A.4 Suppose t is a trial during the first LT,1 + r repetitions of the alternating scheme in
which `t,k = 1 for some k < K. Then

Pr(At) ≤ Pr(At+1).

Proof For j 6= k, k + 1, let L̃t−1,j ∼ Binomial(1 − α,Lt−1,j) be the perturbed cumulative losses
for all experts except experts k and k + 1. Also define

M = min
j 6=k,k+1

L̃t−1,j , C = |{j 6= k, k + 1: L̃t−1,j = M}|.

By definition of the canonical worst-case sequence, expert k gets a unit of loss in trial t, expert
k + 1 will get a unit of loss in trial t + 1, and Lt−1,k = Lt−1,k+1. We will construct the perturbed
cumulative losses for experts k and k + 1 from the following variables: V,W ∼ Binomial(1 −
α,Lt−1,k) and X ∼ Binomial(1 − α, 1). To express Pr(At), we define the perturbed cumulative
losses L̃t−1,k = V and L̃t−1,k+1 = W , but to express Pr(At+1) we let L̃t−1,k = W + X and
L̃t−1,k+1 = V . This leads to

Pr(At |M = m,C = c)

= Pr(V = m− 1,W > m)
c

c+ 1
+ Pr(V = m− 1,W = m)

c+ 1

c+ 2

+ Pr(V = m,W > m)
1

c+ 1
+ Pr(V = m,W = m)

1

c+ 2

+
(

Pr(V = W − 1,W < m) + Pr(V = W,W < m)
)1

2
,

Pr(At+1 |M = m,C = c)

= Pr(V = m− 1,W +X > m)
c

c+ 1
+ Pr(V = m− 1,W +X = m)

c+ 1

c+ 2

+ Pr(V = m,W +X > m)
1

c+ 1
+ Pr(V = m,W +X = m)

1

c+ 2

+
(

Pr(V = W +X − 1,W +X < m) + Pr(V = W +X,W +X < m)
)1

2

for any m and c. Thus

Pr(At+1 |M = m,C = c)− Pr(At |M = m,C = c)

= α
(

Pr(At+1 |M = m,C = c,X = 0)− Pr(At |M = m,C = c,X = 0)
)

+ (1− α)
(

Pr(At+1 |M = m,C = c,X = 1)− Pr(At |M = m,C = c,X = 1)
)

= (1− α)
(

Pr(At+1 |M = m,C = c,X = 1)− Pr(At |M = m,C = c)
)
, (A.6)
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where

Pr(At+1 |M = m,C = c,X = 1)− Pr(At |M = m,C = c)

=
(

Pr(V = m− 1,W + 1 > m)− Pr(V = m− 1,W > m)
) c

c+ 1

+
(

Pr(V = m− 1,W + 1 = m)− Pr(V = m− 1,W = m)
)c+ 1

c+ 2

+
(

Pr(V = m,W + 1 > m)− Pr(V = m,W > m)
) 1

c+ 1

+
(

Pr(V = m,W + 1 = m)− Pr(V = m,W = m)
) 1

c+ 2

+
(

Pr(V = W,W + 1 < m) + Pr(V = W + 1,W + 1 < m)

− Pr(V = W − 1,W < m)− Pr(V = W,W < m)
)1

2
.

Using that V and W have the same distribution, so that we may switch their roles, this simplifies to

Pr(At+1 |M = m,C = c,X = 1)− Pr(At |M = m,C = c)

= Pr(V = m− 1,W = m)
( c

c+ 1
− c+ 1

c+ 2
+

1

c+ 2

)
+ Pr(V = W = m− 1)

(c+ 1

c+ 2
− 1

2

)
+ Pr(V = W = m)

( 1

c+ 1
− 1

c+ 2

)
≥ 0.

Substituting back into (A.6), we see that

Pr(At+1 |M = m,C = c)− Pr(At |M = m,C = c) ≥ 0 for all m and c.

Hence Pr(At+1)− Pr(At) ≥ 0 also holds unconditionally, from which the lemma follows.

Secondly, we consider the case that k is the last expert in a round of the alternating scheme:

Lemma A.5 Suppose t is a trial during the first LT,1 + r repetitions of the alternating scheme in
which `t,K = 1. Then

Pr(At) ≤
1

α
Pr(At+1).

(To make Pr(At+1) well-defined in case t = T , we adopt the convention that expert K gets a unit
of loss in trial T + 1.)
Proof Let k be the expert that gets a unit of loss in trial t + 1 so that `t+1,k = 1 and `t+1,k′ = 0
for k′ 6= k. Trial t + 1 is at the beginning of a round of the alternating scheme, so by symmetry
between the experts that are part of the alternating scheme, Pr(At+1) would remain the same if we
changed `t+1 so that `t+1,K = 1 and `t+1,k′ = 0 for all k′ 6= K. But then we would have

Pr(At+1 | ˜̀t,K = 0) = Pr(At),

22



DROPOUT PERTURBATIONS

where ˜̀t,K is the perturbed loss for expert K in round t, and consequently

Pr(At+1) = αPr(At+1 | ˜̀t,K = 0) + (1− α) Pr(At+1 | ˜̀t,K = 1)

≥ αPr(At+1 | ˜̀t,K = 0) = αPr(At),

from which the lemma follows.

A.3.3. PROOF OF LEMMA 3.10

Proof Let v(L) denote the last trial in the L-th alternating scheme. Then, by Lemmas 3.9, 3.8 and
the trivial bound Pr(|Dv(L)+1| > 1) ≤ 1,

v∑
t=1

Pr(At) ≤
1

α

LT,1+r∑
L=1

Pr(|Dv(L)+1| > 1) ≤ 1

α

 1

α(1− α)

LT,1∑
L=2

(√2 lnK

L
+

3

L

)
+ r + 1


≤ 1

α

(
1

α(1− α)

(
2
√

2LT,1 lnK + 3 ln(1 + LT,1)
)

+ r + 1

)
,

where the last step follows from the fact that
∑LT,1

L=2 f(L) ≤
∫ LT,1

1 f(L)dL for any nonincreasing
function f .

A.3.4. PROOF OF LEMMA 3.12

Here we show how to optimize r to obtain Lemma 3.12:
Proof Abbreviate f(r) = 2(1−α)2r2

2L∗+r . Then the bound for the second regime from Lemma 3.11 can
be written as

T∑
t=s

Pr(At) ≤
Kr

f(r)
· 2L∗ + 3r

2L∗ + r
e−f(r) ≤ 3Kr

f(r)
e−f(r).

We will choose r to be the smallest nonnegative integer such that f(r) ≥ ln(3K) ≥ 1, so that

T∑
t=s

Pr(At) ≤ r. (A.7)

(It is no problem if this makes r exceed its maximal value LT,K − LT,1, because in that case
the second regime is empty, so (A.7) still holds, and since the bound for the first regime from
Lemma 3.10 is increasing in r it also still holds.)

To find r, we need to take the largest solution to

2(1− α)2r2

2L∗ + r
= ln(3K),

and round it up to the nearest integer. Abbreviating a = 2(1− α)2 and b = ln(3K), this gives

r =

⌈
b+
√
b2 + 8aL∗b

2a

⌉
≤ b

a
+

√
2L∗b

a
+ 1 =

ln(3K)

2(1− α)2
+

√
L∗ ln(3K)

1− α
+ 1,
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where the inequality follows from
√
x+ y ≤

√
x +
√
y for nonnegative x, y and dxe ≤ x + 1.

Combining this bound on r with (A.7) and the bound for the first regime from Lemma 3.10, we find
that

T∑
t=1

Pr(At) ≤
1

α

(
1

α(1− α)

(
2
√

2L∗ lnK + 3 ln(1 + L∗)
)

+ r + 1

)
+ r

≤ 1

α

(
1

α(1− α)

(
2
√

2L∗ lnK + 3 ln(1 + L∗)
)

+ 2r + 1

)
≤ 1

α

(
1

α(1− α)

(
2
√

2L∗ lnK + 3 ln(1 + L∗)
)

+
ln(3K)

(1− α)2
+

2
√
L∗ ln(3K)

1− α
+ 3

)

≤ 1

α

(
1

α(1− α)

(
4
√

2L∗ ln(3K) + 3 ln(1 + L∗)
)

+
ln(3K)

(1− α)2
+ 3

)
,

which is equivalent to the statement of the lemma.

Appendix B. Proofs for Section 4

B.1. Proof of Theorem 4.1

Proof [Theorem 4.1] We will show that the conditions of Lemma B.1 below, with c = γ/2, are
satisfied with probability at least 1− δ if τ is chosen as

τ =

⌈
8

(1− α)2γ2
ln

8K

(1− α)2γ2δ

⌉
.

Because the second term in the bound from Lemma B.1 is bounded by

4K

(1− α)2γ2
exp

(
− (1− α)2γ2

4
τ
)
≤ 1,

this shows that
RT ≤ Rτ+1 + 1

with probability at least 1 − δ. We now get the inequality in (4.2) from the trivial bound Rτ+1 ≤
τ + 1 and dxe ≤ x + 1. Alternatively, one might also get a better dependence on γ by applying
Theorem 3.1 toRτ+1 and using that L∗ ≤ τ + 1, which leads to

RT = O

(
lnK

γ
+

1

γ

√
ln
(

1
γ2δ

)
lnK

)
.

To verify that the conditions of Lemma B.1 are satisfied with sufficient probability, define the
following events for t ≥ τ + 1:

At,k : Lt,k ≥ E[Lt,k]−
γ

4
t for k 6= k∗, Bt : Lt,k∗ ≤ E[Lt,k∗ ] +

γ

4
t,
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and let Dt = Bt ∩
⋂
k 6=k∗ At,k be the event that they all hold simultaneously. By the assumption in

(4.1) we have that

Lt,k − Lt,k∗ ≥ E[Lt,k]− E[Lt,k∗ ]−
γ

2
t ≥ γ

2
t on Dt,

so that the conditions of Lemma B.1 are satisfied with c = γ/2 if Dt holds for all t ≥ τ + 1.
By Hoeffding’s inequality, the probabilities of the complementary events Āt,k and B̄t are all

bounded by exp(−γ2t/8) and hence by the union bound the probability of D̄t is bounded by
K exp(−γ2t/8). Combining this with another application of the union bound, we find that the
probability that Dt fails to hold for any t ≥ τ + 1 is bounded by

Pr
( ⋃
t=τ+1,...,T

D̄t

)
≤

T∑
t=τ+1

Pr
(
D̄t

)
≤ K

T∑
t=τ+1

exp(−γ
2

8
t)

≤ K
∫ ∞
t=τ

exp(−γ
2

8
t)dt =

8K

γ2
exp(−γ

2

8
τ).

The reader may verify that, for our choice of τ , this probability is bounded by δ, which completes
the proof.

Lemma B.1 Suppose that, for some k∗,

Lt,k − Lt,k∗ ≥ ct for all t ≥ τ + 1 and k 6= k∗,

where c > 0 is a constant, and τ is a nonnegative integer. Then the regret for the BDP algorithm is
bounded by a constant:

RT ≤ Rτ+1 +
K

(1− α)2c2
exp

(
− (1− α)2c2τ

)
.

Proof From the assumption of the lemma we know that expert k∗ will be the best expert at least for
all t ≥ τ + 1. Consequently the regret is bounded by

RT ≤ Rτ+1 +

T∑
t=τ+2

Pr(k̂t 6= k∗).

For any t ≥ τ + 2 and any k 6= k∗, Hoeffding’s inequality implies that

Pr(k̂t = k) ≤ Pr(L̃t−1,k ≤ L̃t−1,k∗)

= Pr
(
L̃t−1,k∗ − L̃t−1,k − E[L̃t−1,k∗ − L̃t−1,k] ≥ (1− α)(Lt−1,k − Lt−1,k∗)

)
≤ exp

(−2(1− α)2(Lt−1,k − Lt−1,k∗)2

2(t− 1)

)
≤ exp

(
− (1− α)2c2(t− 1)

)
.
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Consequently, by the union bound,

T∑
t=τ+2

Pr(k̂t 6= k∗) ≤
T∑

t=τ+2

∑
k 6=k∗

Pr(k̂t = k) ≤ (K − 1)
T∑

t=τ+2

exp
(
− (1− α)2c2(t− 1)

)

= (K − 1)
T−1∑
t=τ+1

exp
(
− (1− α)2c2t

)
≤ (K − 1)

∫ ∞
τ

exp
(
− (1− α)2c2t

)
dt

≤ K

(1− α)2c2
exp

(
− (1− α)2c2τ

)
,

from which the lemma follows.
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