Spectral Gap Error Bounds for Improving CUR Matrix Decomposition and the Nyström Method: Supplementary Material

1 Preliminaries

First we prove a useful theorem, which is similar to [3] theorem 3.5.

Theorem S.1. Let Q_c be an $m \times c$ column-orthonormal matrix matrix. Let Q_r be a $n \times r$ column-orthonormal matrix. Let B_k be the rank-k truncated SVD of $Q_c^T A Q_r$. We have:

$$\min_{rank(B) \le k, B \in \mathbb{R}^{c \times r}} \| A - Q_c B Q_r^T \|_F^2 = \| A - Q_c B_k Q_r^T \|_F^2$$
 (S.1)

In addition:

$$\|A - Q_{c}B_{k}Q_{r}^{T}\|_{F}^{2} \leq \|A - A_{k}\|_{F}^{2} + \|(I - Q_{c}Q_{c}^{T})A_{k}\|_{F}^{2} + \|A_{k}(I - Q_{r}Q_{r}^{T})\|_{F}^{2}$$
$$-2\mathbf{tr}\left(Q_{c}Q_{c}^{T}A_{k}Q_{r}Q_{r}^{T}(A - A_{k})^{T}\right)$$
(S.2)

Proof. We start by taking column-orthogonal matrices of dimensions $m \times (m-c)$ and $n \times (n-r)$ labeled \hat{Q}_c and \hat{Q}_r , respectively, so that $\begin{pmatrix} Q_c & \hat{Q}_c \end{pmatrix}$ and $\begin{pmatrix} Q_r & \hat{Q}_r \end{pmatrix}$ are both orthogonal matrices. Then, the unitary invariance of the Frobenious norm and orthogonality give

$$\begin{aligned} \|A - Q_{c}BQ_{r}^{T}\|_{F}^{2} &= \left\| \begin{pmatrix} Q_{c}^{T}AQ_{r} - B & Q_{c}^{T}A\hat{Q}_{r} \\ \hat{Q}_{c}^{T}AQ_{r} & \hat{Q}_{c}^{T}A\hat{Q}_{r} \end{pmatrix} \right\|_{F}^{2} \\ &= \left\| A - Q_{c} \left(Q_{c}^{T}AQ_{r} \right) Q_{r}^{T} \right\|_{F}^{2} + \left\| Q_{c}^{T}AQ_{r} - B \right\|_{F}^{2} \end{aligned}$$

Thus, the last term in the expression above is minimized when $B = B_k$, which gives us (S.1). Since B_k is the minimizer, we can replace it with $Q_c^T A_k Q_r$ to

get the inequality

$$\begin{split} \|A - Q_{c}B_{k}Q_{r}^{T}\|_{F}^{2} &\leq \|A - Q_{c}\left(Q_{c}^{T}A_{k}Q_{r}\right)Q_{r}^{T}\|_{F}^{2} \\ &= \|A - Q_{c}Q_{c}^{T}A_{k} + Q_{c}Q_{c}^{T}A_{k} - Q_{c}\left(Q_{c}^{T}A_{k}Q_{r}\right)Q_{r}^{T}\|_{F}^{2} \\ &= \|A - A_{k} + A_{k} - Q_{c}Q_{c}^{T}A_{k}\|_{F}^{2} + \|Q_{c}Q_{c}^{T}\left(A_{k} - A_{k}Q_{r}Q_{r}^{T}\right)\|_{F}^{2} \\ &+ 2\mathbf{tr}\left(\left(A - A_{k}\right)^{T}Q_{c}Q_{c}^{T}A_{k}\left(I - Q_{r}Q_{r}^{T}\right)\right) \\ &= \|A - A_{k}\|_{F}^{2} + 2\mathbf{tr}\left(\left(A - A_{k}\right)A_{k}^{T}\left(I - Q_{c}Q_{c}^{T}\right)\right) \\ &+ \left\|\left(I - Q_{c}Q_{c}^{T}\right)A_{k}\right\|_{F}^{2} + \|Q_{c}Q_{c}^{T}\left(A_{k} - A_{k}Q_{r}Q_{r}^{T}\right)\|_{F}^{2} \\ &+ 2\mathbf{tr}\left(\left(A - A_{k}\right)^{T}Q_{c}Q_{c}^{T}A_{k}\left(I - Q_{r}Q_{r}^{T}\right)\right) \\ &\leq \|A - A_{k}\|_{F}^{2} + \left\|\left(I - Q_{c}Q_{c}^{T}\right)A_{k}\right\|_{F}^{2} + \|A_{k}\left(I - Q_{r}Q_{r}^{T}\right)\|_{F}^{2} \\ &- 2\mathbf{tr}\left(\left(A - A_{k}\right)^{T}Q_{c}Q_{c}^{T}A_{k}\left(Q_{r}Q_{r}^{T}\right)\right), \end{split}$$

which is (S.2). In the last inequality, we have used once the fact that $Q_cQ_c^T$ is an orthogonal projection and twice the fact that $(A - A_k)A_k^T = 0$ via the SVD.

2 Deterministic Analysis

We begin with some notes about partitioning A by columns and rows. Let $\Pi_c \in \mathbb{R}^{n \times c}$ and $\Pi_r \in \mathbb{R}^{m \times r}$ be matrices that represent the column and row choices, respectively, of our algorithm such that $(\Pi_c \quad \Pi_c^{\perp}) \in \mathbb{R}^{n \times n}$ and $(\Pi_r \quad \Pi_r^{\perp}) \in \mathbb{R}^{m \times m}$ are a permutation matrices.

From this point on, we refer to

$$\Omega \overset{def}{=} \begin{pmatrix} \Omega_1 \\ \Omega_2 \end{pmatrix} \overset{def}{=} \begin{pmatrix} V_{11}^T \\ V_{12}^T \end{pmatrix}$$

$$\Psi \overset{def}{=} \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} \overset{def}{=} \begin{pmatrix} U_{11}^T \\ U_{12}^T \end{pmatrix}$$

We change notation at this point because these principles go far beyond column and row selection. For example, if either Π_c or Π_r were an iid Gaussian matrix, the following results will still hold.

By definition, the matrix $C \in \mathbb{R}^{m \times c}$ produced by our algorithm is $A\Pi_c$.

$$C = A\Pi_c = U \begin{pmatrix} \begin{pmatrix} \Sigma_1^{(T)} & 0 \\ 0 & \Sigma_1^{(O)} \end{pmatrix} & 0 \\ 0 & & \Sigma_2 \end{pmatrix} \begin{pmatrix} \Omega_1 \\ \Omega_2 \end{pmatrix}$$

Now, we are interested in the matrix $CX = CC^{\dagger}A$ In order to get a grip on the orthogonal projector CC^{\dagger} , we will study the column space of C via post-multiplying by a judiciously chosen square invertible matrix $Y_c \in \mathbb{R}^{c \times c}$ (cf. [3].) This may change the matrix, but it preserves the column space.

$$CY_{c} := C \left[\begin{array}{ccc} \Omega_{1}^{\dagger} \begin{pmatrix} \Sigma_{1}^{(T)} & 0 \\ 0 & \Sigma_{1}^{(O)} \end{array} \right)^{-1} \middle| Z_{c} \right]$$

$$= U \left(\begin{pmatrix} \Sigma_{1}^{(T)} & 0 \\ 0 & \Sigma_{1}^{(O)} \end{pmatrix} & 0 \\ 0 & \Sigma_{2} \end{pmatrix} \begin{pmatrix} \Omega_{1} \\ \Omega_{2} \end{pmatrix} \left[(\Omega_{1})^{\dagger} \begin{pmatrix} \Sigma_{1}^{(T)} & 0 \\ 0 & \Sigma_{1}^{(O)} \end{pmatrix}^{-1} \middle| Z_{c} \right]$$

$$= U \begin{pmatrix} I_{k} & 0 & 0 \\ 0 & I_{p-k} & 0 \\ H_{1} & H_{2} & H_{3} \end{pmatrix}$$

where we assume that $\Omega_1 \in \mathbb{R}^{c \times p}$ is full rank and $Z_c \in \mathbb{R}^{c \times (c-p)}$ is a matrix such that $\Omega_1 Z_c = 0$. This gives us that

$$H_1 = \Sigma_2 \Omega_2 \Omega_1^{\dagger} \begin{pmatrix} \left(\Sigma_1^{(T)} \right)^{-1} \\ 0 \end{pmatrix}, \ H_2 = \Sigma_2 \Omega_2 \Omega_1^{\dagger} \begin{pmatrix} 0 \\ \left(\Sigma_1^{(O)} \right)^{-1} \end{pmatrix}, \ H_3 = \Sigma_2 \Omega_2 Z_c$$

By the same procedure we can select rows from A to form $R = \Pi_r^T A$. As before, there is an invertible matrix $Y_r \in \mathbb{R}^{r \times r}$ such that

$$Y_r R = \begin{pmatrix} I_k & 0 & 0 \\ 0 & I_{p-k} & 0 \\ G_1 & G_2 & G_3 \end{pmatrix}^T V^T$$

where

$$G_{1} = \Sigma_{2} \Psi_{2} \Psi_{1}^{\dagger} \begin{pmatrix} \left(\Sigma_{1}^{(T)}\right)^{-1} \\ 0 \end{pmatrix}, \ G_{2} = \Sigma_{2} \Psi_{2} \Psi_{1}^{\dagger} \begin{pmatrix} 0 \\ \left(\Sigma_{1}^{(O)}\right)^{-1} \end{pmatrix}, \ G_{3} = \Sigma_{2} \Psi_{2} Z_{r}$$

Following [3], we are interested in upper bounds on $||H_1||_2$ and $||G_1||_2$.

$$\begin{split} \left|\left|H_{1}\right|\right|_{2} &\leq \frac{\sigma_{p+1}}{\sigma_{k}}\left|\left|\Omega_{2}\Omega_{1}^{\dagger}\right|\right|_{2}, \text{ and } \left|\left|\left(I+H_{1}^{T}H_{1}\right)^{-1/2}\right|\right|_{2} \geq \frac{1}{\sqrt{1+\left(\frac{\sigma_{p+1}}{\sigma_{k}}\right)^{2}\left|\left|\Omega_{2}\Omega_{1}^{\dagger}\right|\right|_{2}^{2}}} \\ \left|\left|G_{1}\right|\right|_{2} &\leq \frac{\sigma_{p+1}}{\sigma_{k}}\left|\left|\Psi_{2}\Psi_{1}^{\dagger}\right|\right|_{2}, \text{ and } \left|\left|\left(I+G_{1}^{T}G_{1}\right)^{-1/2}\right|\right|_{2} \geq \frac{1}{\sqrt{1+\left(\frac{\sigma_{p+1}}{\sigma_{k}}\right)^{2}\left|\left|\Psi_{2}\Psi_{1}^{\dagger}\right|\right|_{2}^{2}}}. \end{split}$$

To develop lower bounds on computed singular values, let

$$U\begin{pmatrix} I_k & 0 & 0\\ 0 & I_{p-k} & 0\\ H_1 & H_2 & H_3 \end{pmatrix} =: \widehat{Q}\widehat{R} =: \begin{pmatrix} \widehat{Q}_1 & \widehat{Q}_2 & \widehat{Q}_3 \end{pmatrix} \begin{pmatrix} \widehat{R}_{11} & \widehat{R}_{12} & \widehat{R}_{13}\\ 0 & \widehat{R}_{22} & \widehat{R}_{23}\\ 0 & 0 & \widehat{R}_{33} \end{pmatrix}, \quad (S.3)$$

$$V\begin{pmatrix} I_{k} & 0 & 0 \\ 0 & I_{p-k} & 0 \\ G_{1} & G_{2} & G_{3} \end{pmatrix} =: \widetilde{Q}\widetilde{R} =: \begin{pmatrix} \widetilde{Q}_{1} & \widetilde{Q}_{2} & \widetilde{Q}_{3} \end{pmatrix} \begin{pmatrix} \widetilde{R}_{11} & \widetilde{R}_{12} & \widetilde{R}_{13} \\ 0 & \widetilde{R}_{22} & \widetilde{R}_{23} \\ 0 & 0 & \widetilde{R}_{33} \end{pmatrix}. \quad (S.4)$$

It follows from (cf. [3]) that

$$Q_c Q_c^T = \widehat{Q} \widehat{Q}^T, \ Q_r Q_r^T = \widetilde{Q} \widetilde{Q}^T.$$

Consider the first k columns of the above expression, i.e.

$$U\begin{pmatrix} I\\0\\H_1 \end{pmatrix} = \widehat{Q}_1 \widehat{R}_{11}$$

Since $R_{11}^T R_{11} = I + H_1^T H_1$, the polar decomposition tells us that R_{11} can be written in the form

$$\widehat{R}_{11} = W_c \left(I + H_1^T H_1 \right)^{1/2}$$

for some orthogonal matrix $W_c \in \mathbb{R}^{k \times k}$. Thus, we can write

$$\widehat{Q}_1 = U \begin{pmatrix} I \\ 0 \\ H_1 \end{pmatrix} \left(I + H_1^T H_1 \right)^{-1/2} W_c^T$$

By the same reasoning, we also have

$$\widetilde{Q}_1 = V \begin{pmatrix} I \\ 0 \\ G_1 \end{pmatrix} \left(I + G_1^T G_1 \right)^{-1/2} W_r^T$$

for some orthogonal matrix $W_r \in \mathbb{R}^{k \times k}$. Next, by the interlacing theorem for singular values, we have

$$\begin{split} \sigma_k\left(CUR\right) &= \sigma_k\left(\widehat{Q}^T A \widetilde{Q}\right) \\ &\geq \sigma_k\left(\widehat{Q}_1^T A \widetilde{Q}_1\right) \\ &= \sigma_k\left(\left(I + H_1^T H_1\right)^{-1/2} \left(\Sigma_1 + H_1^T \Sigma_3 G_1\right) \left(I + G_1 G_1^T\right)^{-1/2}\right) \\ &\geq \frac{\sigma_k - \sigma_{p+1} \left(\frac{\sigma_{p+1}}{\sigma_k}\right)^2 \left|\left|\Omega_2 \Omega_1^{\dagger}\right|\right|_2 \left|\left|\Psi_2 \Psi_1^{\dagger}\right|\right|_2}{\sqrt{1 + \left(\frac{\sigma_{p+1}}{\sigma_k}\right)^2 \left|\left|\Omega_2 \Omega_1^{\dagger}\right|\right|_2^2} \sqrt{1 + \left(\frac{\sigma_{p+1}}{\sigma_k}\right)^2 \left|\left|\Psi_2 \Psi_1^{\dagger}\right|\right|_2^2}}. \end{split}$$

Now we bound the Frobenius-norm using Theorem S.1. By Theorem 4.4 of [3],

$$\left\| \left| \left(I - \widehat{Q} \widehat{Q}^T \right) A_k \right| \right\|_F^2 \le k \sigma_{p+1}^2 \left\| \Omega_2 \Omega_1^{\dagger} \right\|_2^2, \quad \left\| A_k \left(I - \widetilde{Q} \widetilde{Q}^T \right) \right\|_F^2 \le k \sigma_{p+1}^2 \left\| \Psi_2 \Psi_1^{\dagger} \right\|_2^2$$
(S.5)

To bound the last term in equation (S.2), we re-partition equations (S.3) and (S.4)

$$\begin{pmatrix} I_k & 0 & 0 \\ 0 & I_{p-k} & 0 \\ H_1 & H_2 & H_3 \end{pmatrix} \stackrel{def}{=} \begin{pmatrix} I_p & 0 \\ \widehat{H}_1 & \widehat{H}_2 \end{pmatrix}, \begin{pmatrix} I_k & 0 & 0 \\ 0 & I_{p-k} & 0 \\ G_1 & G_2 & G_3 \end{pmatrix} \stackrel{def}{=} \begin{pmatrix} I_p & 0 \\ \widehat{G}_1 & \widehat{G}_2 \end{pmatrix}$$

and define accordingly

$$U^T\widehat{Q} = \begin{pmatrix} \widehat{Q}_{11} & \widehat{Q}_{12} \\ \widehat{Q}_{21} & \widehat{Q}_{22} \end{pmatrix}, \ \widehat{\Sigma}_2 = \mathbf{diag}(\Sigma_1^{(O)}, \Sigma_2), \ V^T\widetilde{Q} = \begin{pmatrix} \widetilde{Q}_{11} & \widetilde{Q}_{12} \\ \widetilde{Q}_{21} & \widetilde{Q}_{22} \end{pmatrix}.$$

Now we rewrite

$$\begin{split} &\mathbf{tr}\left(Q_{c}Q_{c}^{T}A_{k}Q_{r}Q_{r}^{T}\left(A-A_{k}\right)^{T}\right) = \mathbf{tr}\left(\widehat{Q}\widehat{Q}^{T}A_{k}\widetilde{Q}\widetilde{Q}^{T}\left(A-A_{k}\right)^{T}\right) \\ &= \mathbf{tr}\left(\begin{pmatrix} \widehat{Q}_{11} & \widehat{Q}_{12} \\ \widehat{Q}_{21} & \widehat{Q}_{22} \end{pmatrix}\begin{pmatrix} \widehat{Q}_{11} & \widehat{Q}_{12} \\ \widehat{Q}_{21} & \widehat{Q}_{22} \end{pmatrix}^{T}\begin{pmatrix} \Sigma_{1}^{(T)} & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} \widetilde{Q}_{11} & \widetilde{Q}_{12} \\ \widetilde{Q}_{21} & \widetilde{Q}_{22} \end{pmatrix}\begin{pmatrix} \widetilde{Q}_{11} & \widetilde{Q}_{12} \\ \widetilde{Q}_{21} & \widetilde{Q}_{22} \end{pmatrix}^{T}\begin{pmatrix} 0 & 0 \\ 0 & \widehat{\Sigma}_{2} \end{pmatrix}\right) \\ &= \mathbf{tr}\left(\begin{pmatrix} 0 & 0 \\ \widehat{Q}_{21} & \widehat{Q}_{22} \end{pmatrix}\begin{pmatrix} \widehat{Q}_{11} & \widehat{Q}_{12} \\ 0 & 0 \end{pmatrix}^{T}\begin{pmatrix} \Sigma_{1}^{(T)} & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} \widetilde{Q}_{11} & \widetilde{Q}_{12} \\ 0 & 0 \end{pmatrix}\begin{pmatrix} \widetilde{Q}_{11} & \widetilde{Q}_{12} \\ \widetilde{Q}_{21} & \widetilde{Q}_{22} \end{pmatrix}^{T}\begin{pmatrix} 0 & 0 \\ 0 & \widehat{\Sigma}_{2} \end{pmatrix}\right) \\ &= \mathbf{tr}\left(\left(\widehat{Q}_{21} \widehat{Q}_{22}\right)\left(\widehat{Q}_{11} \widehat{Q}_{12}\right)^{T}\Sigma_{1}^{(T)}\right)\left(\left(\widetilde{Q}_{11} \ \widetilde{Q}_{12}\right)\left(\widetilde{Q}_{21} \ \widetilde{Q}_{22}\right)^{T}\widehat{\Sigma}_{2}\right)\right). \end{split}$$

To continue, we notice that

$$\begin{split} & \left\| \left(\hat{Q}_{21} \ \hat{Q}_{22} \right) \left(\hat{Q}_{11} \ \hat{Q}_{12} \right)^T \Sigma_{1}^{(T)} \right\|_{F} \\ & \leq \left\| \left(I - \left(\hat{Q}_{11} \ \hat{Q}_{12} \right) \left(\hat{Q}_{11} \ \hat{Q}_{12} \right)^T - \left(\hat{Q}_{11} \ \hat{Q}_{12} \right) \left(\hat{Q}_{21} \ \hat{Q}_{22} \right)^T \right) \left(\Sigma_{1}^{(T)} \right) \right\|_{F} \\ & = \left\| \left(I - \left(\hat{Q}_{21} \ \hat{Q}_{22} \right) \left(\hat{Q}_{11} \ \hat{Q}_{12} \right)^T \right) \left(\hat{Q}_{11} \ \hat{Q}_{12} \right)^T \right) \left(\Sigma_{1}^{(T)} \right) \right\|_{F} \\ & = \left\| \left(I - \left(\hat{Q}_{11} \ \hat{Q}_{12} \right) \left(\hat{Q}_{21} \ \hat{Q}_{22} \right) \left(\hat{Q}_{21} \ \hat{Q}_{22} \right)^T \right) \left(\Sigma_{1}^{(T)} \right) \right\|_{F} \\ & = \left\| \left(I - \hat{Q} \hat{Q}^T \right) A_k \right\|_{F} \leq \sqrt{k} \sigma_{p+1} \left\| \Omega_2 \Omega_{1}^{\dagger} \right\|_{2}. \end{split}$$

Similarly, we can derive

$$\left\| \left(\widetilde{Q}_{11} \ \widetilde{Q}_{12} \right) \left(\widetilde{Q}_{21} \ \widetilde{Q}_{22} \right)^T \widehat{\Sigma}_2 \right\|_F \le \sqrt{k} \sigma_{p+1} \left\| \Psi_2 \Psi_1^{\dagger} \right\|_2.$$

By the Cauchy-Schwartz inequality, we combine these two upper bounds to get

$$\left|\mathbf{tr}\left(Q_{c}Q_{c}^{T}A_{k}Q_{r}Q_{r}^{T}\left(A-A_{k}\right)^{T}\right)\right|\leq k\sigma_{p+1}^{2}\left|\left|\Omega_{2}\Omega_{1}^{\dagger}\right|\right|_{2}\left|\left|\Psi_{2}\Psi_{1}^{\dagger}\right|\right|_{2}.$$

Plugging this and upper bounds (S.5) into equation (S.2), we have

$$\begin{aligned} &\left|\left|A - CUR\right|\right|_{F}^{2} \leq \left|\left|A - (CUR)_{k}\right|\right|_{F}^{2} \\ &\leq \sum_{j=k+1}^{\rho} \sigma_{j}^{2} + k\sigma_{p+1}^{2} \left(\left|\left|\Omega_{2}\Omega_{1}^{\dagger}\right|\right|_{2} + \left|\left|\Psi_{2}\Psi_{1}^{\dagger}\right|\right|_{2}\right)^{2} \end{aligned}$$

as desired. The spectral norm bound is simply the consequence of Theorem 3.5 of [3].

3 Proof of Deterministic Algorithm

Apply equation (7) to \mathbf{U}_1 and \mathbf{V}_1^T , we have

$$\begin{split} \left| \left| \boldsymbol{\Omega}_1^\dagger \right| \right|_2 &\leq \frac{\sqrt{c} - \sqrt{p}}{\sqrt{(\sqrt{n-p} + \sqrt{c})^2 + (\sqrt{c} - \sqrt{p})^2}}, \\ \left| \left| \boldsymbol{\Psi}_1^\dagger \right| \right|_2 &\leq \frac{\sqrt{r} - \sqrt{p}}{\sqrt{(\sqrt{m-p} + \sqrt{r})^2 + (\sqrt{r} - \sqrt{p})^2}}. \end{split}$$

Further notice that Ω_2 and Ψ_2 are submatrices of \mathbf{U}_2^T and \mathbf{V}_2^T , respectively, and so their singular values are at most 1.

4 Proof of Uniform Sampling Algorithm

By [2], it is shown that

$$\left\| \left| \mathbf{\Omega}_{1}^{\dagger} \right| \right\|_{2}^{2} \leq \frac{n}{(1 - \epsilon) c}$$

By symmetry, we have

$$\left\| \left| \Psi_1^{\dagger} \right| \right\|_2^2 \le \frac{m}{(1 - \epsilon) r}.$$

5 Proof of Leverage Score Sampling Algorithm

By the proof of lemma 1 from [1], we have that with probability at least 0.9,

$$1 - \sigma_{\min}^2\left(\mathbf{\Omega}_1\right) \le \epsilon$$

Therefore, we have

$$\left|\left|\boldsymbol{\Omega}_{1}^{\dagger}\right|\right|_{2}^{2} \leq \frac{1}{1-\epsilon}$$

By symmetry, we have

$$\left|\left|\boldsymbol{\Psi}_{1}^{\dagger}\right|\right|_{2}^{2} \leq \frac{1}{1-\epsilon}.$$

References

- [1] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Relative-error CUR matrix decompositions. SIAM Journal on Matrix Analysis and Applications, 30(2):844–881, 2008.
- [2] A. Gittens. The spectral norm error of the naive Nyström extension. arXiv preprint arXiv:1110.5305, 2011.
- [3] M. Gu. Subspace iteration randomization and singular value problems. *arXiv* preprint arXiv:1408.2208, 2014.