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Abstract

A number of online algorithms have been developed that have small additional loss
(regret) compared to the best “shifting expert”. In this model, there is a set of experts and
the comparator is the best partition of the trial sequence into a small number of segments,
where the expert of smallest loss is chosen in each segment. The regret is typically defined
for worst-case data / loss sequences.

There has been a recent surge of interest in online algorithms that combine good worst-
case guarantees with much improved performance on easy data. A practically relevant class
of easy data is the case when the loss of each expert is iid and the best and second best
experts have a gap between their mean loss. In the full information setting, the FlipFlop
algorithm by De Rooij et al. (2014) combines the best of the iid optimal Follow-The-Leader
(FL) and the worst-case-safe Hedge algorithms, whereas in the bandit information case SAO
by Bubeck and Slivkins (2012) competes with the iid optimal UCB and the worst-case-safe
EXP3.

We ask the same question for the shifting expert problem. First, we ask what are the
simple and efficient algorithms for the shifting experts problem when the loss sequence
in each segment is iid with respect to a fixed but unknown distribution. Second, we ask
how to efficiently unite the performance of such algorithms on easy data with worst-case
robustness.

A particular intriguing open problem is the case when the comparator shifts within
a small subset of experts from a large set under the assumption that the losses in each
segment are iid.

Introduction Much of the work on online learning algorithms has been done in the realm
of learning well compared to a set of experts. In each trial, the learner (probabilistically)
chooses an expert from the set, and at the end of the trial, the expert chosen by the learner
as well as all other experts incur a loss. The goal is to find learning algorithms that have
small regret, which is defined as the total loss of the algorithm minus the loss of the best
strategy in a comparator class. In the base case, the comparator class is simply the set of
experts and many algorithms have been developed for this case: The Weighted Majority
and Hedge algorithms use weights that decay exponentially with the loss of each expert
leading to multiplicative updates (Littlestone and Warmuth, 1994; Freund and Schapire,
1997), and the Follow the Perturbed Leader algorithm perturbs the losses by additive noise
and then chooses the expert of minimum perturbed loss (Kalai and Vempala, 2005; Hutter
and Poland, 2005). All these algorithms are designed to achieve optimal regret when the
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losses of the experts are chosen by an adversary and the regret depends on the loss of the
best comparator.

The key to achieving small worst-case expected regret is that the algorithms make a
probabilistic choice of the expert in each trial. Deterministic algorithms can be fooled with
an alternating loss pattern. This focus on the worst-case lead to some elegant algorithms
including an efficient minimax algorithm based on random walks (Abernethy and Warmuth,
2010). However the worst-case assumption might be overly pessimistic. If the losses are
iid, then the simple deterministic Follow the Leader (FL) algorithm is already minimax
optimal (Kotlowski, 2013), and thus for most natural easy data, FL already works well and
the fancy algorithms that guard against the worst-case are not needed.

Shifting The problem becomes more challenging when we model data that changes with
time. Now the comparator consists of a partition of the trials into segments and a choice
of a best expert in each segment. Again the goal is to achieve small worst-case regret
bounds with this richer class of comparators and an interesting set of new algorithm has
been developed for this task (Herbster and Warmuth, 1998, 2001; Bousquet and Warmuth,
2002; Koolen et al., 2012), most notably multiplicative update plus a mixing update.

Much of the literature on shifting experts deals with Vovk’s mixable loss functions
(Vovk, 1998). Here the difference between iid and worst-case losses is perhaps insignificant,
as the algorithms manage to balance the regret between all outcome sequences. However, in
the linear/absolute/dot loss case this equalization property is lost, and a significant regret
reduction can be achieved on some sequences. Worst-case bounds for the shifting experts
problem with the dot loss have been obtained in Cesa-Bianchi et al. (2012).

Problem: Efficient low regret algorithms and bounds for iid shifting experts
We propose to focus on the shifting expert setting when the losses in each segment are iid
with a gap, i.e. the mean loss of the best and the mean loss of the next best expert differ by
at least some fixed constant. There are many good simple algorithms for this setting and a
first goal is to delineate between them in terms of their regret bounds. When a new section
starts, then the algorithm must be able to recover the new best expert. Each of the below
algorithm has a mechanism for doing that.

e FL on the best current partition over n experts with k segments. Using dynamic
programming, it takes O(nk) time to find the best such partition. In the simplest
case, k is known to the algorithm.

e FL on a shifting window of length w ending with the last trail. This requires O(nw)
storage between trials.

e FL on the total losses, where after each trial the total loss L; of each expert i is reset
to min(L;, w + min; L;), ie the total losses are kept at most w apart. This requires
O(n) storage.

e FL on the total losses of each expert where the losses in the ¢-th last trial are multiplied
by an exponentially decaying factor $9. This requires n totals to be maintained.

e Use the weight updates designed for the worst case (i.e. a multiplicative update plus
a mixing update, which typically requires 2n weights). However instead of drawing
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an expert from the current weight vector, the learner predicts with the expert of
maximum weight.

The resulting regret bounds for these algorithms should be logn per segment under the
assumption that there is fixed gap between the mean loss of the best and the mean loss of
the second best in each segment.

Problem: Long-term memory for iid shifting experts One of the most interesting
cases of expert algorithms is the long term memory setting where the best expert shifts
within a small subset. In the worst case setting, this was solved with a multiplicative update
followed by certain mixing updates (Bousquet and Warmuth, 2002; Koolen et al., 2012).
What are the optimal algorithms for the long-term memory setting when the segments are
assumed to be iid? Intuitively the algorithm has to locally follow the leader but help with
recovering to the new local leader when the (hidden) segment changes. It also has to recover
faster towards experts that have done well in the past (long term memory).

If n is the total number of experts and s the size of the relevant subset, then the question
is whether there is an algorithm that achieves expected regret log n per member in the subset
and log s per shift within the subset. Note that this is a version of Yoav Freund’s (Freund,
2000) original open problem which initiated the long-term memory work of Bousquet and
Warmuth (2002) that focused on the worst-case.

Problem: IID and worst-case-optimal shifting experts Ideally we want a single
algorithm that can handle both the malignant worst-case and the benevolent iid case. For
the base problem, this has been done in a whole line of research by fancy tunings of the
Hedge algorithm (see Van Erven et al., 2011; De Rooij et al., 2014) and most recently with
the FL algorithm applied to the dropout perturbed losses (Van Erven et al., 2014). In
the bandit feedback model, the best of both worlds was achieved by Bubeck and Slivkins
(2012). However it is not at all clear how these algorithm can be adapted to the shifting
expert setting, let alone the long-term memory scenario.

Wrap-up The importance of this open problem stems directly from the practical abun-
dance of non-stationary data, and the desire to learn from it using online algorithms. We
hope to have sketched an important family of problems. The details of the iid shifting
experts problem can be worked out in many ways. One particular choice is whether we
want to compare on each segment with the loss of the best expert on the sampled data or in
expectation. Another is whether the segmentation is itself generated randomly, or chosen
adversarially. In the simplest scenario, the algorithm knows the parameters of the problem
like the gap, the number of trials, the number of segments in the comparator partition, and
the number of distinct best experts. The ultimate online algorithm should of course adapt
to these practically unknown parameters on the fly.
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