Supplementary Material of Global Multi-armed Bandits with Hölder **Continuity**

Lemma 1. Given any $\theta_* \in \Theta$, there exists a constant $\epsilon_{\theta_*} = \delta_{\min}(\theta_*)^{1/\gamma_2}/(2D_2)^{1/\gamma_2}$, where D_2 and γ_2 are the constants given in Assumption 1 such that $\Delta_{\min}(\theta_*) \geq \epsilon_{\theta_*}$. In other words, the minimum suboptimality distance is always positive.

Proof. For any suboptimal arm $k \in \mathcal{K} - k^*(\theta)$, we have $\mu_{k^*(\theta)}(\theta) - \mu_k(\theta) \geq \delta_{\min}(\theta) > 0$. We also know that $\mu_k(\hat{\theta}') \geq \mu_{k^*(\theta)}(\theta')$ for all $\theta' \in \Theta_k$. Hence for any $\theta' \in \Theta_k$ at least one of the following should hold: (i) $\mu_k(\theta') \ge \mu_k(\theta) - \delta_{\min}(\theta)/2$, (ii) $\mu_{k^*(\theta)}(\theta') \le \mu_{k^*(\theta)}(\theta) +$ $\delta_{\min}(\theta)/2$. If both of the below does not hold, then we must have $\mu_k(\theta') < \mu_{k^*(\theta)}(\theta')$, which is false. This implies that we either have $\mu_k(\theta) - \mu_k(\theta') \leq \delta_{\min}(\theta)/2$ or $\mu_{k^*(\theta)}(\theta) - \mu_{k^*(\theta)}(\theta') \geq -\delta_{\min}(\theta)/2$, or both. Recall that from Assumption 1 we have $|\theta - \theta'| \ge |\mu_k(\theta) \mu_k(\theta')|^{1/\gamma_2}/D_2^{1/\gamma_2}$. This implies that $|\theta - \theta'| \ge \epsilon_\theta$ for all $\theta' \in \Theta_k$. П

Lemma 2. Consider a run of the greedy policy until time t. Then, the following relation between $\hat{\theta}_t$ and θ_* holds with probability one: $|\hat{\theta}_t - \theta_*| \leq$ $\sum_{k=1}^{K} w_k(t) D_1 |\hat{X}_{k,t} - \mu_k(\theta_*)|^{\gamma_1}$

Proof. Assumption 2 ensures that the reward functions are either monotonically increasing or decreasing. We generate imaginary functions that are $\mu_k(\theta) =$ $\tilde{\mu}_k(\theta)$ for $\theta \in \Theta$ and for $y, y' \in [0, 1],$

$$
|\tilde{\mu}_k^{-1}(y) - \tilde{\mu}_k^{-1}(y')| \le D_1 |y - y'|^{\gamma_1} \tag{1}
$$

We have also $\tilde{\mu}_k^{-1}(y) > 1$ when $y > \max_{\theta \in \Theta} \mu_k(\theta)$ and $\tilde{\mu}_k^{-1}(y) < 0$ when $y < \min_{\theta \in \Theta} \mu_k(\theta)$. Then,

$$
|\theta_{*} - \hat{\theta}_{t}| = |\sum_{k=1}^{K} w_{k}(t)\hat{\theta}_{k,t} - \theta_{*}|
$$

=
$$
\sum_{k=1}^{K} w_{k}(t)|\theta_{*} - \hat{\theta}_{k,t}|
$$

$$
\leq \sum_{k=1}^{K} w_{k}(t)|\tilde{\mu}_{k}^{-1}(\hat{X}_{k,t}) - \tilde{\mu}_{k}^{-1}(\tilde{\mu}_{k}(\theta_{*}))|
$$

 $\leq \sum_{k=1}^{K}$ $k=1$ $w_k(t)D_1|\hat{X}_{k,t} - \mu_k(\theta_*)|^{\gamma_1}$ (2)

where we need to look at following two cases for the first inequality. The first case is $\hat{X}_{k,t} \in \mathcal{Y}_k$ where the statement immediately follows. The second case is $\hat{X}_{k,t} \notin \mathcal{Y}_k$, the global parameter estimator $\hat{\theta}_{k,t}$ is either 0 or 1. \Box

Lemma 3. For given global parameter θ_* , the one step regret of the greedy policy is bounded by $r_t(\theta_*) =$ $\mu^*(\theta_*) - \mu_{I_t}(\theta_*) \leq 2D_2|\theta_* - \hat{\theta}_t|^{\gamma_2}$ with probability 1, where I_t is the arm selected by the greedy policy at time $t > 2$.

Proof. Note that $I_t \in \arg \max_{k \in \mathcal{K}} \mu_k(\hat{\theta}_t)$. Therefore, we have

$$
\mu_{I_t}(\hat{\theta}_t) - \mu_{k^*(\theta_*)}(\hat{\theta}_t) \ge 0.
$$
 (3)

We have $\mu^*(\theta_*) = \mu_{k^*(\theta_*)}(\theta_*)$. Then, we can bound

$$
\mu^*(\theta_*) - \mu_{I_t}(\theta_*)
$$
\n
$$
= \mu_{k^*(\theta_*)}(\theta_*) - \mu_{I_t}(\theta_*)
$$
\n
$$
\leq \mu_{k^*(\theta_*)}(\theta_*) - \mu_{I_t}(\theta_*) + \mu_{I_t}(\hat{\theta}_t) - \mu_{k^*(\theta_*)}(\hat{\theta}_t)
$$
\n
$$
= \mu_{k^*(\theta_*)}(\theta_*) - \mu_{k^*(\theta_*)}(\hat{\theta}_t) + \mu_{I_t}(\hat{\theta}_t) - \mu_{I_t}(\theta_*)
$$
\n
$$
\leq 2D_2|\theta_* - \hat{\theta}_t|^{2}
$$
\n(4)

, where the first inequality followed by inequality 3 and second inequality by Assumption 1. \Box

Lemma 4. For any $t \geq 2$ and given global parameter θ_* , we have $\mathcal{G}^x_{\theta_*,\hat{\theta}_t} \subseteq \bigcup_{k=1}^K \mathcal{F}^k_{\theta_*,\hat{\theta}_t}((\frac{x}{D_1})^{\frac{1}{\gamma_1}})$ with probability 1.

Proof.

$$
\{|\theta_{*} - \hat{\theta}_{t}| \geq x\}
$$

\n
$$
\subseteq \{\sum_{k=1}^{K} w_{k}(t)D_{1}|\hat{X}_{k,t} - \mu_{k}(\theta_{*})|^{\gamma_{1}} \geq x\}
$$

\n
$$
\subseteq \bigcup_{k=1}^{K} \{w_{k}(t)D_{1}|\hat{X}_{k,t} - \mu_{k}(\theta_{*})|^{\gamma_{1}} \geq w_{k}(t)x\}
$$

$$
= \bigcup_{k=1}^{K} \{ |\hat{X}_{k,t} - \mu_k(\theta_*)| \ge (\frac{x}{D_1})^{\frac{1}{\gamma_1}} \}
$$
(5)

, where the first inequality followed by Lemma 2 and second inequality by the fact that $\sum_{k=1}^{K} w_k(t) = 1$.