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Abstract
In this paper, we consider networks consisting of a finite number of non-overlapping communities.
To extract these communities, the interaction between pairs of nodes may be sampled from a large
available data set, which allows a given node pair to be sampled several times. When a node pair
is sampled, the observed outcome is a binary random variable, equal to 1 if nodes interact and to 0
otherwise. The outcome is more likely to be positive if nodes belong to the same communities. For
a given budget of node pair samples or observations, we wish to jointly design a sampling strategy
(the sequence of sampled node pairs) and a clustering algorithm that recover the hidden commu-
nities with the highest possible accuracy. We consider both non-adaptive and adaptive sampling
strategies, and for both classes of strategies, we derive fundamental performance limits satisfied
by any sampling and clustering algorithm. In particular, we provide necessary conditions for the
existence of algorithms recovering the communities accurately as the network size grows large. We
also devise simple algorithms that accurately reconstruct the communities when this is at all pos-
sible, hence proving that the proposed necessary conditions for accurate community detection are
also sufficient. The classical problem of community detection in the stochastic block model can be
seen as a particular instance of the problems consider here. But our framework covers more general
scenarios where the sequence of sampled node pairs can be designed in an adaptive manner. The
paper provides new results for the stochastic block model, and extends the analysis to the case of
adaptive sampling.

1. Introduction

Extracting structures or communities in networks is a central task in many disciplines including
social sciences, biology, computer science, statistics, and physics. Applications are numerous. For
instance, in social networks, one hopes that identifying clusters of users provides fundamental in-
sights into the way users behave and interact, and in turn, helps the design of efficient recommender
systems or the development of other marketing and advertisement techniques. Naturally, a user is
attached to a particular community if she interacts a lot more with users within this cluster than
with other users. Most methods for community detection assume that user interactions can be rep-
resented as a graph whose edges represent user pairs known to interact. This graph is first extracted
from observed pairwise interactions and then partitioned into communities. Hence in most studies,
the process of gathering information on users and the extraction of communities are decoupled.

In this paper, we address the problems of gathering information and clustering jointly. The in-
teraction between pairs of nodes may be sampled from a large available data set, which allows a
given node pair to be sampled several times. When a node pair is sampled, the observed outcome is
a binary random variable, equal to 1 if nodes interact and to 0 otherwise. Observing an interaction
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is more likely when nodes belong to the same community than when they don’t. For a given budget
of node pair samples or observations, we wish to jointly design a sampling strategy (the sequence of
sampled node pairs) and a clustering algorithm that recovers the hidden communities with the high-
est possible accuracy, i.e., the proportion of misclassified nodes has to be minimized. We investigate
two classes of sampling strategies: (i) non-adaptive random strategies where the sequence of ob-
served node pairs is decided a priori, and (ii) adaptive strategies under which the node pair sampled
next depends on the previously sampled pairs, and the corresponding outcomes. For both classes of
sampling strategy, we identify fundamental performance limits satisfied by any joint sampling and
clustering algorithm, and also devise simple algorithms that approach these limits. These results
allow to quantify the gain achieved using adaptive sampling, and to determine how the observation
budget has to scale with the number of users so as to ensure an asymptotically accurate community
detection (the proportion of misclassified users tends to 0 as the number of users grows large).

Contributions. We consider networks consisting of n users or nodes with non-overlapping commu-
nities, and inspired by the celebrated stochastic block model, see Holland et al. (1983), we assume
that the outcome of a node pair observation is positive (equal to 1) with probability p if the nodes
belong to the same community, and with probability q < p otherwise. p and q may depend on the
network size n. We make no assumptions on p and q. In particular, our results cover both the case
of dense interactions where p, q = Θ(1) as n grows large, and the case of sparse interactions where
p, q = o(1) as n grows large. The observation budget is denoted by T , and typically depends on n
as well.

a. Fundamental limits. For any set of parameters p and q, we derive asymptotic lower bounds on
the expected proportion of misclassified nodes E[επ(n, T )] satisfied by any clustering algorithm
π in the case of non-adaptive random sampling strategies and by any joint sampling strategy and
clustering algorithm π in the case of adaptive sampling. We also give necessary conditions on T , n,
p, and q for asymptotically accurate community detection. More precisely:

• Non-adaptive sampling. Under any non-adaptive random sampling strategy, if there exists an
asymptotically accurate clustering algorithm π, in the sense that limn→∞ E[επ(n, T )] = 0,
then1 :

T

n
= ω(1), and

T

n
min(KL(q, p),KL(p, q)) = ω(1). (1)

• Adaptive sampling. If there exists an asymptotically accurate joint adaptive sampling strategy
and clustering algorithm π, then:

min{1− q, p}T
n

= Ω(1), and
T

n
max(KL(q, p),KL(p, q)) = ω(1). (2)

The gain achieved using adaptive sampling can be significant when for example, q is much smaller
than p. For instance, when p = logn

n and q =
√

logn
n , the necessary conditions for asymptotically

accurate community detection are T = ω
(

n2

logn

)
for non-adaptive sampling and T = Ω

(
n2

logn

)
for

adaptive sampling. To derive our performance bounds, we leverage change-of-measure arguments
similar to those used in bandit optimization to provide regret lower bounds. This contrasts with
most techniques used in statistical inference to obtain such bounds (most often there, the analysis
relies on Fano’s inequality).

1. KL(p, q) = p log(p/q) + (1− p) log((1− p)/(1− q)).
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b. Cluster Algorithms for Non-adaptive Sampling. For non-adaptive random sampling strategies, we
devise a low-complexity clustering algorithm, referred to as Spectral Partition (SP). The algorithm
first constructs an observation matrix where the outcomes of the node pair observations are reported.
After appropriate trimming, the spectral properties of the matrix (the largest eigenvalues and the
corresponding eigenvectors) are exploited to derive rough estimates of the communities. These esti-
mates are then improved using a recursive greedy procedure inspired by the k-mean algorithm. We
prove that the SP algorithm is asymptotically accurate under conditions (1), i.e., it is order-optimal.
This implies in particular that the necessary conditions (1) for asymptotically accurate detection
are tight (they are also sufficient). We further analyse the performance of the SP algorithm. For
example for networks with two communities of respective sizes αn and (1−α)n, using techniques
from random matrix theory, we prove that under conditions (1), εSP (n, T ) ≤ exp(− (p−q)2

20p
α1T
n )

with high probability2, where α1n is the size of the smallest cluster.

c. Joint Adaptive Sampling and Clustering Algorithms. We also propose a joint sampling and
clustering algorithm, referred to as Adaptive Spectral Partition (ASP). The algorithm exploits the
idea of spatial coupling recently advocated in compressed sensing by Krzakala et al. (2012) and
coding theory by Kudekar et al. (2011). More precisely, under ASP, we first use a positive fraction
of the observation budget to classify a small proportion of nodes with very high accuracy. To do
so we use the SP algorithm. After this first step, we obtain subsets of the communities, referred
to as reference kernels, and for which we have strong probabilistic guarantees. The remaining
observation budget is then used to attach the remaining nodes to the various reference kernels in an
adaptive way. We establish that the ASP algorithm is asymptotically accurate under conditions (2),
which implies that (2) are necessary and sufficient conditions for asymptotically accurate detection.
The performance analysis of the ASP algorithm reveals for example that for networks with two
communities, under conditions (2), εASP (n, T ) ≤ exp(− α1T

3Kn(KL(q, p) + KL(p, q))) with high
probability. We compare the performance of SP and ASP using numerical experiments, and confirm
that adaptive sampling may yield significant performance gains.

Related work. Community detection has attracted a lot of attention in different scientific fields
recently, and the topic is too vast for a detailed review of existing results here. Newman (2013),
Coja-Oghlan (2010), Mossel et al. (2013) and references therein cover a large part of the litera-
ture, from physics, computer science, and mathematics perspectives. As already mentioned, the
starting point of most of the studies is an observed graph of interaction. In such a case, detecting
communities boils down to a graph partitioning problem, that one can solve using spectral methods
Boppana (1987), McSherry (2001), Dasgupta et al. (2006), Chaudhuri et al. (2012), compressed
sensing and matrix completion ideas Chen et al. (2012), Chatterjee (2012), or other techniques Jer-
rum and Sorkin (1998). Our model and approach are different: we address the problem of gathering
information on node interactions, and that of identifying communities jointly. As far as we know,
we provide the first set of results for this framework.

The stochastic block model Holland et al. (1983), also referred to as the planted partition model,
has been extensively used to assess the performance of community detection algorithms, see e.g.
Rohe et al. (2011), Decelle et al. (2011). Our model is much more general, and covers as a particular
case the stochastic block model (the latter corresponds to the case of non-adaptive sampling strategy
where one has one observation per node pair, i.e., T = n(n − 1)/2). There is a rich literature on

2. An event χ occurs with high probability, if limn→∞ P[χ] = 1.

3



YUN PROUTIERE

community detection for the stochastic block model. In the dense regime, where p, q = Θ(1), most
previous work focuses on identifying conditions under which a given algorithm recovers the clusters
exactly, see e.g. McSherry (2001), Condon and Karp (2001). For example, in Chen et al. (2012)
the authors show that communities can be extracted if p − q ≥ Ω(

√
p/n log(n)2). In the sparse

regime where p, q = o(1), the main focus recently has been on identifying the phase transition
threshold (a condition on p and q) for reconstruction. It was conjectured in Decelle et al. (2011) that
if n(p−q) <

√
2n(p+ q) (i.e., under the threshold), no algorithm can perform better than a simple

random assignment of users to clusters, and above the threshold, clusters can partially be recovered.
The conjecture was recently proved in Mossel et al. (2012), Massoulié (2013), Mossel et al. (2013).
A good survey of other existing results for the sparse regime can be found in Coja-Oghlan (2010),
and Chen et al. (2012). In this paper, we provide a unified (in dense and sparse regimes) treatment
of the stochastic block model, and derive, as far as we know, the first necessary and sufficient
conditions for asymptotically accurate community detection valid under any set of parameters p and
q. Necessary conditions for accurate detection are not derived in the aforementioned work.

This paper covers more than the stochastic block model. It provides a systematic analysis of
joint sampling strategies and clustering algorithms. For example, from our results, we can quantify
the number of observations required to accurately detect communities when under the stochastic
block model, this is not possible (i.e. when we are under the phase transition threshold for re-
construction). There have been some work about clustering with adaptive sampling on similarity
matrices (not on adjacency matrices in graphs as in our framework). For instance, Shamir and
Tishby (2011) and Voevodski et al. (2012) consider random and adaptive sampling strategies for
clustering. However, they do not derive any necessary condition for accurate detections, and do not
provide any theoretical analysis of their adaptive sampling strategies. In Balakrishnan et al. (2011),
the authors derive, using Fano’s inequality, a necessary condition (again for similarity matrices), but
this condition concerns exact reconstruction and non-adaptive sampling.

2. Models and Objectives

We consider a network consisting of a set V of n nodes. V admits a hidden partition of K non-
overlapping subsets V1, . . . , VK (V =

⋃K
k=1 Vk). The size of class or cluster Vk is αk × n for

some αk > 0. Without loss of generality, let α1 ≤ α2 ≤ · · · ≤ αK . We assume that when the
network size n grows large, the number of communities K and their relative sizes are kept fixed.
By observing random pairwise interactions between nodes, we wish to recover the hidden partition.
Let E = V × V be the set of node pairs. Pairs of nodes are successively sampled or observed.
When a pair of nodes is sampled, these nodes are more likely to interact if they belong to the same
community. More precisely, nodes of the same community interact with probability p, and nodes
of different communities interact with probability q, with q < p. If for the t-th observation, node
pair (v, w) is sampled, the outcome Xvw(t) is 1 if nodes interact, in which case we say that the
observation is positive, and 0 otherwise. The Bernoulli random variables Xvw(t)’s are independent
across nodes pairs (v, w) and time t. We have a budget of T observations, and T can be either
smaller than or equal to n(n − 1)/2, in which case we say that the network is under-sampled, or
larger than n(n − 1)/2, in which case the network is over-sampled. We are primarily interested
in large networks, and wish to design algorithms able to recover the partition accurately when n is
large. Naturally, the network parameters p and q, as well as the observation budget T , may depend
on n.
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2.1. Sampling strategies

We consider different types of sampling strategies.
Random Sampling. Here the sequence of observed node pairs is random, and we are mainly inter-
ested in two types of such sequences:
(1) Uniform Random Sampling (URS-1): for the t-th observation, the observed pair of nodes is
chosen uniformly at random.
(2) Uniform Random Sampling without Replacement (URS-2): Assume that the budget T =
mn(n − 1)/2 + r where m ∈ N and r ∈ {0, . . . , n(n − 1)/2 − 1}. Here each pair (v, w) is
first observed m times, and for the r remaining observations, node pairs are selected uniformly at
random without replacement (each pair is observed at most m+ 1 times).
Adaptive Sampling. It may be more efficient to design the sequence of observed node pairs in
an adaptive manner. We could select the node pair to be observed next depending on the past
observations. In this case, the (t + 1)-th observed pair, or more generally its distribution (in case
of randomized sampling strategy), depends on (es, Xs, s = 1, . . . , t), where es denotes the s-th
observed node pair, and Xs is the corresponding interaction outcome.

Under all sampling strategies, after the T observations, one applies a clustering algorithm to
recover the initially hidden partition. Such an algorithm π ∈ Π maps the observations (et, Xt, t =
1, . . . , T ) ∈ (E × {0, 1})T to an estimated partition (V̂1, . . . , V̂k) of the set V . The performance of
the joint sampling strategy and clustering algorithm π is quantified using the proportion επ(n, T ) of
nodes that are misclassified. We say that π is asymptotically accurate when limn→∞ E[επ(n, T )] =
0 (note that in the previous limit, T , p, and q typically vary with n). For a given sampling strategy,
we are interested in deriving conditions on n, T , p, and q, such that there exists an asymptotically
accurate algorithm π ∈ Π.

2.2. Stochastic Block Model with Labels

To study the performance of non-adaptive sampling strategies in both under and over-sampling
scenarios, it is instrumental to introduce the so-called Stochastic Block Model with Labels (SBML),
see Heimlicher et al. (2012). In SBML, the outcome of an observation is a label ` ∈ L, and
each node pair is observed once – we have exactly n(n − 1)/2 observations. For instance, with
L = {0, 1, 2, 3}, the output may capture the quality of the relationship between nodes whereas in
the SBM, the outcome represents the interactions of nodes only. The observation of a node pair e
yields a label `(e) equal to ` with probability p(`) if the two nodes are within the same community,
and with probability q(`) otherwise. In the SBML, one may think of a label ` as a type of interaction
between two nodes. In what follows, we denote by 0 ∈ L a particular label. The latter typically
represents the absence of interaction between two nodes.

In the SBML, one has access to the sampled labels of each node pair, and one applies a clustering
algorithm to retrieve the communities. Such an algorithm π ∈ Π′ maps the observations (`(e), e ∈
E) to an estimated partition (V̂1, . . . , V̂K) of the set V .

Non-adaptive sampling strategies can be represented as particular examples of the SBML. In-
deed, the label of a node pair can represent all the information gathered on this pair using the T
observations. We provide below, as an example, a way of representing under-sampled URS-2 sam-
pling strategies using the SBML. The URS-1 and over-sampled URS-2 sampling strategies can be
also mapped to the SBML.
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Example 1 (Under-sampled URS-2) To represent random sampling strategies without replacement
in the under-sampled scenario using the SBML, we introduce three labels ∅, 0, and 1, i.e., L =
{∅, 0, 1}. A node pair has label ∅ if it has not been observed, 0 if it has been observed (once) and
if the outcome is 0, and 1 if it has been observed and if the outcome is 1. Let β = 2T/(n(n − 1))
denote the proportion of observed node pairs. The label distribution is: p(∅) = q(∅) = 1 − β,
p(0) = (1− p)β, q(0) = (1− q)β, p(1) = pβ, and q(1) = qβ.

3. Lower Bounds

In this section, we derive lower bounds of the average proportion of misclassified nodes under the
various types of joint sampling strategy and clustering algorithm. We provide a lower bound first
for the SBML and non-adaptive sampling strategies, and then for adaptive sampling strategies. The
lower bounds allow us to identify a necessary condition for asymptotically accurate community
detection.

3.1. Non-adaptive Random Sampling

3.1.1. THE SBML

We denote by επ(n) the proportion of misclassified nodes under a given clustering algorithm π ∈ Π′.
Again we say that a clustering algorithm π ∈ Π′ is asymptotically accurate if limn→∞ E[επ(n)] =
0. The following theorem provides a lower bound of the expected proportion of misclassified nodes
satisfied by any asymptotically accurate algorithm.

Theorem 1 In the sparse regime (limn→∞

∑
` 6=0 p(`)+q(`)

min{p(0),q(0)} = 0), for any asymptotically accurate al-

gorithm π ∈ Π′, we have: lim infn→∞
4E[επ(n)]

α1 exp(−4(α1+α2)τ(n)) ≥ 1 ,where τ(n) =
∑

`∈L n
(p(`)−q(`))2

p(`)+q(`) .

3.1.2. URS-1 AND URS-2 SAMPLING STRATEGIES

Theorem 1 can be applied to the various aforementioned non-adaptive sampling strategies. Actually,
for the strategies considered here, the bound presented in Theorem 1 can be improved: we derive a
universal non-asymptotic lower bound on the average proportion of misclassified nodes valid under
random sampling strategies URS-1 and URS-2, and for all set of parameters n, T , p, and q.

Theorem 2 Under URS-1 and URS-2 sampling strategies, for any clustering algorithm π ∈ Π, we
have: for all T , p, q, and n,

E[επ(n, T )] ≥ α1

4
exp(−κ1(n, T )), (3)

where

κ1(n, T ) =T
2(α1 + α2)

n
min{KL(q, p),KL(p, q)}

+ 2

√√√√4T (α1 + α2)

n

[
min{q, 1− p}

(
log

p(1− q)
q(1− p)

)2

+

(
log(min{p

q
,

1− q
1− p

})
)2
]
.
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As a consequence, for any asymptotically accurate clustering algorithm π ∈ Π (i.e., satisfying
limn→∞ E[επ(n, T )] = 0), we have:

T

n
= ω(1),

T

n
min(KL(q, p),KL(p, q)) = ω(1), (4)

and lim inf
n→∞

4E[επ(n, T )]

α1 exp(−2(α1+α2)T
n min(KL(q, p),KL(p, q)))

≥ 1. (5)

(4) provides two necessary conditions for asymptotically accurate community detection. We
show in the next section that these conditions are also sufficient, i.e., we propose a clustering al-
gorithm that is asymptotically accurate when T

n = Ω(1) and T
n min(KL(q, p),KL(p, q)) = ω(1).

Note that the results of Theorem 2 hold for arbitrary parameters p and q.
For dense interactions where p, q = Θ(1), we need T (p − q)2/n = ω(1)3 to get an asymp-

totically accurate detection. This is in agreement with existing results for the stochastic block
model (URS-2 sampling strategy with T = n(n − 1)/2), see Table 1 in Chen et al. (2012): the
best known algorithms recover the communities accurately (nε(n, T ) = 0) with high probability
when p − q = Ω(

√
log(n)/n), and our lower bound says that to obtain E[nε(nT )] < 1, we need

p− q = Ω(
√

log(n)/n).
For sparse interactions where p, q = o(1), we need T (p− q)2/(pn) = ω(1) to get an asymptot-

ically accurate detection. For example, when p = a/n and q = b/n for some constants a > b, then
we need T

n2 = ω(1) for accurate detection. Note that in this case, for the classical stochastic block
model, i.e., for T = n(n − 1)/2, a necessary and sufficient condition to be able to devise an algo-
rithm that performs better than assigning nodes randomly to communities is (a − b) >

√
2(a+ b)

Mossel et al. (2012), Massoulié (2013). Our result indicates that when targeting an asymptotically
accurate detection, we need much more observations (e.g. T = log log(n)n2).

It should be finally observed that the results of Theorem 2 do not depend on the way node pairs
are sampled, provided that they are randomly selected. In particular, we do not expect that sampling
without replacement outperforms purely random sampling (with identical observation budget).

3.2. Adaptive Sampling

Next we derive similar asymptotic lower bounds on the expected proportion of misclassified nodes
in the case of adaptive sampling strategies. The proof of the following theorem is more involved than
that of Theorem 2; it relies on a change-of-measure argument and on Doob’s maximal inequality.

Theorem 3 For any asymptotically accurate joint adaptive sampling strategy and clustering algo-
rithm π ∈ Π (i.e., satisfying limn→∞ E[επ(n, T )] = 0), we have:

min{p, 1− q}T
n

= Ω(1) and
T

n
max(KL(q, p),KL(p, q)) = ω(1). (6)

In addition, when − logE[επ(n,T )]

max{log p
q
,log 1−q

1−p}
= ω(1), the following holds:

lim inf
n→∞

E[επ(n, T )]

exp(− 8T
min{1/2,1−αK}n max(KL(q, p),KL(p, q)))

≥ 1. (7)

3. We repeatedly use the facts that for q ≤ p, 2(p − q)2 ≤ KL(q, p) ≤ (p − q)2/(p(1 − p)), and KL(q, p) ∼
(p− q)2/(p(1− p)) as q → p−.
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In view of Theorems 2 and 3, adaptive sampling is expected to outperform random sampling
(with equal observation budget) when min(KL(q, p),KL(p, q)) � max(KL(q, p),KL(p, q)).
For example, in the case of sparse interactions, if q = pγ with γ > 1, then the necessary con-
ditions for asymptotically accurate detection reduce to pT

n = ω(1) and p log(1/p)T
n = ω(1) under

non-adaptive random sampling and adaptive sampling, respectively. Note also that even if the nec-
essary conditions for accurate detection are identical under any sampling strategy (non-adaptive or
adaptive), then the lower bound on the expected proportion of misclassified nodes is improved un-
der adaptive sampling. In the next section, we show that the necessary conditions (6) for accurate
detection are sufficient, i.e., we propose a clustering algorithm that is asymptotically accurate when
min{p, 1− q}Tn = Ω(1) and T

n max(KL(q, p),KL(p, q)) = ω(1).

4. Algorithms

In this section, we present simple clustering algorithms for non-adaptive sampling strategies, as well
as joint adaptive sampling and clustering algorithms. We provide upper bounds on the proportions
of misclassified nodes under these algorithms, and establish that they are order-optimal: they are
asymptotically accurate as soon as conditions (1) or (2) are satisfied.

4.1. Non-Adaptive Sampling

We first propose Spectral Partition (SP), a clustering algorithm for non-adaptive URS-1 or URS-
2 sampling strategies. From the T observations, we construct a matrix A ∈ Nn×n: for any pair
(v, w), Avw is equal to the number of positive observations of node pair (v, w). In particular, if
(v, w) has not been observed, Avw = 0. Note that for all pair (v, w), E[Avw] = 2T

n(n−1)p if v and

w are in the same cluster, and E[Avw] = 2T
n(n−1)q otherwise (the expectation is taken accounting

for the randomness in both the number of times node pair (v, w) is observed, and the corresponding
outcomes). Matrix E[A] is symmetric and of rank K, and its eigenvectors identify the clusters. For
example, if K = 2, the two eigenvalues of E[A] are λ1 = T

n−1(p +
√
p2 − 4α(1− α)(p2 − q2))

and λ2 = T
n−1(p −

√
p2 − 4α(1− α)(p2 − q2)), respectively, where α = α1 is the proportion of

nodes in the first cluster. Assume now that the first cluster corresponds to nodes 1, . . . , αn, then the
eigenvectors of E[A] are (1, . . . , 1, ai, . . . , ai) where the first αn components are equal to 1, and

ai =
λi
n−1
2T
−pα

(1−α)q , for i = 1, 2.

From a spectral analysis of A, we expect to accurately recover the clusters if (p−q)2

p+q
T
n � 1.

Indeed it can be seen that the eigenvalues of E[A] are Ω((p − q)Tn ). In addition, the noise matrix

X = A−E[A] satisfies ‖X‖ = O(
√

T
n (p+ q)) provided that the number of observations per node

pair does not exceed log(n) (this is a simple consequence of random matrix theory, see e.g. Tao
(2012); Chatterjee (2012)). The SP algorithm whose pseudo-code (Algorithm 1) is presented below,
exploits this observation and may be seen as an extension of algorithms proposed in Coja-Oghlan
(2010) to recover clusters in the simple stochastic block model (T = n(n − 1)/2 and URS-2
sampling strategy). Our algorithm works for any observation budget and any random sampling
strategy, and its performance analysis is much simpler than that presented in Coja-Oghlan (2010).

The algorithm has three steps.
1. Trimming. We first trim the observation matrixA, i.e., we keep the entries corresponding to a set
Γ of nodes that did not get too many positive observations. More precisely, Γ = {v :

∑
w∈V Avw ≤

8
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Algorithm 1 Spectral Partition
Input: Observation matrix A.

1. Trimming. Construct AΓ = (Avw)v,w∈Γ where Γ = {v :
∑

w∈V Avw ≤ 5K
∑

(v,w)∈E Avw
n }.

2. Spectral Decomposition. Run Algorithm 2 (K = 2) or Algorithm 3 (K ≥ 3)

with input AΓ,
∑

(v,w)∈E Avw

n2 , and output (Sk)k=1,...,K .
3. Improvement.
S

(0)
k ← Sk, for all k

for i = 1 to log n do
S

(i)
k ← ∅, for all k

for v ∈ V do
Find k? = arg maxk{

∑
w∈S(i−1)

k

Avw/|S(i−1)
k |} (tie broken uniformly at random)

S
(i)
k? ← S

(i)
k? ∪ {v}

end for
end for
V̂k ← S

(i)
k , for all k

Output: (V̂k)k=1,...,K .

5K
∑

(v,w)∈E Avw
n }. The resulting trimmed observation matrix is denoted by AΓ.

2. Spectral decomposition. We then extract the clusters from the spectral analysis of AΓ. We
present a simple method (Algorithm 2) when K = 2, exploiting the fact that clusters can be re-
covered just looking at the signs of the components of the eigenvectors corresponding to the two
largest eigenvalues of AΓ. When K ≥ 3, we extract the clusters from the column vectors of the
rank-K approximation matrix Â of AΓ. This rank-K approximation is obtained by singular value
decomposition and by keeping theK largest singular values and the corresponding eigenvectors, see
Chatterjee (2012). Our algorithm exploits the fact that the column vectors corresponding to nodes
in the same clusters should be relatively close to each other. We use the distance between these
vectors to classify nodes, in the spirit of the k-means clustering algorithm. In the pseudo-code, Âv
denotes the column vector of Â corresponding to node v, and ‖ · ‖ refers to the euclidian distance.
3. Improvement. Finally, we further improve the results. After the spectral decomposition step,
the identified clusters (Sk)k=1,...,K are good approximations of the true clusters. The improvement
is obtained by sequentially considering each node and by moving the node to the cluster with which
it has the largest number of positive observations.

Theorem 4 Assume that (p−q)2

p
α1T
n = ω(1). Under URS-1 or URS-2 sampling strategy with T

observations, after step 2 (Spectral decomposition) of Spectral Partition, (Sk)1≤k≤K satisfies, with
high probability, 1

n |
⋃K
k=1 Vk \ Sk| = o(1).

Most often p and q are such that p−qp does not tend to 0, in which case we say that p and q are
generic. For generic p and q, when the necessary condition for accurate detection (1) is satisfied,
one can easily check that (p−q)2

p
α1T
n = ω(1) (because pTn = ω(1)). In that case, the fraction of

misclassified nodes goes to 0 after step 2 of SP algorithm. We conclude that Spectral Decomposition
is asymptotically accurate whenever an accurate detection is at all possible and p and q are generic.
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Algorithm 2 Spectral decomposition (for K = 2)
Input: AΓ, Γ.
x1 and x2 ← the eigen vectors of AΓ corresponding to the two largest eigenvalues.
if
(∑

v∈Γ x1(v)
)
·
(∑

v∈Γ x1(v)
)
> 0 then

x2 ← −x2

end if
x̂← x1 + x2 − 1

|Γ|J(x1 + x2), where J denotes the Γ× Γ matrix filled with 1.

S1 ← {v ∈ Γ : x̂(v) > 0} and S2 ← {v ∈ Γ : x̂(v) < 0}
For all v /∈ S1 ∪ S2, randomly place V in S1 or S2

Output: (S1, S2).

Algorithm 3 Spectral decomposition (for K ≥ 3)

Input: AΓ,
∑

(v,w)∈E Avw

n2

Â←K-rank approximation of AΓ

for i = 1 to log n do
Qi,v ← {w ∈ Γ : ‖Âw − Âv‖2 ≤ i

∑
(v,w)∈E Avw

100n2 }
Ti,0 ← ∅
for k = 1 to K do
v?k ← arg maxv |Qi,v \

⋃k−1
l=1 Ti,l|

Ti,k ← Qi,v?k \
⋃k−1
l=1 Ti,l and ξi,k ←

∑
v∈Ti,k Âv/|Ti,k|.

end for
for v ∈ Γ \ (

⋃K
k=1 Ti,k) do

k? ← arg mink ‖Âv − ξi,k‖ and Ti,k? ← Ti,k? ∪ {v}
end for
ri ←

∑K
k=1

∑
v∈Ti,k ‖Âv − ξi,k‖

2

end for
i? ← arg mini ri.
Sk ← Ti?,k for all k
Output: (Sk)k=1,...,K .

Theorem 5 Assume that (p−q)2

p
α1T
n = ω(1) and (p−q)2

20p
α1T
n ≥ log(pTn ). Under URS-1 or URS-2

sampling strategy with T observations, the proportion of misclassified nodes under Spectral Parti-
tion satisfies, with high probability,

εSP (n, T ) ≤ exp

(
−(p− q)2

20p

α1T

n

)
. (8)

Again, for generic p and q, when the necessary condition for accurate detection (1) is satisfied,
one can easily check that (p−q)2

20p
α1T
n ≥ log(pTn ) (because log(pTn ) ≤ 2 log((p − q)Tn ) and (p −

q)Tn = ω(log((p − q)Tn ))). In that case, limn→∞ E[εSP (n, T )] = 0 in view of (8). We conclude
that SP is asymptotically accurate whenever an accurate detection is at all possible and p and q
are generic. In rare cases, the necessary condition (1) does not imply the conditions of Theorem 4
and Theorem 5. For example, when both p and q tend to 1, min{KL(p, q),KL(q, p)}Tn = ω(1)

10
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does not mean (p−q)2

p
α1T
n = ω(1) because min{KL(p, q),KL(q, p)} ≥ 1

2
(p−q)2

2−p−q = ω( (p−q)2

p ).

Moreover, when (p− q)Tn = ω(
√
pTn ) and (p− q)Tn <

√
20p T

α1n
log(pTn ), (p−q)2

20p
α1T
n < log(pTn ).

4.2. Adaptive Sampling

Next we devise an adaptive sampling and clustering algorithm, referred to as Adaptive Spectral
Partition (ASP), that typically outperforms any algorithm with non-adaptive random sampling (it
beats the lower bounds on E[ε(n, T )] obtained for random sampling). The adaptive algorithm is
also order-optimal: ASP is asymptotically accurate under conditions (2).

The method to sample node pairs and reconstruct clusters is inspired by the idea of spatial
coupling recently used in coding theory Kudekar et al. (2011), and in compressed sensing Krzakala
et al. (2012). For example, in compressed sensing, spatial coupling consists in identifying with
very high accuracy a small proportion of the components of the unknown vector, and to propagate
this accuracy to other components using their inherent correlations. Here, we first identify K small
subsets of nodes, referred to as reference kernels, and such that all nodes within the same kernel are
very likely to belong to the same cluster, and nodes in different kernels are very likely in different
clusters. We then grow the clusters starting from the references kernels. To get a very high accuracy
on the reference kernels, we use a positive fraction of the observation budget to sample pairwise
interactions within a small subset of nodes. The remaining budget is used to determine the cluster
of the remaining nodes. The algorithm has two main steps.
1. Construction of the reference kernels. Randomly select a set S ⊂ V of cardinality n/(5 log(n))
(here we just need the |S| scales as n/ log(n)), and apply the SP algorithm to S using T/5 obser-
vations. This gives the reference kernels (Sk)k=1,...,K . In addition, during this first step, we derive
p̂ and q̂, estimators of the probabilities p and q (these estimators are simply obtained by counting
the observations whose outcome are equal to 1 intra- and inter-kernels). We expect to identify good
kernels in the sense that: (C1) : ∀k, |Sk \ Vk| = 0, and (C2) :

∣∣∣1− p̂−q̂
p−q

∣∣∣ ≤ 10−2.
Note that in the first step, the observation budget per node is log(n) times larger than that we

would have if SP was applied to V using T observations. Now from the performance analysis of
SP, the fraction of misclassified nodes decreases exponentially with the budget per node. When
(p−q)2

p+q
α1T
n ≥ C for some C > 1, we get (p−q)2

p+q
α1T log(n)

n ≥ C log(n) if we change the budget
from T to T log(n). Thus in view of Theorem 5, with high probability, ε(n, T ) ≤ 1/nC < 1/n.
Therefore, with high probability, the reference kernels have no error, and condition (C1) holds. (C2)
also holds with high probability (a direct consequence of the law of large numbers).
2. Classification of the remaining nodes. In this second step, we classify the remaining nodes
using the reference kernels. For each of these nodes, say node v, for all k, we sample the node pair
(v, w) for w uniformly selected in Sk, and repeat this 2T

3Kn times. We record the number of positive
observations Ak between v and kernel Sk. We assign v to Sk if for any k′ 6= k, Ak − Ak′ ≥ γ

where the threshold γ guarantees the quality of the assignment. We choose γ = (p̂−q̂)T
2Kn . This

choice is motivated by the observation that E[Ak − Ak′ ] ≈ (p̂−q̂)2T
3Kn when v ∈ Vk and k 6= k′. This

procedure is repeated until there is no remaining nodes or no remaining budget. The second step is
adaptive since the number of times a particular node v is tested depends on the previous observation
outcomes.

11
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Algorithm 4 Adaptive Spectral Partition
Input: Observation budget T .
1. Initialization: V̂k = ∅ for all k and R = V
2. Find the reference kernels: Build node set S by randomly selecting n

5 logn nodes.
Get T/5 random observations for pairs of nodes in S, and construct an observation matrix AS .
Run the Spectral Partition algorithm with input AS , and output (Sk)k=1,...,K . V̂k ← Sk for all k.

3. Estimate p and q : p̂←
∑K
k=1

∑
(v,w)∈Sk×Sk

Avw∑
k |Sk|2

|S|2
2T and q̂ ←

∑K
k=1

∑
(v,w)∈Sk×S

c
k
Avw

|S|2−
∑
k |Sk|2

|S|2
2T .

4. Classify the remaining nodes.
repeat
R← V \ (

⋃
k V̂k)

for v ∈ R do
Randomly sample 2T

3Kn pairs between v and Sk for all k
Avw ← number of positive observations for (v, w)
k?(v)← arg maxk

∑
w∈Sk Avw

d?(v)← mink 6=k?
∑

w∈Sk? Avw −
∑

w′∈Sk Avw′

if d?(v) ≥ p̂−q̂
2K

T
n then

V̂k?(v) ← V̂k?(v) ∪ {v}
end if

end for
until There exists no remaining node or budget
If R 6= ∅, randomly assign v ∈ R to {V̂k}. Output (V̂k)k=1,...,K .

Theorem 6 When (p−q)2

p+q
T
n = Ω(1) and T

n max(KL(q, p),KL(p, q)) = ω(1), the proportion of
misclassified nodes under the Adaptive Spectral Partition algorithm satisfies, with high probability,

εASP (n, T ) ≤ exp

(
− T

3Kn

(
KL(q, p) +KL(p, q)

))
. (9)

From the results of Theorem 3, for any adaptive sampling, to get accurate reconstruction, i.e.,
limn→∞ E[ε(n, T )] = 0, the number of observations T should satisfy T

n max(KL(q, p),KL(p, q)) =

ω(1) and min{p, 1− q}Tn = Ω(1). This necessary condition implies (p−q)2

p+q
T
n = Ω(1) when q does

not tend to 1. Indeed, when p does not go to 1, (p−q)2

p+q
T
n = ω(1) (because KL(q, p) ≤ (p−q)2

p(1−p) and

KL(p, q) ≤ (p−q)2

q(1−q) ), and when p tends to 1, (p−q)2

p+q
T
n = Ω(1) since (p−q)2

p(p+q) = Θ(1). Thus, when q
does not tend to 1, ASP is asymptotically accurate under the necessary condition (2).

5. Conclusion

In this paper, we studied the problem of community detection in networks using non-adaptive and
adaptive sampling strategies. We derived necessary conditions under which an accurate detection is
possible when the network size grows large, and presented algorithms that are accurate under these
conditions. Our numerical experiments presented in appendix show that gathering information in
an adaptive manner can significantly improve the detection accuracy.
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L. Massoulié. Community detection thresholds and the weak ramanujan property. CoRR,
abs/1311.3085, 2013.

F. McSherry. Spectral partitioning of random graphs. In Foundations of Computer Science, 2001.
Proceedings. 42nd IEEE Symposium on, pages 529–537. IEEE, 2001.

E. Mossel, J. Neeman, and A. Sly. Stochastic block models and reconstruction. arXiv preprint
arXiv:1202.1499, 2012.

E. Mossel, J. Neeman, and A. Sly. A Proof Of The Block Model Threshold Conjecture. ArXiv
e-prints, November 2013.

M. Newman. Spectral methods for network community detection and graph partitioning. Phys. Rev.
E, 8, 2013.

K. Rohe, S. Chatterjee, and B. Yu. Spectral clustering and the high-dimensional stochastic block-
model. The Annals of Statistics, 39(4):1878–1915, 08 2011.

O. Shamir and N. Tishby. Spectral clustering on a budget. In International Conference on Artificial
Intelligence and Statistics, pages 661–669, 2011.

T. Tao. Topics in random matrix theory, volume 132. AMS Bookstore, 2012.
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Appendix A. Numerical Experiments

In this appendix, using toy examples, we numerically compare the performance of SP and ASP. We
consider a network of 4000 nodes and two communities (K = 2) with equal sizes (α = 0.5). In
Figure 1, we plot the average fraction of misclassified nodes as a function of the observation budget
T . We use the URS-1 sampling strategy (refer to as ‘Random’ in the experiments). As expected, the
adaptive sampling algorithm outperforms non-adaptive algorithms, and in general, the performance
increases with (p−q)2

p
T
n .
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Under URS-2 sampling strategy, we know, from Heimlicher et al. (2012), that the fraction of
misclassified nodes cannot be less than 1/2 when (p−q)2

p+q
T
n < 1. For example, if p = 10−3 and

q = p/20, T = 2.326 × 106 is the required budget to be able to design algorithms that perform
better than simply assigning nodes to clusters randomly. This is consistent with the results of our
numerical experiments: for non-adaptive sampling, the fraction of misclassified nodes is less than
0.5 if T ≥ 2.6× 106 (roughly). In this case, adaptive sampling provides much better performance:
the fraction of misclassified nodes is less than 0.5 if T ≥ 4× 105. This good performance achieved
even with a small budget can be explained by the fact that we use a fraction T/5 of the budget on a
small fraction of nodes (n/5 log n nodes) to identify kernels. The phase transition then occurs when
(p−q)2

p+q log nTn < 1, i.e., when T = 3× 105.

Appendix B. Lower Bounds

We derive the lower bounds on ε(n, T ) using a change-of-measure argument similar to those used
in the bandit optimization literature Lai and Robbins (1985) (i.e., we assume that the random obser-
vations are generated by a network whose structure is slightly different than the true structure).

B.1. Proof of Theorem 1

Denote by Φ the true hidden partition (Vk)1≤k≤K . Let PΦ be the probability measure capturing
the randomness in the observations assuming that the network structure is described by Φ. We
also introduce a slightly different structure Ψ. The latter is described by clusters V ′1 = V1 \ {v1},
V ′2 = V2 \ {v2}, V ′k = Vk for all 3 ≤ k ≤ K and an isolated set V ′12 = {v1, v2} with arbitrary
selected v1 ∈ V1 and v2 ∈ V2. The observations intra- and inter-cluster for nodes in (V ′k)1≤k≤K
are generated as in the initial SBML, and for v ∈ V ′12 and for all w ∈ V ′1 ∪ V ′2 , when the node pair
(v, w) is observed, label ` is observed with probability ν(`). For v ∈ V ′12 and for all w /∈ V ′1 ∪ V ′2 ,
when the node pair (v, w) is observed, label ` is observed with probability q(`).

Let π ∈ Π′ denote a clustering algorithm with output (V̂k)1≤k≤K , and let E =
⋃

1≤k≤K V̂k \ Vk
be the set of misclassified nodes under π. Note that in general in our proofs, we always assume
without loss of generality that |

⋃
1≤k≤K V̂k \Vk| ≤ |

⋃
1≤k≤K V̂k \Vγ(k)| for any permutation γ, so

that the set of misclassified nodes is really E . Further define B = {v1 ∈ V̂1, v2 ∈ V̂2} as the set of
events where nodes v1 and v2 are correctly classified. We can of course assume that |E| ≤ (K−1)n

K ,
and we have ε(n) = |E|.

Let xi,j denote the label observed on node pair (i, j). We introduce L (a quantity that resembles
the log-likelihood ratio between PΦ and PΨ) as:

L =
∑
i∈V ′1

log
ν(xi,v1)ν(xi,v2)

p(xi,v1)q(xi,v2)
+
∑
i∈V ′2

log
ν(xi,v1)ν(xi,v2)

q(xi,v1)p(xi,v2)
, (10)

In what follows, we establish a relationship between E[ε(n)] and L. For any function f(n),

PΨ{L ≤ f(n)} = PΨ{L ≤ f(n), B̄}+ PΨ{L ≤ f(n),B}. (11)

We have:

PΨ{L ≤ f(n), B̄} =

∫
{L≤f(n),B̄}

dPΨ
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=

∫
{L≤f(n),B̄}

∏
i∈V ′1

ν(xi,v1)ν(xi,v2)

p(xi,v1)q(xi,v2)

∏
i∈V ′2

ν(xi,v1)ν(xi,v2)

q(xi,v1)p(xi,v2)
dPΦ

≤ exp(f(n))PΦ{L ≤ f(n), B̄} ≤ exp(f(n))PΦ{B̄}
≤ 1

α1
exp(f(n))EΦ[ε(n)], (12)

where the last inequality comes from the fact that, since nodes in the same community play identical
roles,

PΦ{B} ≥ 1− PΦ{v1 /∈ V̂1} − PΦ{v2 /∈ V̂2} ≥ 1− 1

α1
EΦ[ε(n)].

We also have:

PΨ{L ≤ f(n),B} ≤ PΨ{B} =
PΨ{v1 ∈ V̂1, v2 ∈ V̂2}+ PΨ{v1 ∈ V̂2, v2 ∈ V̂1}

2
≤ 1

2
. (13)

Indeed v1 and v2 play identical roles under Ψ. Hence PΨ{v1 ∈ V̂1, v2 ∈ V̂2} and PΨ{v1 ∈ V̂2, v2 ∈
V̂1} are equal. Combining (11), (12), and (13), we get

PΨ{L ≤ f(n)} ≤ 1

α1
EΦ[ε(n)] exp(f(n)) +

1

2
.

Since EΦ[ε(n)] = E[ε(n)], choosing f(n) = log
(

α1
4E[ε(n)]

)
, we obtain:

lim inf
n→∞

PΨ{L ≥ log

(
α1

4E[ε(n)]

)
} ≥ 1

4
. (14)

Now introduce

L′ =
∑
i∈V ′1

ν(xi,v1)− p(xi,v1)

p(xi,v1)
+
∑
i∈V ′1

ν(xi,v2)− q(xi,v2)

q(xi,v2)

+
∑
i∈V ′2

ν(xi,v1)− q(xi,v1)

q(xi,v1)
+
∑
i∈V ′2

ν(xi,v2)− p(xi,v2)

p(xi,v2)
.

Then, L ≤ L′, since log(x) ≤ x− 1. Thus,

lim inf
n→∞

PΨ{L′ ≥ log

(
α1

4E[ε(n)]

)
} ≥ 1

4
. (15)

By Chebyshev’s inequality, we have PΨ[L′ ≥ E[L′] + 2σΨ(L′)] ≤ 1
4 , where σΨ[L′]2 is the variance

of L′ under Ψ. Hence, from (15), we deduce that:

EΨ[L′] + 2σΨ[L′] ≥ log

(
α1

4E[ε(n)]

)
. (16)

We use the assumption of the sparse regime to deduce that limn→∞
∑

`6=0
|p(`)−q(`)|

min{p(0),q(0)} = 0.
Now we apply the above analysis with ν(`) = min{p(`), q(`)} for all ` 6= 0. We have:

EΨ[L′] ≤ (α1 + α2)n
∑
`

ν(`)

p(`)

(
ν(`)− p(`)

)
+ (α1 + α2)n

∑
`

ν(`)

q(`)

(
ν(`)− q(`)

)
16
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= −(α1 + α2)n
∑
` 6=0

min{p(`), q(`)}
max{p(`), q(`)}

|p(`)− q(`))|+ (α1 + α2)n
ν(0)

p(0)
(ν(0)− p(0))

+(α1 + α2)n
ν(0)

q(0)
(ν(0)− q(0))

≤ 2(α1 + α2)n
∑
`

(p(`)− q(`))2

p(`) + q(`)
(17)

Due to the fact that the xi,j’s are independent, we also have:

σΨ[L′]2 =
∑
i∈V ′1

σΨ

[
ν(xi,v1)− p(xi,v1)

p(xi,v1)

]2

+
∑
i∈V ′1

σΨ

[
ν(xi,v2)− q(xi,v2)

q(xi,v2)

]2

+
∑
i∈V ′2

σΨ

[
ν(xi,v1)− q(xi,v1)

q(xi,v1)

]2

+
∑
i∈V ′2

σΨ

[
ν(xi,v2)− p(xi,v2)

p(xi,v2)

]2

≤ (α1 + α2)n
∑
6̀=0

ν(`)

p(`)

(
p(`)− ν(`)

)2
p(`)

+ (α1 + α2)n
∑
` 6=0

ν(`)

q(`)

(
q(`)− ν(`)

)2
q(`)

+(α1 + α2)n · ν(0)

(
ν(0)− p(0)

p(0)

)2

+ (α1 + α2)n · ν(0)

(
ν(0)− q(0)

q(0)

)2

≤ 4(α1 + α2)n
∑
`

(p(`)− q(`))2

p(`) + q(`)
, (18)

where the last inequality comes from the sparse regime assumption and from ν(`)
p(`) ≤ 1. By (16),

(17), and (18),

2(α1 + α2)τ(n) + 4
√

(α1 + α2)τ(n) ≥ EΨ[L′] + 2σΨ[L′] ≥ 1

2
log

(
α1

4E[ε(n)]

)
.

If limn→∞ E[ε(n)] = 0, limn→∞ τ(n) =∞. Thus, the above inequality becomes:

2(α1 + α2)τ(n) ≥ 1

2
log

(
α1

4E[ε(n)]

)
.

This concludes the proof.

B.2. Proof of Theorem 2

Without loss of generality, we assume that KL(p, q) ≥ KL(q, p). The case where KL(p, q) <
KL(q, p) can be treated using exactly the same arguments, and is omitted. Alternatively, one may
treat the case where KL(p, q) < KL(q, p) by switching the roles played by p and q, as well as the
roles of observations with outcome 1 and those with outcome 0. More precisely, by such a change,
p is replaced by 1− q, and q by 1− p. This simple argument explains why in the derived conditions
and bounds, p and 1− q play symmetric roles.

We follow exactly the same arguments of those used in the proof of Theorem 1. Under structure
Ψ, for v ∈ V ′12 and for all w, when the node pair (v, w) is observed, the outcome is equal to 1
with probability q. The label on a node pair here represents all the observations made on this pair.
For example, the probability to observe a pair of nodes of the same cluster 4 times with 2 positive

17
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observations is η(4)p2(1−p)2, where η(4) is the probability that the pair is observed 4 times. Refer
to Section 3 in the paper for a detailed explanation of the correspondance.

Now as in the previous proof, we obtain:

EΨ[L] + 2σΨ[L] ≥ log

(
α1

4E[ε(n, T )]

)
. (19)

Let m be a random variable with the same law as that of the number of observations on pairs
(v, v1) and (w, v2) over all v ∈ V ′1 and w ∈ V ′2 . For both URS-1 and URS-2 sampling strategies,

EΨ[m] = T
2((α1 + α2)n− 2)

n(n− 1)
and σΨ[m]2 ≤ T 2((α1 + α2)n− 2)

n(n− 1)
.

This is due to the facts that under URS-1, m has a binomial distribution and that the variance of m
under URS-2 is smaller than the variance of m under URS-1. Thus,

EΨ[L] = EΨ[m]KL(q, p) ≤ 2(α1 + α2)T

n
KL(q, p). (20)

From Lemma 10 (see below), we also deduce that:

σΨ[L]2 ≤ 4(α1 + α2)T

n

(
q

(
log

p(1− q)
q(1− p)

)2

+

(
log

1− q
1− p

)2
)
. (21)

The first statement of the theorem is then obtained by combining (19), (20), and (21).

log

(
α1

4E[ε(n, T )]

)
≤

2(α1 + α2)T

n
KL(q, p) + 2

√√√√4(α1 + α2)T

n

(
q

(
log

p(1− q)
q(1− p)

)2

+

(
log

1− q
1− p

)2
)
. (22)

To prove the second statement of the theorem, we consider three cases: a) p ≤ Cq, b) p > Cq
and 1− p = Θ(1), c) 1− p = o(1) with constant C such that 1

C log2(C) = 1
12 .

a) When p ≤ Cq: Since we assume that p ≥ q andKL(p, q) ≥ KL(q, p), the from Lemma 8, when
p ≤ Cq, 1− p ≥ q ≥ p

C . We observe that:

σΨ[L]2 ≤ 4(α1 + α2)T

n

(
q

(
log

p(1− q)
q(1− p)

)2

+

(
log

1− q
1− p

)2
)

≤ 4(α1 + α2)T

n

(
(p− q)2

q(1− p)2
+

(p− q)2

(1− p)2

)
≤ 8(α1 + α2)T

n

(p− q)2

q(1− p)2

≤ 8(α1 + α2)T

n
(C + 1)3 (p− q)2

p+ q
≤ 16(α1 + α2)T

n
(C + 1)3KL(q, p), (23)

where the last inequality results from Lemma 7 (see below). Therefore, when E[ε(n, T )]→ 0, (19)
becomes

2(α1 + α2)T

n
KL(q, p) ≥ log

(
α1

4E[ε(n, T )]

)
.

18
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b) When p > Cq and 1− p = Θ(1): From Lemma 7, KL(q, p) ≥ p
3 . From this, we can deduce

q

(
log

p(1− q)
q(1− p)

)2

≤ q
(

2 log
p

q

)2

≤ 4

C
log2(C)p ≤ KL(q, p) and(

log
1− q
1− p

)2

≤ (p− q)2

(1− p)2
≤ 3

(1− p)2
KL(q, p) = Θ(KL(p, q)). (24)

Therefore, when E[ε(n, T )]→ 0, (22) becomes

2(α1 + α2)T

n
KL(q, p) ≥ log

(
α1

4E[ε(n, T )]

)
.

c) When 1− p = o(1): By Lemma 8, q ≤ 1− p. Therefore, KL(q, p) = Θ(log 1−q
1−p). Thus, for this

case, (22) becomes
− logE[ε(n, T )]

(Tn +
√

T
n )KL(q, p)

= O(1).

When − logE[ε(n,T )]
KL(q,p) = ω(1), Tn →∞ and (22) becomes

2(α1 + α2)T

n
KL(q, p) ≥ log

(
α1

4E[ε(n, T )]

)
.

When − logE[ε(n)]
KL(q,p) = O(1), In this case, the condition from (22) is T

n = O(1). But this bound is
not tight. When E[ε(n, T )]→ 0, the observed edges should generate a giant component containing
almost every nodes. With random sampling, the condition to get the giant component is T

n = ω(1).
From the three cases, we can conclude that when E[ε(n, T )] = o(1), Tn = ω(1) and

2(α1 + α2)T

n
≥
− log

(
4
α1
E[ε(n, T )]

)
KL(q, p)

.

Lemma 7 min{KL(q, p),KL(p, q)} ≥ (p−q)2

2(p+q) .

Proof. From the definition of KL(q, p),

KL(q, p) = q log
q

p
+ (1− q) log

1− q
1− p

= −q log
p

q
− (1− q) log

1− p
1− q

= −q log

(
1 +

p− q
2q

)
− q log

(
1 +

p− q
p+ q

)
− (1− q) log

1− p
1− q

≥ −q p− q
2q
− q p− q

p+ q
− (1− q)q − p

1− q
= (p− q)

(
1

2
− q

p+ q

)
=

(p− q)2

2(p+ q)
.

Lemma 8 KL(p, q) ≥ KL(q, p) iff p(1− p) ≥ q(1− q).
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Proof. Let p = 1
2 + cx and q = 1

2 + c, where c ∈ [−1
2 ,

1
2 ]. We will show that KL(p, q) −

KL(q, p) ≥ 0 when −1 ≤ x ≤ 1. Let,

g(x) = KL(p, q)−KL(q, p) = (1 + (1 + x)c) log
1 + 2cx

1 + 2c
+ (1− (1 + x)c) log

1− 2cx

1− 2c
.

Then, g′(1) = 0, g(−1) = g(1) = 0, and

g′(x) = c log
1 + 2cx

1 + 2c
+

2c(1 + (1 + x)c)

1 + 2cx
− c log

1− 2cx

1− 2c
− 2c(1− (1 + x)c)

1− 2cx

g′′(x) = 4c3(x− 1)

(
1

(1 + 2cx)2
− 1

(1− 2cx)2

)
.

From this, we will deduce g(0) ≥ 0. First, one can easily check g(0) = 0 when c = 0. Let
h(c) = −(1 + c) log(1 + 2c) − (1 − c) log(1 − 2c). Then, h′(c) = log 1−2c

1+2c −
2+2c
1+2c + 2−2c

1−2c and

h′′(c) = 4c
(

1
(1−2c)2 − 1

(1+2c)2

)
≥ 0. Since h′(0) = 0 and h′′(c) ≥ 0, h(c) ≥ 0. Therefore,

g(0) ≥ 0.
We now conclude the proof of the lemma. When −1 ≤ x ≤ 0, since g(−1) = 0, g(0) ≥ 0,

and g′′(x) ≤ 0, g(x) ≥ 0. For 0 ≤ x ≤ 1, since g(0) ≥ 0, g(1) = 0, g′(1) = 0 and g′′(x) ≤ 0,
g(x) ≥ 0. Therefore, KL(p, q) ≥ KL(q, p) iff p(1− p) ≥ q(1− q).

Lemma 9 When KL(p, q) ≥ KL(q, p), then there exists constant C such that if p ≥ Cq,

KL(p, q) ≥ p

3
log

(
p(1− q)
q(1− p)

)
.

Proof. From Lemma 8, pq ≥
1−q
1−p . Thus, when p ≥ 5

6

KL(p, q) = p log

(
p(1− q)
q(1− p)

)
− log

(
1− q
1− p

)
≥ (p− 1

2
) log

(
p(1− q)
q(1− p)

)
≥ p

3
log

(
p(1− q)
q(1− p)

)
.

When p ≤ 5
6 and C is sufficiently large, log( 1−q

1−p) becomes much smaller than p log
(
p
q

)
. Thus,

KL(p, q) = p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
≥ 2p

3
log

(
p

q

)
≥ p

3
log

(
p(1− q)
q(1− p)

)
.

Lemma 10 σΨ[L]2 ≤ 2(σΨ[m])2
(

log 1−q
1−p

)2
+ 2
(
EΨ[m]q(1− q) + q2(σΨ[m])2

) (
log p(1−q)

q(1−p)

)2
.

Proof. Let s denote a random variable representing the number of positive observations gathered
on one the following pairs: (1, αn), . . . , (αn− 1, αn), and (αn+ 1, n) . . . (n− 1, n). Then,

EΨ

[
(L− EΨ[L])2

]
= EΨ

[(
(m− EΨ[m]) log

1− q
1− p

− (s− EΨ[s]) log
p(1− q)
q(1− p)

)2]
≤ 2EΨ

[
(m− EΨ[m])2

(
log

1− q
1− p

)2
]

+ 2EΨ

[
(s− EΨ[s])2

(
log

p(1− q)
q(1− p)

)2
]

= 2(σΨ[m])2

(
log

1− q
1− p

)2

+ 2(σΨ[s])2

(
log

p(1− q)
q(1− p)

)2

.
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Now if η(m, s) denote the joint probability distribution of m and s, we have:

(σΨ[s])2 =
∑
m≥1

m∑
s=0

(s2 − EΨ[s]2)η(m, s)

=
∑
m≥1

m∑
s=0

(s2 −m2q2 +m2q2 − EΨ[s]2)η(m, s)

=
∑
m≥1

m∑
s=0

(s2 −m2q2)η(m, s) +
∑
m≥1

m∑
s=0

(m2q2 − EΨ[s]2)η(m, s)

=
∑
m≥1

mq(1− q)
m∑
s=0

η(m, s) +
∑
m≥1

m∑
s=0

(m2q2 − EΨ[m]2q2)η(m, s)

= q(1− q)EΨ[m] + q2(σΨ[m])2.

The lemma easily follows.

B.3. Proof of Theorem 3

As in the previous proof, without loss of generality, we assume that KL(p, q) ≥ KL(q, p).
Let d(v) denote the number of observations on node v. Again we use a change-of-measure

argument to show the following lemma, which gives the lower bound of d(v) + d(w) when we
arbitrary select v and w from different clusters. We prove the lemma at the end of this section.

Lemma 11 For any vi ∈ Vi, vj ∈ Vj and i 6= j, P
{
d(vi) + d(vj) ≥ 1

2p

}
≥ 1

2 . In addition, when
−p logE[ε(n,T )]

KL(p,q) = ω(1), lim infn→∞ P
{
d(vi) + d(vj) ≥ − logE[ε(n,T )]

4KL(p,q)

}
= 1.

To prove the theorem, we have to show (6) and (7) for p and q satisfying − logE[επ(n,T )]
log p

q
= ω(1)

and (6) for p and q such that − logE[επ(n,T )]
log p

q
= O(1).

a) Consider − logE[επ(n,T )]
log p

q
= ω(1). Since KL(p, q) = O(p log p

q ), − logE[επ(n,T )]
log p

q
= ω(1) implies

that −p logE[επ(n,T )]
KL(p,q) = ω(1). Then, by Lemma 11,

T =
K∑
k=1

∑
v∈Vk

d(v)

2
≥ min{1

2
, 1− αK}

n

8KL(p, q)
log

1

E[ε(n, T )]
, (25)

since nodes in the same cluster play the same role and there are min{1
2 , 1−αK}n non-overlapping

pairs of nodes from different clusters. We have proved (7). Now we establish (6). Note that
the second condition in (6) is a direct consequence of (7). Further observe that by assumption,
− logE[επ(n,T )]

KL(p,q) = ω(1). Together with (25), this implies that pTn = ω(1), and hence the first condi-
tion in (6) holds.

b) Consider − logE[επ(n,T )]
log p

q
= O(1). In this case, log p

q = ω(1) which means that p = ω(q).

Combining this and Lemma 9, KL(p, q) = Θ(p log p
q ). Thus, to prove (6), it is enough to show that
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pTn = Ω(1), since T
nKL(p, q) = Θ(Tn p log p

q ) and log p
q = ω(1). By Lemma 11,

T =
K∑
k=1

∑
v∈Vk

d(v)

2
≥ min{1

2
, 1− αK}

n

8p
. (26)

From the above ineqaulity, Tn = Ω(1
p).

B.4. Proof of Lemma 11

We provide the proof for i = 1 and j = 2. Other cases can be shown analogously.
Let Φ be the true network structure: (Vk)1≤k≤K . The modified structure Ψ changes two clus-

ters: V ′1 = {v2} ∪ V1 \ {v1}, V ′2 = {v1} ∪ V2 \ {v2}, and V ′k = Vk for 3 ≤ k ≤ K, where v1 ∈ V1

and v2 ∈ V2. The difference between Φ and Ψ concerns only the nodes v1 and v2. Since nodes
from the same community are identical, P {d(v1) + d(v2) ≤ ζ} = PΦ {d(v1) + d(v2) ≤ ζ} =
PΨ {d(v1) + d(v2) ≤ ζ} , for any ζ.

We denote by e(t) the edge selected in round t by the adaptive sampling algorithm. Let `(t) ∈
{0, 1} be the outcome of the observation in round t. Define p(1) = p, q(1) = q, p(0) = 1− p, and
q(0) = 1− q. Further define: for ` ∈ {0, 1}, for any node pair e:

µ(`, e,Φ) =

{
p(`) if e ∈ SΦ

q(`) if e /∈ SΦ

and

µ(`, e,Ψ) =

{
p(`) if e ∈ SΨ

q(`) if e /∈ SΨ

where SΦ and SΨ denote the sets of node pairs such that both nodes are in the same cluster under Φ
and Ψ, respectively.

Define

L =
T∑
t=1

log
µ(`(t), e(t),Ψ)

µ(`(t), e(t),Φ)

=
T∑
t=1

(1v1∈e(t) + 1v2∈e(t)) log
µ(`(t), e(t),Ψ)

µ(`(t), e(t),Φ)
, (27)

where 1a∈e is equal to 1 when node pair e contains node a, and to 0 otherwise. We further define
d(a) =

∑T
t=1 1a∈e(t).

Since nodes in the same community play identical roles, PΦ{v1 /∈ V̂1} ≤ 1
α1
E[ε(n, T )] and

PΨ{v1 /∈ V̂2} ≤ 1
α2
E[ε(n, T )]. Define the event C = {v1 /∈ V̂1, d(v1) + d(v2) ≤ ζ, L ≤ f(n)}.

Then:

1

α1
EΦ[ε(n, T )] ≥ PΦ

{
v1 /∈ V̂1

}
≥ PΦ{C} =

∫
C

T∏
t=1

µ(`(t), e(t),Φ)

µ(`(t), e(t),Ψ)
dPΨ

≥ exp(−f(n))PΨ{C}. (28)
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Choosing f(n) = −1
2 logE[ε(n, T )], from (28), we obtain: lim supn→∞ PΨ {C} = 0. Therefore,

since lim supn→∞ PΨ {C} = 0 and lim infn→∞ PΨ{v1 /∈ V̂1} ≥ 1− lim supn→∞
E[ε(n,T )]

α2
= 1,

lim
n→∞

PΨ {d(v1) + d(v2) ≤ ζ, L ≤ f(n)} = 0,

which means that

lim
n→∞

PΨ {d(v1) + d(v2) ≤ ζ, L ≥ f(n)}+ lim
n→∞

PΨ {d(v1) + d(v2) > ζ} = 1. (29)

Let x(j) and e(j) denote the value and the edge of the j-th observation such that v1 ∈ e(j) or
v2 ∈ e(j). We define L(t) as L but computed up to the t-th observation :

L(t) =
t∑

j=1

1e(j)∈SΨ
·
(
x(j) log(

p(1− q)
q(1− p)

) + log(
1− p
1− q

)

)
+

t∑
j=1

1e(j)/∈SΨ
·
(
x(j) log(

q(1− p)
p(1− q)

) + log(
1− q
1− p

)

)
.

Then,

PΨ {d(v1) + d(v2) ≤ ζ, L ≥ f(n)} ≤ PΨ

{
sup
t≤ζ

L(t) ≥ f(n)

}
. (30)

To complete the proof of the first part of this lemma, we set ζ = 1
2p . When

∑t
j=1 x(j) = 0 and

t ≤ 1
2p ,

L(t) ≤ t log
1− q
1− p

≤ 1

2p
log

1− q
1− p

≤ 1

2p

p− q
1− p

< f(n).

Therefore, by (30)

PΨ

{
d(v1) + d(v2) ≤ 1

2p
, L ≥ f(n)

}
≤ PΨ

 sup
d≤ 1

2p

L(d) ≥ f(n)


≤ 1− PΨ


1/2p∑
j=1

x(j) = 0


≤ 1− (1− p)1/2p ≤ 1

2
. (31)

Combining (29) and (31),

PΨ

{
d(v1) + d(v2) ≥ 1

2p

}
≥ 1

2
.

In what follows, to conclude the proof, we consider the case where −p logE[ε(n,T )]
KL(p,q) = ω(1)

and show that limn→∞ PΨ

{
sup

t≤ f(n)
2KL(p,q)

L(t) ≥ f(n)

}
= 0. Then, from (29) and (30), we can

deduce that

lim inf
n→∞

PΨ

{
d(v1) + d(v2) ≥ f(n)

2KL(p, q)

}
= 1.

For this case, we set ζ = f(n)
2KL(p,q) . Then ζ = ω(1).

To bound PΨ

{
supt≤ζ L(t) ≥ f(n)

}
, we use Doob’s maximal inequality.
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Lemma 12 (Doob’s maximal inequality) Let {L(t)} be a martingale such that (σ[L(T )])2 <∞.
Then,

P{ max
1≤t≤T

|L(t)| ≥ λ} ≤ 1

λ2
(σ[L(T )])2.

We slightly modify L(t) so that we can use Lemma 12. Let

Lm(t) =
1

ζKL(p, q)

t∑
j=1

1e(j)∈SΨ
·
(
x(j) log(

p(1− q)
q(1− p)

) + log(
1− p
1− q

)−KL(p, q)

)
+

1

ζKL(p, q)

t∑
j=1

1e(j)/∈SΨ
·
(
x(j) log(

q(1− p)
p(1− q)

) + log(
1− q
1− p

)−KL(q, p)

)
.

On may easily check that Lm(t) is a martingale, and for t ≤ ζ,

L(t)− Lm(t)ζKL(p, q) ≤ ζKL(p, q) =
f(n)

2
. (32)

The variance of increments of Lm(t) is bounded as follows:

(σΨ[Lm(t+ 1)− Lm(t)])2 ≤ max{p(1− p), q(1− p)}
ζ2KL(p, q)2

log2(
p(1− q)
q(1− p)

)

=
p(1− p)

ζ2KL(p, q)2
log2(

p(1− q)
q(1− p)

),

since p(1 − p) ≥ q(1 − p) when KL(p, q) ≥ KL(q, p) by Lemma 8. Therefore, the variance of
Lm(ζ) satisfies

(σΨ[Lm(ζ)])2 ≤
p(1− p) log2(p(1−q)q(1−p))

ζKL(p, q)2
. (33)

Let C be a large enough constant such that KL(p, q) ≥ p
3 log(p(1−q)q(1−p)) when p > Cq. The existence

of such constant C is ensured in view of Lemma 9. Now, consider two cases: p ≤ Cq and p > Cq.
When p ≤ Cq, 1− p ≤ q ≤ p

C by Lemma 8 and p ≤ C
C+1 . For this case, (33) becomes

(σΨ[Lm(ζ)])2 ≤
p(1− p) log2(p(1−q)q(1−p))

ζKL(p, q)2

≤
p (p−q)2

q2(1−p)

ζKL(p, q)2
≤

C(C + 1) (p−q)2

q

ζKL(p, q)2
≤ 4C(C + 1)2

ζKL(p, q)
,

where we used Lemma 7 for the last inequality. Therefore, with ζ = f(n)
2KL(p,q) , since f(n) tends to

infinity, (σΨ[Lm(ζ)])2 = o(1).
When p > Cq, since KL(p, q) ≥ p

3 log
(
p(1−q)
q(1−p)

)
, (σΨ[Lm(ζ)])2 ≤ 3(1−p)

ζp . Since in case a),

we assume pf(n)
KL(p,q) = ω(1), then with ζ = f(n)

2KL(p,q) , (σΨ[Lm(ζ)])2 = o(1).

Next we apply Lemma 12. Since (σΨ[Lm(ζ)])2 = o(1) when pf(n)
KL(p,q) = ω(1), by (32) and

Lemma 12,

lim
n→∞

PΨ

{
sup
t≤ζ

L(t) ≥ f(n)

}
≤ lim

n→∞
PΨ

{
sup
t≤ζ

Lm(t) ≥ 1

}
= 0.
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Appendix C. Spectral Partition

C.1. Proof of Theorem 4

In what follows, we use the standard matrix norm ‖A‖ = sup‖x‖=1 ‖Ax‖. XΓ = AΓ − E[AΓ] is
a random matrix whose elements have zero mean. Let δ = α1

10 . The proof proceeds as follows:
we bound ‖XΓ‖ using random matrix theory, we show that the fraction of misclassified nodes on
Γ goes to 0 with the bounded ‖XΓ‖, and conclude the proof by proving that with high probability
|V \ Γ| = o(n).

We first show that, with high probability, ‖XΓ‖ = O(
√
pTn ).

Lemma 13 With high probability, the following condition holds:

(C3) ‖XΓ‖ ≤
√
C1(p+ q)Tn for some constant C1, where XΓ = AΓ − E[AΓ].

The proof of the above lemma is postponed to the end of this section. The proof of Lemma 13 relies
on arguments used in the spectral analysis of random graphs, Feige and Ofek (2005).

Since the eigenvalues of E[AΓ] are the order of Ω((p − q)Tn ), when (p−q)2

p
T
n = ω(1), ‖XΓ‖

is negligible compared to the eigenvalues of E[AΓ]. Thus, by spectral decomposition, we can
recover E[AΓ] from given AΓ and reconstruct the comunities. In following lemmas, we bound
|
⋃

1≤k≤K(Sk \ Vk) ∩ Γ| under (C3) :

Lemma 14 When |V \ Γ| < δn, under (C3), after Algorithm 2, we have:

|(S1 4 V1) ∩ Γ| ≤ 1− α
α

 4
√
C1(p+ q)Tn

(p− q)αTn −
√
C1(p+ q)Tn

2

n.

Lemma 15 When |V \ Γ| < δn, under (C3), after Algorithm 3, we have: with sufficiently large
constant C3,

|
⋃

1≤k≤K
(Sk \ Vk) ∩ Γ| ≤ C3

p

(p− q)2

n2

T
.

Therefore, if we show that |V \ Γ| = o(n) with high probability, since (C3) also occurs with
high probability, Lemma 14 and Lemma 15 imply that, when (p−q)2

p
T
n = ω(1),

lim
n→∞

1

n
|
⋃

1≤k≤K
(Vk \ Sk)| = lim

n→∞

1

n
|
⋃

1≤k≤K
(Sk \ Vk) ∩ Γ|+ 1

n
|V \ Γ| = 0.

Now, we complete the proof by showing that |V \ Γ| = o(n) with high probability. By law

of large numbers, 5K
∑

(v,w)∈E Avw
n ≥ 4pTn . When (p−q)2

p
T
n = ω(1), since E[

∑
w∈V Avw] ≤ 2pTn

and (σ[
∑

w∈V Avw])2 ≤ 2pTn , by Chebychev’s inequality, we can show that all v ∈ V satisfy that
limn→∞ P{v ∈ Γ} = 1. From this, it is also true that |V \ Γ| = o(n) with high probability.
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C.2. Proof of Lemma 13

Let XVi×Vj ,Γ denote the matrix constructed from XΓ by keeping the entries (i, j) in (Vi ∩ Γ) ×
(Vj ∩ Γ). To establish the lemma, we prove that with high probability,

‖XVi×Vj ,Γ‖ ≤
1

K2

√
C1(p+ q)

T

n
for all 1 ≤ i, j ≤ K. (34)

Then from the convexity of matrix norm,

‖XΓ‖ ≤
∑

1≤i,j≤K
‖XVi×Vj ,Γ‖ ≤

√
C1(p+ q)

T

n
. (35)

Next we prove (34) for i = j = 1. The proof consists in extending arguments in Feige and
Ofek (2005). We provide the proof for XV1×V1,Γ under URS-1 sampling strategy. Other cases
can be shown analogously. We first introduce the notion of discrepancy, an extension of a similar
notion used in Feige and Ofek (2005). Let e(A,B) denote the number of positive observations
between nodes (v, w) with v ∈ A and w ∈ B and let µ(A,B) denote the average of e(A,B). Let
|V1 ∩ Γ| = n′.

Definition 16 (Discrepancy property) All A,B ⊂ V1 ∩ Γ satisfy one of the following properties:
for some constants c2 and c3,

• e(A,B)/µ(A,B) ≤ c2

• e(A,B) log(e(A,B)/µ(A,B)) ≤ c3 max (|A|, |B|) log(n′/max |A|, |B|).

As in Feige and Ofek (2005), it can be shown, using arguments from random matrix theory,
that if the discrepancy property holds, then (34) holds. Next we establish that with high probability,
the discrepancy property holds. Let A,B be two subsets of V1 ∩ Γ, and c2, c3 two large enough
constants. Without loss of generality we assume that |B| ≥ |A|. We distinguish two cases:
(Case1: if |B| ≥ n′/5). Due to the trimming step in SP, for all v ∈ V1 ∩ Γ, e(v, V1) ≤ 10KpTn .
Thus.

e(A,B) ≤ |A| · 10Kp
T

n
≤ c2µ(A,B).

(Case2: if |B| ≤ n′/5). Let η(A,B) = max{η?, c2µ(A,B)} where η? is a constant satisfying that
η? log(η?/µ(A,B)) − c3|B| log(n′/|B|) = 0. Then, if all pairs A,B ⊂ V1 ∩ Γ satisfy e(A,B) ≤
η(A,B), the discrepancy property holds. Thus, we just show that with high probability e(A,B) ≤
η(A,B) for all A,B ⊂ V1 ∩ Γ.

First, we quantify the probability that e(A,B) ≤ η(A,B) for any arbitrary subsets A and B of
V1. Between A and B, there are at most |A||B| and at least |A|(|B|−1)

2 node pairs. Under URS-1, on
i-th observation, each node pair is selected with probability 2

n(n−1) and we get a positive observation

with probability p. Thus, |A|(|B|−1)
n(n−1) pT ≤ µ(A,B) ≤ 2|A||B|

n(n−1)pT. Then, by Markov inequality,

P{e(A,B) > η(A,B)} ≤ inf
h≥0

E[exp(h · e(A,B))]

exp(η(A,B)h)

≤ inf
h≥0

∏T
t=1(1 + 2p|A||B|

n(n−1) exp(h))

exp(η(A,B)h)
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≤ inf
h≥0

∏T
t=1 exp(2p|A||B|

n(n−1) exp(h))

exp(η(A,B)h)
≤ inf

h≥0
exp(4 exp(h)µ(A,B)− η(A,B)h)

≤ exp(−η(log
η(A,B)

4µ(A,B)
− 1)), (36)

where, for the last inequality, we set h = log η(A,B)
4µ(A,B) .

Then, we compute the expected number of pairs A,B ⊂ V1 ∩ Γ such that e(A,B) > η(A,B).
The number of possible pairs of sets A and B such that A ∈ V1 and B ∈ V1 with size |A| = a and
|B| = b is

(
n′

a

)(
n′

b

)
. Hence using (36),

E[|{(A,B) :e(A,B) > η(A,B), |A| = a, |B| = b, A,B ⊂ V1 ∩ Γ}|]

≤
(
n′

a

)(
n′

b

)
exp

(
−η(A,B)(log

η(A,B)

4µ(A,B)
− 1)

)
(a)

≤
(
n′e

b

)2b

exp

(
−η(A,B)(log

η(A,B)

4µ(A,B)
− 1)

)
(b)

≤ exp

(
4b log

n′

b
− η(A,B)(log

η(A,B)

4µ(A,B)
− 1)

)
≤ exp

(
−3 log n+ 3 log n+ 4b log

n′

b
− η(A,B)(log

η(A,B)

4µ(A,B)
− 1)

)
(c)

≤ exp

(
−3 log n+ 7b log

n′

b
− η(A,B)(log

η(A,B)

4µ(A,B)
− 1)

)
(d)

≤ exp

(
−3 log n+ 7b log

n′

b
− η(A,B)

2
(log

η(A,B)

µ(A,B)
)

)
(e)

≤ 1

n3
., (37)

where for (a) and (b), we use b ≤ n′

5 ; for (c), we use that x log x is an increasing function; (d) stems
from η(A,B)

µ(A,B) ≥ c2; and (e) is obtained by the definition of η(A,B). Therefore, summing the above
inequality for all possible cardinalities a, b, we get: E[|{(A,B) : e(A,B) > η(A,B), A,B ⊂
V1 ∩ Γ}|] ≤ 1

n and we can conclude that with high probability the discrepancy property holds.

C.3. Proof of Lemma 14

For notational simplicity, letm = |Γ| and |V1∩Γ| = α̃m. Let x̃1 and x̃2 be two orthonormal vectors

defined by x̃1(v) = 1√
m

for all v ∈ Γ and x̃2(v) =
√

1−α̃
mα̃ for v ∈ V1 ∩ Γ and x̃2(v) = −

√
α̃

(1−α̃)m

for v ∈ V2 ∩ Γ. We define x̃i for 3 ≤ i ≤ m so that {x̃i}1≤i≤m is an orthonormal basis of Rm.
We denote by λi and xi, i-th largest eigenvalue and corresponding eigenvector ofAΓ and denote

by λ̃1 and λ̃2 the two eigenvalues of E[AΓ]. The eigenvalues of E[AΓ] are

λ̃1 =
(
p+

√
p2 − 4α̃(1− α̃)(p2 − q2)

) mT
n2

,

λ̃2 =
(
p−

√
p2 − 4α̃(1− α̃)(p2 − q2)

) mT
n2

.
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Observe that λ̃2 ≥ 2(p − q)α̃mT
n2 . This is due to the fact that iff(α̃) = ((1− 2α̃)p+ 2α̃q)2 −(

p2 − 4α̃(1− α̃)(p2 − q2)
)
, then f(α̃) ≤ 0 (indeed, f(0) = f(1/2) = 0 and f ′′(x) = −16q(p −

q) > 0, f(α̃) ≤ 0 for 0 ≤ α̃ ≤ 1
2 .) x1 and x2 can be represented as x1 =

∑m
i=1 γix̃i and x2 =∑m

i=1 θix̃i, where
∑m

i=1 γ
2
i = 1 and

∑m
i=1 θ

2
i = 1.

From the definition of x1,

AΓx1 = λ1x1 = λ1

m∑
i=1

γix̃i, (38)

and from the definition of the othornormal basis {x̃i},

AΓx1 = (E[AΓ] +XΓ)x1 = XΓx1 + E[AΓ]
2∑
i=1

γix̃i. (39)

Since ‖XΓx1‖ ≤ ‖XΓ‖, when we combine (38) and (39),

‖XΓ‖2 ≥ ‖λ1

m∑
i=1

γix̃i −MΓ ·
2∑
i=1

γix̃i‖2 ≥ ‖λ1

m∑
i=3

γix̃i‖2 = λ2
1

m∑
i=3

γ2
i

≥ (λ̃1 − ‖XΓ‖)2
m∑
i=3

γ2
i , (40)

where for the last inequality, we use: λi ≥ λ̃i − ‖XΓ‖. Similarly, we can show that

‖XΓ‖2 ≥ (λ̃2 − ‖XΓ‖)2
m∑
i=3

θ2
i . (41)

By definition of x̂ (see Algorithm 2), x̂ = x1 + x2 − (γ1 + θ1)x̃1. Define z = x̂ − (γ2 +
θ2)x̃2 =

∑m
i=3(γi + θi)x̃. We classify node v by looking at the sign of x̂(v), whereas the true

classification is determined by the sign of x̃2(v). Then since |x̃2(v)| ≥
√

α̃
(1−α̃)m , v is misclassified

only if |z(v)| ≥ (γ2 + θ2)
√

α̃
(1−α̃)m . Therefore, ‖z‖2 is greater than the product of the number of

misclassified nodes and of (γ2 + θ2)
√

α̃
(1−α̃)m . In other words,

|(S1 4 V1) ∩ Γ|
|Γ|

α̃(γ2 + θ2)2

1− α̃
≤ ‖z‖2 =

m∑
i=3

(γi + θi)
2 ≤ 2

m∑
i=3

γ2
i + 2

m∑
i=3

θ2
i

≤ 2‖XΓ‖2

(λ̃1 − ‖XΓ‖)2
+

2‖XΓ‖2

(λ̃2 − ‖XΓ‖)2
,

where the last inequality uses (40) and (41). Since (γ2 + θ2)2 ≥ 1− 2‖XΓ‖2
(λ̃1−‖XΓ‖)2

− 2‖XΓ‖2
(λ̃2−‖XΓ‖)2

, the
above inequality becomes

|(S1 4 V1) ∩ Γ|
|Γ|

≤ 1− α̃
α̃

(
4‖XΓ‖2

(λ̃1 − ‖XΓ‖)2
+

4‖XΓ‖2

(λ̃2 − ‖XΓ‖)2

)
≤ 1− α1

α1

16‖XΓ‖2

(λ̃2 − ‖XΓ‖)2

≤ 1− α1

α1

(
4‖XΓ‖

(p− q)α1
T
n − ‖XΓ‖

)2

.
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C.4. Proof of Lemma 15

For notational simplicity, let m = |Γ| and |Vk ∩ Γ| = α̃km. Let M (k)
Γ denote the column vector of

MΓ on v ∈ Vk ∩ Γ and γ(k) = arg mink ‖ξi?,k −M (k)‖. We will show that

1

n

∣∣∣∣∣∣
⋃

1≤k≤K
(Sk \ Vγ(k)) ∩ Γ

∣∣∣∣∣∣ ≤ C3
p

(p− q)2

n

T
. (42)

Then, since (p−q)2

p
T
n = ω(1), the right hand side of the above equation goes to 0. We have γ(k) = k

so that
|Sk\Vγ(k)|

n = 0 for all k. Therefore, (42) implies that the lemma holds.
Proof of (42): Let Mv,Γ denote the column vector of MΓ corresponding to v. Since ‖Mv,Γ −
M

γ(k)
Γ ‖2 ≥ (p− q)2 4T 2

n4 (α̃1 + α̃2)m for all v ∈ (Sk \ Vγ(k)) ∩ Γ,∣∣∣∣∣∣
⋃

1≤k≤K
(Sk \ Vγ(k)) ∩ Γ

∣∣∣∣∣∣(p− q)2 4T 2

n4
(α̃1 + α̃2)m

≤
K∑
k=1

∑
v∈(Sk\Vγ(k))∩Γ

‖Mv,Γ −Mγ(k)
Γ ‖2

≤ 2

K∑
k=1

∑
v∈(Sk\Vγ(k))∩Γ

(‖Mv,Γ − ξi?,k‖2 + ‖ξi?,k −M
γ(k)
Γ ‖2)

≤ 4
K∑
k=1

∑
v∈(Sk\Vγ(k))∩Γ

‖Mv,Γ − ξi?,k‖2

≤ 8
K∑
k=1

∑
v∈(Sk\Vγ(k))∩Γ

(‖Mv,Γ − Âv‖2 + ‖Âv − ξi?,k‖2)

≤ 8‖MΓ − Â‖2F + 8ri? , (43)

where ‖ · ‖F is Frobenious norm. To complete the proof of (42), It is enough to show that:

8‖MΓ − Â‖2F ≤ C3p(α̃1 + α̃2)
T

n
and (44)

8ri? ≤ C3p(α̃1 + α̃2)
T

n
, (45)

Proof of (44): First note that when the rank of matrix A is K, ‖A‖2F ≤ K‖A‖2. Since the ranks of
Â and MΓ are K, the rank of Â−MΓ is less than 2K. Thus,∑

v∈Γ

‖Âv −Mv,Γ‖2 = ‖Â−MΓ‖2F ≤ 2K‖Â−MΓ‖2

≤ 4K‖Â−AΓ‖2 + 4K‖AΓ −MΓ‖2
≤ 8K‖AΓ −MΓ‖2

≤ 8KC1(p+ q)
T

n
. (46)
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Therefore, when we let C3 ≥ 128KC1
α̃1+α̃2

, we deduce (44).
Proof of (45): It is sufficient to show that there exists i such that ri ≤ 1

8C3p(α̃1 + α̃2)Tn .

Since
∑

(v,w)∈E Avw

2n2 ≤ p T
n2 by law of large numbers, with constant C2 >

1
δ , there exists it such

that 32KC1C2(p + q) T
n2 ≤ it

∑
(v,w)∈E Avw

100n2 ≤ 64KC1C2(p + q) T
n2 and 1 ≤ it ≤ log n. In what

follows, we will show that rit ≤ 1
8C3p(α̃1 + α̃2)Tn .

We first bound ‖ξit,k −M
(k)
Γ ‖. Let

Ik = {v ∈ Vk ∩ Γ : ‖Âv −M (k)
Γ ‖

2 ≤ 1

4
it

∑
(v,w)∈E Avw

100n2
}

O = {v ∈ Γ : ‖Âv −M (k)
Γ ‖

2 ≥ 4it

∑
(v,w)∈E Avw

100n2
for all 1 ≤ k ≤ K}.

For all v ∈ Ik, Ik ⊂ Qit,v, and ‖Âv−Âw‖2 ≤ 2‖Âv−M (k)
Γ ‖2 +2‖Âw−M (k)

Γ ‖2 ≤ it
∑

(v,w)∈E Avw

100n2

for all w ∈ Ik. Besides, for all v ∈ O, |(∪Kk=1Ik) ∩ Qit,v| = 0, since ‖Âv − Âw‖2 ≥ 1
2‖Âv −

M
(k)
Γ ‖2 − ‖Âw −M

(k)
Γ ‖2 > it

∑
(v,w)∈E Avw

100n2 for all w ∈ Ik. Since from (46)

|Γ \ (∪Kk=1Ik)| ≤ 8KC1(p+ q)
T

n

(
1

4
it

∑
(v,w)∈E Avw

100n2

)−1

≤ n

C2
≤ δn,

|Qit,v| ≤ δn for all v ∈ O and |Qit,v| ≥ α1n − 2δn for all v ∈ ∪Kk=1Ik. Therefore, all v ∈
O cannot be the origin of Tit,k. Since the column vector of the origin of Tit,k should be within√

4it

∑
(v,w)∈E Avw

100n2 from M
(k)
Γ in Euclidean distance, we can deduce that

‖ξit,k −M
(k)
Γ ‖

2 ≤ C2it

∑
(v,w)∈E Avw

100n2
≤ 64KC1(C2)2(p+ q)

T

n2
.

Therefore, for sufficiently large constant C3,

rit =
∑

1≤k≤K

∑
v∈Tit,k

‖Âv − ξit,k‖2

≤
∑

1≤k≤K

∑
v∈Vk∩Γ

‖Âv − ξit,k‖2

≤ 2
∑

1≤k≤K

∑
v∈Vk∩Γ

(‖Âv −Mv,Γ‖2 + ‖Mv,Γ − ξit,k‖2)

≤ 16KC1(p+ q)
T

n
+K(C1C2)2(p+ q)

T

n

≤ 1

8
C3p(α1 + α2)

T

n
.

C.5. Proof of Theorem 5

We first introduce the following notations: let e(v, S) =
∑

w∈S Avw denote the total number of
positive observations for node pairs including node v and a node from S. Let δ = α1/10. Further
define H as the (largest) set of nodes v satisfying:
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(H1) For all k, |e(v, Vk)− E[e(v, Vk)]| ≤ p−q
4 |Vk|

2T
n2 ,

(H2) e(v, V \H) ≤ p−q
8

α1T
n .

We bound the size of H in the follwoing lemma.

Lemma 17 When (p−q)2

p
α1T
n = ω(1) and (p−q)2

20p
α1T
n ≥ log(pTn ), with high probability,

|V \H| ≤ exp

(
−(p− q)2

20p

α1T

n

)
n.

In this proof, we will show that all nodes in H are well classified after SP algorithm. Then, by
Lemma 17, with high probability,

εSP (n, T ) ≤ exp

(
−(p− q)2

20p

α1T

n

)
.

Remember that after the trimming and the spectral decomposition steps, the algorithm returns
clusters (Sk)1≤k≤K . According to Theorem 4, with high probability,

1

n
|
K⋃
k=1

Vk \ Sk| =
1

n
|
K⋃
k=1

(Sk \ Vk) ∩ Γ|+ 1

n
|V \ Γ| = o(1).

Note that with high probability H ⊂ Γ (this is a consequence of the law of large numbers in view
of the definitions of the two sets) and 1

n |V \ H| = o(1) (from Lemma 17). Therefore, with high
probability:

|
⋃

1≤k≤K
(Sk \ Vk) ∩H|+ |V \H| = o(n). (47)

We now analyse the gains achieved in the “improvement” step. We start from (47), and prove:

Lemma 18 When |
⋃K
k=1(S

(0)
k \ Vk) ∩H|+ |V \H| ≤ δn,

|
⋃K
k=1(S

(i+1)
k \ Vk) ∩H|

|
⋃K
k=1(S

(i)
k \ Vk) ∩H|

≤

 ‖XΓ‖
α1T
n (p− q)

(
(α1−δ)2

α1(α1+δ) −
5
8

)
2

.

From this result, we deduce that with high probability (using (C1) and (p−q)2

p
T
n = ω(1)):

|
⋃K
k=1(S

(i+1)
k \ Vk) ∩H|

|
⋃K
k=1(S

(i)
k \ Vk) ∩H|

≤

 ‖XΓ‖
α1T
n (p− q)

(
(α1−δ)2

α1(α1+δ) −
5
8

)
2

≤ e−2.

Therefore, after log n steps, |
⋃K
k=1(S

(logn)
k \ Vk) ∩ H| ≤ 1

n2n < 1. We conclude that with high
probability: |

⋃K
k=1(V̂k \ Vk) ∩H| = 0. This means that with high probability, all nodes of H are

well classified.
It remains to establish the various intermediate lemmas.
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C.6. Proof of Lemma 17

We denote byZ1 the set of nodes that do not satisfy (H1). We show that |Z1| ≤ 1
2 exp

(
− (p−q)2

20p
α1T
n

)
n

with high probability.
Observe that, when v ∈ Vk, e(v, Vk) follows a binomial distribution Bin(T, 2αkp

n ) and, when
v /∈ Vk, e(v, Vk) follows a binomial distribution Bin(T, 2αkq

n ). Applying Chernoff’s inequality (as
in Lemma 8.1 of Coja-Oghlan (2010)),

P
{
|e(v, Vk)− E[e(v, Vk)]|

|Vk|
≤ p− q

4

2T

n2

}
≤ 2 exp

−
(

(p−q)α1T
2n

)2

2
(

2α1pT
n + (p−q)α1T

6n

)


≤ 2 exp

(
−(p− q)2

18p

α1T

n

)
.

Therefore,

E[|Z1|] ≤ 2K exp

(
−(p− q)2

18p

α1T

n

)
n.

Applying Markov inequality,

P
{
|Z1| ≥

1

2
exp

(
−(p− q)2

20p

α1T

n

)
n

}
≤ 4K exp

(
−(p− q)2

180p

α1T

n

)
.

Hence from the assumptions made in Theorem 5, |Z1| ≤ 1
2 exp

(
− (p−q)2

20p
α1T
n

)
n with high

probability.
Next we prove the following intermediate claim: there is no subset S ⊂ V such that e(S, S) ≥

p−q
16

α1T
n |S| and |S| = exp

(
− (p−q)2

20p
α1T
n

)
n with high probability. For any subset S ∈ V such that

|S| = exp
(
− (p−q)2

20p
α1T
n

)
n, by Markov inequality,

P{e(S, S) ≥ p− q
16

α1T

n
|S|} ≤ inf

t≥0

E[exp(e(S, S)t)]

exp
(p−q

16
α1T
n |S|t

)
≤ inf

t≥0

∏T
i=1(1 + |S|2

n2 p exp(t))

exp
(p−q

16
α1T
n |S|t

)
≤ inf

t≥0
exp

(
|S|2

n2
pT exp(t)− p− q

16

α1T

n
|S|t

)
≤ exp

(
−p− q

16

α1T

n
|S|
(

log

(
α1(p− q)n

16p|S|
− 1

)))
≤ exp

(
−p− q

16

α1T

n
|S|
)
, (48)

where, in the last two inequalities, we have set t = log
(
α1(p−q)n

16p|S|

)
and use the fact that:

log

(
α1(p− q)n

16p|S|

)
= log

(
α1(p− q)2

16p

T

n

(
(p− q)T

n

)−1

exp

(
(p− q)2

20p

α1T

n

))
> 2,
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which comes from the assumptions made in the theorem ( (p−q)2

20p
α1T
n ≥ log((p−q)Tn ) and (p−q)2

p
α1T
n =

ω(1)). Since the number of subsets S ⊂ V with size |S| is
(
n
|S|
)
≤ ( en|S|)

|S|, from (48), we deduce:

E[|{S : e(S, S) ≥ p− q
16

α1T

n
|S| and |S| = exp

(
−(p− q)2

20p

α1T

n

)
n}|]

≤ exp

(
|S|+ (p− q)2

20p

α1T

n
|S|
)

exp

(
−p− q

16

α1T

n
|S|
)

≤ exp

(
−(p− q)2

180p

α1T

n

)
.

Therefore, by Markov inequality, we can conclude that there is no S ⊂ V such that e(S, S) ≥
p−q
16

α1T
n |S| and |S| = exp

(
− (p−q)2

20p
α1T
n

)
n with high probability.

To conclude the proof of the lemma, we build the following sequence of sets. Let {Z(i) ⊂
V }1≤i≤i? be generated as follows:

• Z(0) = Z1.

• For i ≥ 1, Z(i) = Z(i− 1)∪ {vi} if there exists vi ∈ V such that e(vi, Z(i− 1)) ≥ p−q
8

α1T
n

and vi /∈ Z(i− 1) and if there does not exist, the sequence ends.

By construction, every v ∈ V \ Z(i?) satisfies the conditions (H1) and (H2). Since H is the largest
set of which elements satisfy (H1) and (H2), |H| ≥ |V \ Z(i?)|.

The proof is hence completed if we show that |Z(i?)| < exp
(
− (p−q)2

20p
α1T
n

)
n. Let t? =

exp
(
− (p−q)2

20p
α1T
n

)
n − |Z1|. If i? ≥ t?, |Z(t?)| = exp

(
− (p−q)2

20p
α1T
n

)
n and since |Z1| ≤

1
2 exp

(
− (p−q)2

20p
α!T
n

)
n,

e(Z(t?), Z(t?)) ≥
t?∑
i=1

e(vi, Z(i− 1)) ≥ t? p− q
8

α1T

n
≥ |Z(t?)|

2

p− q
8

α1T

n
,

However, from the previous claim, we know that with high probability, all S ⊂ V such that |S| =

exp
(
− (p−q)2

20p
α1T
n

)
n have to satisfy e(S, S) < p−q

16
α1T
n |S|. Therefore, with high probability, i? <

t? and

|Z(i?)| = i? + |Z1| < t? + |Z1| = exp

(
−(p− q)2

20p

α1T

n

)
n.

C.7. Proof of Lemma 18

In this proof, we use the notation: µ(v, S) = E[e(v, S)]. The numbers of positive observations be-
tween a node v ∈ H and the various clusters are concentrated around their average due to condition
(H1). So, at each improvement step, nodes move to a cluster having more positive observations. We
prove the lemma using the deviation of the number of positive observations of misclassified nodes
(the deviation means the difference between the number of observations and its average). We derive
a lower and an upper bound of the deviation, and deduce an estimate of the fraction of misclassified
nodes that become well-classified at each iteration.

33



YUN PROUTIERE

Let E(i) =
⋃

1≤k≤K(S
(i)
k \ Vk) ∩H . We first derive a lower bound for∑

v∈E(i+1)

∑K
k=1

|e(v,S(i)
k )−µ(v,S

(i)
k )|

|S(i)
k |

. For all v ∈ (S
(i+1)
a ∩ Vb) ∩H and a 6= b,

K∑
k=1

|e(v, S(i)
k )− µ(v, S

(i)
k )|

|S(i)
k |

≥

∣∣∣∣∣e(v, S(i)
a )− µ(v, S

(i)
a )

|S(i)
a |

−
e(v, S

(i)
b )− µ(v, S

(i)
b )

|S(i)
b |

∣∣∣∣∣
(a)

≥

∣∣∣∣∣µ(v, S
(i)
b )

|S(i)
b |

− µ(v, S
(i)
a )

|S(i)
a |

∣∣∣∣∣ ≥ α1 − δ
α1 + δ

(p− q)2T

n2
,

where (a) stems from the facts that v ∈ S(i+1)
a satisfies e(v,S

(i)
a )

|S(i)
a |
− e(v,S

(i)
b )

|S(i)
b |

> 0 and v ∈ Vb satisfies

µ(v,S
(i)
b )

|S(i)
b |

− µ(v,S
(i)
b )

|S(i)
b |

> 0 (by design of the algorithm). Therefore,

∑
v∈E(i+1)

K∑
k=1

|e(v, S(i)
k )− µ(v, S

(i)
k )|

|S(i)
k |

≥ α− δ
α+ δ

(p− q)2T

n2
|E(i+1)|. (49)

Now, we derive an upper bound of
∑

v∈E(i+1)

∑K
k=1

|e(v,S(i)
k )−µ(v,S

(i)
k )|

|S(i)
k |

. To simplify the notation,

we introduce

Y1(v) =

K∑
k=1

|e(v, Vk)− µ(v, Vk)|
|Vk|

,

Y2(v) =

K∑
k=1

∣∣∣e(v, (S(i)
k \ Vk) ∩H)− µ(v, (S

(i)
k \ Vk) ∩H)

∣∣∣
|Vk|

,

Y3(v) =
K∑
k=1

∣∣∣e(v, (Vk \ S(i)
k ) ∩H)− µ(v, (Vk \ S

(i)
k ) ∩H)

∣∣∣
|Vk|

,

Y4(v) =

K∑
k=1

|e(v, V \H)− µ(v, V \H)|
|Vk|

.

Then,

∑
v∈E(i+1)

K∑
k=1

|e(v, S(i)
k )− µ(v, S

(i)
k )|

|S(i)
k |

≤ α1

α1 − δ
∑

v∈E(i+1)

Y1(v) + Y2(v) + Y3(v) + Y4(v). (50)

When we combine (49) and (50), we get

(α1 − δ)2

α1(α1 + δ)
(p− q)2T

n2
|E(i+1)| ≤

∑
v∈E(i+1)

Y1(v) + Y2(v) + Y3(v) + Y4(v) (51)

From condition (H1), v ∈ H satisfies |e(v,Vk)−µ(v,Vk)|
|Vk| ≤ (p−q)2T

n2 . Thus,∑
v∈E(i+1)

Y1(v) ≤ (p− q) T
n2
· |E(i+1)|.
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From the definition of matrix X = A− E[A],

∑
v∈E(i+1)

Y2(v) ≤

∑K
k=1 |1TE(i+1) ·XΓ · 1(S

(i)
k \Vk)∩H |

α1n

≤ ‖1E(i+1)‖ · ‖XΓ‖ · ‖1E(i)‖
α1n

≤ ‖XΓ‖ ·
√
|E(i+1)|

√
|E(i)|

α1n
.

Similarly, since
⋃K
k=1(S

(i)
k \ Vk) ∩H =

⋃K
k=1(Vk \ S

(i)
k ) ∩H ,

∑
v∈E(i+1)

Y3(v) ≤

∑K
k=1 |1TE(i+1) ·XΓ · 1(Vk\S

(i)
k )∩H |

α1n

≤ ‖1E(i+1)‖ · ‖XΓ‖ · ‖1E(i)‖
α1n

≤ ‖XΓ‖ ·
√
|E(i+1)|

√
|E(i)|

α1n
.

From condition (H2), ∑
v∈E(i+1)

Y4(v) ≤ p− q
4

T

n2
|E(i+1)|.

When we plug the above bounds for Y1, Y2, Y3, and Y4 into (51), we conclude that√
|E(i+1)|
|E(i)|

≤ ‖XΓ‖
α1T
n (p− q)

(
(α1−δ)2

α(α1+δ) −
5
8

)
Appendix D. Proof of Theorem 6

We show that with high probability ε(n, T ) ≤ exp
(
− T

6n

(
KL(p, q) +KL(q, p)

))
under following

conditions:

(C1) |Sk \ Vk| = 0 for all k.

(C2) (1− 10−2)(p− q) ≤ p̂− q̂ ≤ (1 + 10−2)(p− q).

The following lemma states that these conditinos hold with high probability.

Lemma 19 With high probability, (C1) and (C2) hold.

In Algorithm 4, we refer to as a classification process the procedure that attempts to classify a
node in Step 4 (this procedure starts with ”for v ∈ R”). For any k, v ∈ Vk can be misclassified in
Step 4 of the algorithm for two reasons: 1. k?(v) 6= k and d?(v) ≥ p̂−q̂

2K
T
n (the node is assigned

to a wrong cluster), and 2. v is not assigned to any cluster. Refer to Algoirthm 4 for the precise
definitions of k?(v) and d?(v).
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We prove that with high probability, all nodes in R are actually assigned to a cluster in one of
the classification processes, and we provide an upper bound on the probability that v is misclassified
due to the first reason (reason 1.).

We first bound the probability that the classification processes end due to a lack of observation
budget. Denote by Yv the number of required classification processes to assign v to a cluster,
assuming that there is no limit on the observation budget. After identifying the reference kernels, at
most 6

5n = (4T/5)/(2T/3n) classification processes can be run. Hence P{
∑

v∈R Yv ≤
6
5n} is the

probability that the classification processes end because all nodes are assigned to a cluster.

Lemma 20 Under (C1) and (C2), for any classification process on v ∈ Vk,

P
{
d?(v) ≤ (p̂− q̂)T

2Kn

}
≤ 54K2 · ((p− q)2

p+ q

T

n
)−1.

From Lemma 20, Pr{Yv = i} ≤ ηi−1(1− η) for all i ≥ 2, where η = 54K2( (p−q)2

p+q
T
n )−1. Hence,

E[exp(
∑
v∈R

Yv)] =
∏
v∈R

E[exp(Yv)]

≤

∑
i≥1

(1− η)ηi−1ei

n

≤
(

(1− η)e

1− ηe

)n
=

(
e+

e(e− 1)η

1− ηe

)n
≤ exp

(
n+ n

(e− 1)η

1− ηe

)
= exp

(
n

1− η
1− ηe

)
.

Applying Markov inequality,

P{
∑
v∈R

Yv ≥
6

5
n} ≤ exp

(
−6

5
n+

1− η
1− ηe

n

)
≤ exp

(
− n

10

)
,

where the last inequality stems from the assumptions made in the theorem ( (p−q)2

p+q
T
n = Ω(1)). Thus,

with high probability, the classification of the remaining nodes is ended because there exists no more
node.

The next lemma bounds the probability that a node is misclassified in a classification process.

Lemma 21 Under (C1) and (C2), for any classification process on v ∈ Vk,

P
{
k?(v) 6= k, d?(v) ≥ (p̂− q̂)T

2Kn

}
≤ (K − 1) exp

(
− 2T

5Kn

(
KL(p, q) +KL(q, p)

))
.
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Since the total number of the classification processes is at most 6
5n,

E[ε(n, T )] ≤ 6

5
(K − 1) exp

(
− 2T

5Kn

(
KL(p, q) +KL(q, p)

))
.

Therefore, by Markov inequality, with high probability,

ε(n, T ) ≤ exp

(
− T

3Kn

(
KL(p, q) +KL(q, p)

))
,

which concludes the proof of the theorem. It remains to establish the various intermediate lemmas.

D.1. Proof of Lemma 19

To identify the reference kenels, we use T/5 budget on n
5 logn nodes. From the law of large number,

with high probability,
∣∣∣ |S∩Vk||Vk| −

1
5 logn

∣∣∣ ≤ 10−2 for all k. Therefore, from Theorem 5 and the

assumptions made in the theorem: E[ε(n, T )] ≤ 1
n2 . Thus, by applying Markov inequality, we

obtain that with high probability, ∑
k

|Sk \ Vk| = 0.

Thus, with high probability, (C1) holds. Under condition (C1), by law of large number, it is easy to
show that (C2) holds with high probability.

D.2. Proof of Lemma 20

Since observations are independent, Sk ⊂ Vk for all k (condition (C1) holds with high probability),
and the number of observations for each kernel is 2T

3Kn in a classification process, for all k′ 6= k,

E[e(v, Sk)− e(v, Sk′)] =
2T

3Kn
(p− q)

σ[e(v, Sk)− e(v, Sk′)]2 ≤ 2T

3Kn
(p+ q).

By Chebyshev’s inequality and condition (C2),

P
{
d?(v) ≤ T (p̂− q̂)

2Kn

}
≤
∑
k′ 6=k

P
{
e(v, Sk)− e(v, Sk′) ≤

5T (p− q)
9Kn

}

≤
∑
k′ 6=k

P
{
|e(v, Sk)− e(v, Sk′)−

2T

3Kn
(p− q)| ≥ T

9Kn
(p− q)

}

≤ 54K2 · ((p− q)2

p+ q

T

n
)−1.

D.3. Proof of Lemma 21

Consider a classification process for v ∈ Vk. Let `+v (t) be the outcome on the t-th observation for a
pair (v, w) with w ∈ Sk and let `−v (t) be the outcome of the t-th observation for a pair (v, w) with
w ∈ Sk′ . Let e(v, Sk) be the number of positive observations between node v and cluster Sk, during
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the classification process. Then e(v, Sk)− e(v, Sk′) =
∑ 2T

3Kn
t=1 `+v (t)−

∑ 2T
3Kn
t=1 `−v (t). Since Sk ⊂ Vk

(from condition (C1)), P{`+v (t) = 1} = p and P{`−v (t) = 1} = q. Applying Markov inequality,

P
{
e(v, Sk)− e(v, Sk′) ≤ −

(p̂− q̂)T
2Kn

}
≤

E
[
exp

(
−
(
e(v, Sk)− e(v, Sk′)

)
log p(1−q)

q(1−p)

)]
exp

(
(p̂−q̂)T

2Kn log p(1−q)
q(1−p)

)
= exp

(
−(p̂− q̂)T

2Kn
log

p(1− q)
q(1− p)

)
≤ exp

(
−2(p− q)T

5Kn
log

p(1− q)
q(1− p)

)
, (52)

where the last inequality stems from condition (C2) and the second equality comes from:

E
[
exp

(
e(v, S1) log

q(1− p)
p(1− q)

)]
=

(
1− p
1− q

) 2T
3Kn

and

E
[
exp

(
e(v, S2) log

p(1− q)
q(1− p)

)]
=

(
1− q
1− p

) 2T
3Kn

,

because the `+v (t)’s are i.i.d for 1 ≤ t ≤ T
3n and so are the `−v (t)’s for 1 ≤ t ≤ T

3n .
Finally, by combining Boole’s inequality and (52),

P
{
k?(v) 6= k, d?(v) ≥ (p̂− q̂)T

2Kn

}
= P

{
e(v, Sk)− e(v, Sk′) ≤ −

(p̂− q̂)T
2Kn

∃ k′ 6= k

}
≤ (K − 1) exp

(
− 2T

5Kn

(
KL(p, q) +KL(q, p)

))
.
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