
Spectral Gap Error Bounds for Improving CUR

Matrix Decomposition and the Nyström Method:

Supplementary Material

1 Preliminaries

First we prove a useful theorem, which is similar to [3] theorem 3.5.

Theorem S.1. Let Qc be an m× c column-orthonormal matrix matrix. Let Qr
be a n× r column-orthonormal matrix. Let Bk be the rank-k truncated SVD of
QTc AQr. We have:

min
rank(B)≤k,B∈Rc×r

∥∥A−QcBQTr ∥∥2F =
∥∥A−QcBkQTr ∥∥2F (S.1)

In addition:∥∥A−QcBkQTr ∥∥2F ≤ ‖A−Ak‖2F +
∥∥(I −QcQTc )Ak∥∥2F +

∥∥Ak (I −QrQTr )∥∥2F
− 2tr

(
QcQ

T
c AkQrQ

T
r (A−Ak)

T
)

(S.2)

Proof. We start by taking column-orthogonal matrices of dimensions m×(m−c)
and n×(n−r) labeled Q̂c and Q̂r, respectively, so that

(
Qc Q̂c

)
and

(
Qr Q̂r

)
are both orthogonal matrices. Then, the unitary invariance of the Frobenious
norm and orthogonality give

∥∥A−QcBQTr ∥∥2F =

∥∥∥∥(QTc AQr −B QTc AQ̂r
Q̂Tc AQr Q̂Tc AQ̂r

)∥∥∥∥2
F

=
∥∥A−Qc (QTc AQr)QTr ∥∥2F +

∥∥QTc AQr −B∥∥2F
Thus, the last term in the expression above is minimized when B = Bk, which
gives us (S.1). Since Bk is the minimizer, we can replace it with QTc AkQr to
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get the inequality

‖A−QcBkQTr ‖2F ≤ ‖A−Qc
(
QTc AkQr

)
QTr ‖2F

= ‖A−QcQTc Ak +QcQ
T
c Ak −Qc

(
QTc AkQr

)
QTr ‖2F

= ‖A−Ak +Ak −QcQTc Ak‖2F+‖QcQTc
(
Ak −AkQrQTr

)
‖2F

+ 2tr
(

(A−Ak)
T
QcQ

T
c Ak

(
I −QrQTr

))
= ‖A−Ak‖2F + 2tr

(
(A−Ak)ATk (I −QcQTc )

)
+
∥∥(I −QcQTc )Ak∥∥2F + ‖QcQTc

(
Ak −AkQrQTr

)
‖2F

+ 2tr
(

(A−Ak)
T
QcQ

T
c Ak

(
I −QrQTr

))
≤ ‖A−Ak‖2F+‖

(
I −QcQTc

)
Ak‖2F+‖Ak

(
I −QrQTr

)
‖2F

− 2tr
(

(A−Ak)
T
QcQ

T
c Ak

(
QrQ

T
r

))
,

which is (S.2). In the last inequality, we have used once the fact that QcQ
T
c

is an orthogonal projection and twice the fact that (A − Ak)ATk = 0 via the
SVD.

2 Deterministic Analysis

We begin with some notes about partitioning A by columns and rows. Let Πc ∈
Rn×c and Πr ∈ Rm×r be matrices that represent the column and row choices,
respectively, of our algorithm such that

(
Πc Π⊥c

)
∈ Rn×n and

(
Πr Π⊥r

)
∈

Rm×m are a permutation matrices.

(
Πr Π⊥r

)T
A
(
Πc Π⊥c

)
= UΣV T

(
Πc Π⊥c

)
=

(
U11 U12

U21 U22

)
(

Σ
(T )
1 0

0 Σ
(O)
1

)
0

0 Σ2

(V T11 V T21
V T12 V T22

)

From this point on, we refer to

Ω
def
=

(
Ω1

Ω2

)
def
=

(
V T11
V T12

)
Ψ
def
=

(
Ψ1

Ψ2

)
def
=

(
UT11
UT12

)
We change notation at this point because these principles go far beyond column
and row selection. For example, if either Πc or Πr were an iid Gaussian matrix,
the following results will still hold.
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By definition, the matrix C ∈ Rm×c produced by our algorithm is AΠc.

C = AΠc = U


(

Σ
(T )
1 0

0 Σ
(O)
1

)
0

0 Σ2

(Ω1

Ω2

)

Now, we are interested in the matrix CX = CC†A In order to get a grip on
the orthogonal projector CC†, we will study the column space of C via post-
multiplying by a judiciously chosen square invertible matrix Yc ∈ Rc×c (cf. [3].)
This may change the matrix, but it preserves the column space.

CYc := C

[
Ω†1

(
Σ

(T )
1 0

0 Σ
(O)
1

)−1
Zc

]

= U


(

Σ
(T )
1 0

0 Σ
(O)
1

)
0

0 Σ2

(Ω1

Ω2

)[
(Ω1)

†

(
Σ

(T )
1 0

0 Σ
(O)
1

)−1
Zc

]

= U

 Ik 0 0
0 Ip−k 0
H1 H2 H3


where we assume that Ω1 ∈ Rc×p is full rank and Zc ∈ Rc×(c−p) is a matrix
such that Ω1Zc = 0. This gives us that

H1 = Σ2Ω2Ω†1

((
Σ

(T )
1

)−1
0

)
, H2 = Σ2Ω2Ω†1

(
0(

Σ
(O)
1

)−1) , H3 = Σ2Ω2Zc

By the same procedure we can select rows from A to form R = ΠT
r A. As before,

there is an invertible matrix Yr ∈ Rr×r such that

YrR =

 Ik 0 0
0 Ip−k 0
G1 G2 G3

T

V T

where

G1 = Σ2Ψ2Ψ†1

((
Σ

(T )
1

)−1
0

)
, G2 = Σ2Ψ2Ψ†1

(
0(

Σ
(O)
1

)−1) , G3 = Σ2Ψ2Zr

Following [3], we are interested in upper bounds on ||H1||2 and ||G1||2.

||H1||2 ≤
σp+1

σk

∣∣∣∣∣∣Ω2Ω†1

∣∣∣∣∣∣
2
, and

∣∣∣∣∣∣(I +HT
1 H1

)−1/2∣∣∣∣∣∣
2
≥ 1√

1 +
(
σp+1

σk

)2 ∣∣∣∣∣∣Ω2Ω†1

∣∣∣∣∣∣2
2

||G1||2 ≤
σp+1

σk

∣∣∣∣∣∣Ψ2Ψ†1

∣∣∣∣∣∣
2
, and

∣∣∣∣∣∣(I +GT1G1

)−1/2∣∣∣∣∣∣
2
≥ 1√

1 +
(
σp+1

σk

)2 ∣∣∣∣∣∣Ψ2Ψ†1

∣∣∣∣∣∣2
2

.
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To develop lower bounds on computed singular values, let

U

 Ik 0 0
0 Ip−k 0
H1 H2 H3

 =: Q̂R̂ =:
(
Q̂1 Q̂2 Q̂3

)R̂11 R̂12 R̂13

0 R̂22 R̂23

0 0 R̂33

 , (S.3)

V

 Ik 0 0
0 Ip−k 0
G1 G2 G3

 =: Q̃R̃ =:
(
Q̃1 Q̃2 Q̃3

)R̃11 R̃12 R̃13

0 R̃22 R̃23

0 0 R̃33

 . (S.4)

It follows from (cf. [3]) that

QcQ
T
c = Q̂Q̂T , QrQ

T
r = Q̃Q̃T .

Consider the first k columns of the above expression, i.e.

U

 I
0
H1

 = Q̂1R̂11

Since RT11R11 = I + HT
1 H1, the polar decomposition tells us that R11 can be

written in the form
R̂11 = Wc

(
I +HT

1 H1

)1/2
for some orthogonal matrix Wc ∈ Rk×k. Thus, we can write

Q̂1 = U

 I
0
H1

(I +HT
1 H1

)−1/2
WT
c

By the same reasoning, we also have

Q̃1 = V

 I
0
G1

(I +GT1G1

)−1/2
WT
r

for some orthogonal matrix Wr ∈ Rk×k. Next, by the interlacing theorem for
singular values, we have

σk (CUR) = σk

(
Q̂TAQ̃

)
≥ σk

(
Q̂T1 AQ̃1

)
= σk

((
I +HT

1 H1

)−1/2 (
Σ1 +HT

1 Σ3G1

) (
I +G1G

T
1

)−1/2)
≥

σk − σp+1

(
σp+1

σk

)2 ∣∣∣∣∣∣Ω2Ω†1

∣∣∣∣∣∣
2

∣∣∣∣∣∣Ψ2Ψ†1

∣∣∣∣∣∣
2√

1 +
(
σp+1

σk

)2 ∣∣∣∣∣∣Ω2Ω†1

∣∣∣∣∣∣2
2

√
1 +

(
σp+1

σk

)2 ∣∣∣∣∣∣Ψ2Ψ†1

∣∣∣∣∣∣2
2

.
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Now we bound the Frobenius-norm using Theorem S.1. By Theorem 4.4
of [3],∣∣∣∣∣∣(I − Q̂Q̂T)Ak∣∣∣∣∣∣2

F
≤ kσ2

p+1

∣∣∣∣∣∣Ω2Ω†1

∣∣∣∣∣∣2
2
,
∣∣∣∣∣∣Ak (I − Q̃Q̃T)∣∣∣∣∣∣2

F
≤ kσ2

p+1

∣∣∣∣∣∣Ψ2Ψ†1

∣∣∣∣∣∣2
2
.

(S.5)
To bound the last term in equation (S.2), we re-partition equations (S.3)

and (S.4) Ik 0 0
0 Ip−k 0
H1 H2 H3

 def
=

(
Ip 0

Ĥ1 Ĥ2

)
,

 Ik 0 0
0 Ip−k 0
G1 G2 G3

 def
=

(
Ip 0

Ĝ1 Ĝ2

)
and define accordingly

UT Q̂ =

(
Q̂11 Q̂12

Q̂21 Q̂22

)
, Σ̂2 = diag(Σ

(O)
1 ,Σ2), V T Q̃ =

(
Q̃11 Q̃12

Q̃21 Q̃22

)
.

Now we rewrite

tr
(
QcQ

T
c AkQrQ

T
r (A−Ak)

T
)

= tr
(
Q̂Q̂TAkQ̃Q̃

T (A−Ak)
T
)

= tr

(Q̂11 Q̂12

Q̂21 Q̂22

)(
Q̂11 Q̂12

Q̂21 Q̂22

)T (
Σ

(T )
1 0
0 0

)(
Q̃11 Q̃12

Q̃21 Q̃22

)(
Q̃11 Q̃12

Q̃21 Q̃22

)T (
0 0

0 Σ̂2

)
= tr

((
0 0

Q̂21 Q̂22

)(
Q̂11 Q̂12

0 0

)T (
Σ

(T )
1 0
0 0

)(
Q̃11 Q̃12

0 0

)(
0 0

Q̃21 Q̃22

)T (
0 0

0 Σ̂2

))

= tr

(((
Q̂21 Q̂22

)(
Q̂11 Q̂12

)T
Σ

(T )
1

)((
Q̃11 Q̃12

)(
Q̃21 Q̃22

)T
Σ̂2

))
.

To continue, we notice that∣∣∣∣∣∣∣∣(Q̂21 Q̂22

)(
Q̂11 Q̂12

)T
Σ

(T )
1

∣∣∣∣∣∣∣∣
F

≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
I −

(
Q̂11 Q̂12

)(
Q̂11 Q̂12

)T
−
(
Q̂11 Q̂12

)(
Q̂21 Q̂22

)T
−
(
Q̂21 Q̂22

)(
Q̂11 Q̂12

)T
I −

(
Q̂21 Q̂22

)(
Q̂21 Q̂22

)T
(Σ

(T )
1

0

)∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
F

=

∣∣∣∣∣∣
∣∣∣∣∣∣
I −(Q̂11 Q̂12

Q̂21 Q̂22

)(
Q̂11 Q̂12

Q̂21 Q̂22

)T(Σ
(T )
1

0

)∣∣∣∣∣∣
∣∣∣∣∣∣
F

=
∣∣∣∣∣∣(I − Q̂Q̂T)Ak∣∣∣∣∣∣

F
≤
√
kσp+1

∣∣∣∣∣∣Ω2Ω†1

∣∣∣∣∣∣
2
.

Similarly, we can derive∣∣∣∣∣∣∣∣(Q̃11 Q̃12

)(
Q̃21 Q̃22

)T
Σ̂2

∣∣∣∣∣∣∣∣
F

≤
√
kσp+1

∣∣∣∣∣∣Ψ2Ψ†1

∣∣∣∣∣∣
2
.
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By the Cauchy-Schwartz inequality, we combine these two upper bounds to
get ∣∣∣tr(QcQTc AkQrQTr (A−Ak)

T
)∣∣∣ ≤ kσ2

p+1

∣∣∣∣∣∣Ω2Ω†1

∣∣∣∣∣∣
2

∣∣∣∣∣∣Ψ2Ψ†1

∣∣∣∣∣∣
2
.

Plugging this and upper bounds (S.5) into equation (S.2), we have

||A− CUR||2F ≤ ||A− (CUR)k||
2
F

≤
ρ∑

j=k+1

σ2
j + kσ2

p+1

(∣∣∣∣∣∣Ω2Ω†1

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣Ψ2Ψ†1

∣∣∣∣∣∣
2

)2
as desired. The spectral norm bound is simply the consequence of Theorem 3.5
of [3].

3 Proof of Deterministic Algorithm

Apply equation (7) to U1 and VT
1 , we have∣∣∣∣∣∣Ω†1∣∣∣∣∣∣

2
≤

√
c−√p√

(
√
n− p+

√
c)2 + (

√
c−√p)2

,

∣∣∣∣∣∣Ψ†1∣∣∣∣∣∣
2
≤

√
r −√p√

(
√
m− p+

√
r)2 + (

√
r −√p)2

.

Further notice that Ω2 and Ψ2 are submatrices of UT
2 and VT

2 , respectively,
and so their singular values are at most 1.

4 Proof of Uniform Sampling Algorithm

By [2], it is shown that ∣∣∣∣∣∣Ω†1∣∣∣∣∣∣2
2
≤ n

(1− ε) c

By symmetry, we have ∣∣∣∣∣∣Ψ†1∣∣∣∣∣∣2
2
≤ m

(1− ε) r
.

5 Proof of Leverage Score Sampling Algorithm

By the proof of lemma 1 from [1], we have that with probability at least 0.9,

1− σ2
min (Ω1) ≤ ε
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Therefore, we have ∣∣∣∣∣∣Ω†1∣∣∣∣∣∣2
2
≤ 1

1− ε

By symmetry, we have ∣∣∣∣∣∣Ψ†1∣∣∣∣∣∣2
2
≤ 1

1− ε
.
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