Spectral Gap Error Bounds for Improving CUR
Matrix Decomposition and the Nystrom Method:
Supplementary Material

1 Preliminaries
First we prove a useful theorem, which is similar to [3] theorem 3.5.

Theorem S.1. Let Q. be an m X ¢ column-orthonormal matriz matriz. Let Q.
be a n X r column-orthonormal matrix. Let By be the rank-k truncated SVD of
QT AQ,.. We have:

A= Q.BQ|% = |4 - Q.B.QM| (S.1)
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In addition:

|4 = QBT |5 < 1A — Arl% + || (T = QuQT) Ax|[s + || Ak (I — Q,QF)][5

- 26r (QuQI ALQ.QF (A - A)")
(S.2)

Proof. We start by taking column-orthogonal matrices of dimensions m x (m—c)
and nx (n—r) labeled Q. and Q,, respectively, so that (QC QC) and (QT Qr>

are both orthogonal matrices. Then, the unitary invariance of the Frobenious
norm and orthogonality give

TAQ. - B QTAQ\|[
|4~ Q.BQT|; = H (QCQ;&QT SZA??) F

= 4~ Qe (QTAQ.) QT ;. + |QTAQ. - B|;,

Thus, the last term in the expression above is minimized when B = By, which
gives us (S.1)). Since By is the minimizer, we can replace it with QX 4;Q, to



get the inequality

|4 = QeBrQl % < 14 - Q. (QF A4xQy) Q) |17

= A = QeQT Ak + Q.QF A — Q. (QF ArQ,) QT |17
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+2tr (4 - 40" QI A (1 - Q1))

= [|A = Ak|% + 2tr (A — A AT (T - Q.QF))
+ (1 = QeQT) Ail[; + 1Q:QT (A — 4:Q.QT) |13
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—2tr (4 - 40" QQT Ak (@,QT)),

which is . In the last inequality, we have used once the fact that Q.QT

is an orthogonal projection and twice the fact that (A4 — Ax)AL = 0 via the
SVD. O

2 Deterministic Analysis

We begin with some notes about partitioning A by columns and rows. Let II, €
R™*¢ and II, € R™*" be matrices that represent the column and row choices,
respectively, of our algorithm such that (II. IIF) € R™*" and (I, II}) €
R™>™ are a permutation matrices.
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From this point on, we refer to
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\I/ = = T
\:[12 U12
We change notation at this point because these principles go far beyond column

and row selection. For example, if either II. or II, were an iid Gaussian matrix,
the following results will still hold.



By definition, the matrix C' € R"*¢ produced by our algorithm is AIl..
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Now, we are interested in the matrix CX = CCTA In order to get a grip on
the orthogonal projector CCT, we will study the column space of C' via post-
multiplying by a judiciously chosen square invertible matrix Y. € R°*¢ (cf. [3].)
This may change the matrix, but it preserves the column space.

() -
T 0
. ( 0 u© ) | e

() o
N 0 T) 1
0] /0 » 0 |
=U ( (0) ) 1 f 1
0 El QQ (Ql) O E(lo) : Zc

CY.:=C

0 N
L 0 0
—U|0 I,y O
Hy, H, Hs

where we assume that ; € R*? is full rank and Z, € R*(¢=P) ig a matrix
such that Q7. = 0. This gives us that
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Hy = E29291 10 , Hy = E29291 (E(O)>’1 , Hs = 39027,
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By the same procedure we can select rows from A to form R = IIZ A. As before,
there is an invertible matrix Y,. € R"*" such that
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where

Gy = S, 0,0l ((E(T)>—1> Go = S0, 0} <<E(£))—1>,03:ZQ%ZT
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Following [3], we are interested in upper bounds on ||H;l||, and [|G1]|,.
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To develop lower bounds on computed singular values, let
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It follows from (cf. [3]) that
Q.QF = QQ". Q.Qf =QQ".
Consider the first k£ columns of the above expression, i.e.
I o~ o~
Ul 0| =QiRn
H,

Since R, R1; = I + H{ Hy, the polar decomposition tells us that Rj; can be
written in the form

Ru =W, (I+H Hy)'"?

for some orthogonal matrix W, € R¥*¥. Thus, we can write

1
Gr=U| o |(@+HH) W
H,
By the same reasoning, we also have

I
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for some orthogonal matrix W, € R¥*k. Next, by the interlacing theorem for
singular values, we have
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Now we bound the Frobenius-norm using Theorem By Theorem 4.4
of [3],
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To bound the last term in equation (S.2)), we re-partition equations (|S.3)

and
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and define accordingly

UTH = (Qu Qu) LS, = diag(2(?, %), VI = (Qu C212) '

Q21 Q22 Q21 Q22
Now we rewrite
o (QuQI 41Q,QT (4 - 4)") = tr (QQTAQQT (A - 41)")
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To continue, we notice that
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Similarly, we can derive
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By the Cauchy-Schwartz inequality, we combine these two upper bounds to
get

e (07 0.0 =) | < s ]98]
Plugging this and upper bounds (S.5) into equation (S.2)), we have
|4~ CUR|[; < [|A~ (CUR),|I;

P 2
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as desired. The spectral norm bound is simply the consequence of Theorem 3.5
of [3].

3 Proof of Deterministic Algorithm

Apply equation (7) to U; and VT, we have

Jo], « —L
2 ViV + (Ve - B
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Further notice that Qs and ¥, are submatrices of U and V1| respectively,
and so their singular values are at most 1.
4 Proof of Uniform Sampling Algorithm
By [2], it is shown that

2
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By symmetry, we have
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5 Proof of Leverage Score Sampling Algorithm
By the proof of lemma 1 from [I], we have that with probability at least 0.9,
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Therefore, we have
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By symmetry, we have
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