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Abstract

We consider the problem of clustering data
points in high dimensions, i.e., when the
number of data points may be much smaller
than the number of dimensions. Specifi-
cally, we consider a Gaussian mixture model
(GMM) with two non-spherical Gaussian
components, where the clusters are distin-
guished by only a few relevant dimensions.
The method we propose is a combination of
a recent approach for learning parameters of
a Gaussian mixture model and sparse linear
discriminant analysis (LDA). In addition to
cluster assignments, the method returns an
estimate of the set of features relevant for
clustering. Our results indicate that the sam-
ple complexity of clustering depends on the
sparsity of the relevant feature set, while only
scaling logarithmically with the ambient di-
mension. Further, we require much milder
assumptions than existing work on cluster-
ing in high dimensions. In particular, we do
not require spherical clusters nor necessitate
mean separation along relevant dimensions.

1 Introduction

The last few years have seen extensive research on
developing computationally efficient and statistically
sound methods that can leverage sparsity of the rel-
evant feature set for supervised learning (classifica-
tion, regression, etc.) of high-dimensional data. These
methods show that learning and selection of relevant
features is possible even when the number of training

Appearing in Proceedings of the 18th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2015, San Diego, CA, USA. JMLR: W&CP volume 38.
Copyright 2015 by the authors.

data n is much less than the number of features d,
which is typically the case for high-dimensional data.
However, similar results for the unsupervised task of
clustering are largely non-existent. The task of cluster-
ing high-dimensional data and extracting relevant fea-
tures arises routinely in many applications, e.g., clus-
tering of patients based on gene expression profiles and
identifying the relevant genotypes, grouping web con-
tent and identifying relevant characteristics, clustering
proteins with similar drug expression profiles, etc.

While there have been recent attempts at clustering
high-dimensional data and selecting relevant features,
these either do not come with theoretical guarantees
or assume very strong conditions that suggest that
even employing marginal feature selection, using pro-
jections of the data onto individual coordinates, as
a pre-processing step before clustering might suffice.
Thus, while supervised learning in high dimensions re-
quires single-step methods that can perform the learn-
ing task and select relevant features simultaneously,
it is not clear whether a sophisticated single-step ap-
proach is necessary for clustering in high dimensions.

A simple example which demonstrates that pre-
processing the data using a marginal (coordinate-wise)
feature selection step does not suffice for clustering, is
provided by a mixture of two non-spherical Gaussian
components (see Figure 1). It is clear that x1 is rele-
vant to define the clusters, however the marginal dis-
tribution of the data when projected onto x1 is a single
unimodal Gaussian. Hence, marginal feature selection
cannot be used to identify the relevant features.

Motivated by this example, we consider a simple non-
spherical Gaussian mixture model (defined formally in
the next section) for clustering high-dimensional data,
and aim to provide a computationally efficient algo-
rithm for simultaneous feature selection and cluster-
ing, that comes with sample complexity guarantees
that depend primarily on the number of relevant fea-
tures (intrinsic dimension) and only logarithmically on
the total number of features (ambient dimension).
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Figure 1: An example of two clusters where both fea-
tures x1 and x2 are relevant to define the clusters, how-
ever the marginal distribution of data points along x1

is unimodal, and hence no marginal feature selection
method can work.

Related work. Before we describe our approach and
results, we discuss related work in some more detail.
Sparse clustering methods that perform feature selec-
tion for high-dimensional data have received attention
recently.

K–means based approaches begin with the typical K–
means objective and introduce some sparsity-inducing
penalties [1, 2, 3, 4, 5]. While the penalization intro-
duced in these papers is convex (akin to supervised
learning approaches), the K–means objective itself is
non-convex and in fact NP-hard. Thus, in general,
solving any of these objectives is NP-hard and the pa-
pers propose iterative approaches akin to Llyod algo-
rithm for solving the K–means objective. Moreover,
these papers do not provide any statistical guarantees,
with the exception of [1, 5]. The latter two papers do
provide some consistency results, however these are for
the true objective optimizers only which are NP-hard.
Moreover, the notion of relevant features considered in
all these papers is that the means are separated along
each relevant feature, which may not necessarily be
the case as demonstrated in Figure 1.

Another non-parametric approach to feature selection
for clustering that is consistent in high dimensions is
presented in [6], however it relies on pre-screening fea-
tures which appear marginally unimodal, again failing
for the example in Figure 1.

Learning Gaussian mixture models (GMMs) has a long
history, particularly in computer science theory com-
munity, where the emphasis has been on relaxing the
assumptions under which GMMs can be learnt un-
der various metrics such as estimating the distribu-
tion, parameters or clustering [7, 8, 9]. However, these
papers primarily focus on computational tractability
and mostly have high sample complexity, particularly

in high dimensions. For example, the most relevant to
this paper is the work on learning non-spherical GMMs
where the components are separated by a hyperplane
[10], however it has sample complexity that depends
as d4 on the ambient dimension. The proposed es-
timator relies on first making the data isotropic (zero
mean and overall identity covariance). This is achieved
by pre-whitening the data by multiplying it with the
inverse sample covariance matrix. However, in high
dimensions when the number of samples drawn from
the mixture n� d (the number of features), the sam-
ple covariance matrix is not invertible and hence the
method cannot succeed. Moreover, no work in this
line, to the best of our knowledge, addresses feature
selection. There is a very recent work [11] where the
question of optimal sample complexity for GMM pa-
rameter estimation in `∞ norm is addressed and we
build on this paper to provide clustering and feature
selection guarantees.

Apart from the work in the computer science theory
community, multiple statistical approaches have also
been proposed to learning Gaussian mixture models
in high dimensions and feature selection [12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23]. These employ vari-
ous sparsity assumptions, e.g. that the components are
spherical and have sparse mean vectors, or that the
covariance matrices (or their inverses) are also sparse,
etc. However, as the K–means based methods, these
approaches either a) require approximating maximum
likelihood parameters without providing efficient algo-
rithms; or b) do not come with precise finite sample
statistical properties of the estimators.

Assuming mixtures of equal weight spherical compo-
nents with sparse mean separation, [24] provide some
minimax bounds for the problem with sample com-
plexity that scales with the number of relevant fea-
tures and only logarithmically with the total number
of features. Similar statistical guarantees are obtained
by [25] for learning mixtures of more than two spher-
ical components with sparse mean vectors. However,
the assumption of spherical components necessitates
that relevant features are characterized by mean sep-
aration, and hence the results do not apply for cases
like the one described in Figure 1.

Under less restrictive assumptions on the components,
[26] analyze detection of high-dimensional Gaussian
mixtures (vs. a single Gaussian as null) and selection
of sparse set of features along which mean separation
occurs, from a minimax perspective. Their minimax
optimal estimators involve combinatorial search, and
while the authors also investigate some tractable pro-
cedures, they are either based on marginal feature se-
lection or assume that the component covariance ma-
trices are known and diagonal.
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Finally, we mention that if the cluster assignments are
known, the problem of clustering reduces to binary
classification. And specifically, clustering using a mix-
ture of two identical covariance Gaussians reduces to
linear discriminant analysis, if the cluster assignments
are known. Feature selection using a sparse linear dis-
criminant analysis has been analyzed in [27]. We will
leverage this approach, in combination with the results
for `∞ parameter estimation for GMMs [11] to demon-
strate a method and results for sparse clustering and
feature selection under high-dimensional non-spherical
GMMs.

Contributions. Our contributions can be summa-
rized as follows:

• We present a computationally efficient method for
clustering in high dimensions that comes with fi-
nite sample guarantees on the misclustering rate.
Our results show that sample complexity scales
quadratically with the number of relevant fea-
tures (inherent dimension), but only logarithmi-
cally with total number of features (ambient di-
mension). As a result, the proposed method en-
ables learning of non-spherical Gaussian mixtures
of two components in high dimensions (when the
number of data points may be much smaller than
the number of features), without assuming spar-
sity of the covariance or inverse covariance matrix.

• We provide guarantees for feature selection under
a very generalized notion of relevant features that
does not require that clusters necessarily have
mean separation along the relevant features. This
allows us to handle cases like that shown in Fig-
ure 1.

The rest of the paper is organized as follows. In sec-
tion 2, we formalize our setup. The proposed method
combining ideas from [11] and [27] is presented in sec-
tion 3. Section 4 states our results on misclustering
rate, sample complexity and feature selection in high
dimensions. Experimental results described in sec-
tion 5 on some simulated datasets demonstrate the
viability of our proposed method. We conclude with
some open directions in section 6.

2 Problem Setup and Assumptions

Inspired by Figure 1, we consider the following simple
model.

A1) Data generating model: The data points
X1, . . . , Xn are generated i.i.d. from a mixture of
two Gaussians of the form 1

2N (µ1,Σ)+ 1
2N (µ2,Σ)

in Rd.

The assumption that the components have equal
weight and equal covariance is made largely for ex-
positional simplicity. For the reasons discussed in sec-
tion 4.2, we believe that extending our results to allow
for arbitrary mixture weights and differing component
covariances is possible without introducing any ma-
jor technical issues, and should involve no more than
some additional bookkeeping. In fact, in section 4) we
demonstrate a successful application of our proposed
approach to a mixture with unequal weights and co-
variances. On the other hand, extending to more than
two mixture components is a significant challenge, and
addressing it is out of the scope of this paper.

The error of a clustering ψ : Rd → {1, 2} is defined
as follows. Let X be a random draw from the true
mixture, and let Y ∈ {1, 2} be the (latent) label of
the mixture component from which X was drawn,
i.e., Y − 1 ∼ Bern

(
1
2

)
and X|Y ∼ N (µY ,Σ). We

define the overlap of the clustering ψ as Υ(ψ) :=
minπ P(ψ(X) 6= π(Y )) where the minimum is over per-
mutations π : {1, 2} → {1, 2}, and the error of ψ is
defined as L(ψ) := Υ(ψ)−minψ′ Υ(ψ′).

We define the optimal clustering ψ∗ := argminψ Υ(ψ),
which coincides with the Bayes optimal classifier in the
supervised problem of predicting Y from X:

ψ∗(x) =

{
1 if (µ0 − x)ᵀβ < 0,
2 o.w.

(1)

where β = Σ−1∆µ, µ0 = µ1+µ2

2 and ∆µ = µ1−µ2

2 . No-
tice that the Bayes optimal decision boundary is linear
and hence the problem corresponds to linear discrimi-
nant analysis (LDA).

If the labels are known, one can simply plug-in sample
estimates of class conditional means µ̂Y and covariance
matrix Σ̂ to obtain an empirical classification rule. In
clustering, the labels are latent. However, if we can
learn the parameters µ1, µ2,Σ of the Gaussian mix-
ture model, we can plug these in and obtain a similar
empirical clustering.

In the high-dimensional setting (n � d), estimates of
the covariance matrix are typically not invertible, ne-
cessitating some additional assumptions to make the
problem well-posed. In high-dimensional clustering,
it is natural to expect that not all features are rele-
vant for clustering. For example, in clustering proteins
based on their drug expression profiles, not all drugs
are responsible for differentiation of the expressions.
This assumption can be captured as follows (using the
notation [d] = {1, . . . , d}).

A2) Sparsity of relevant features: The set of relevant
features S ⊆ [d], which are given by the non-zero
coordinates of β, satisfy |S| ≤ s, where s ≤ d is
the sparsity level.

39



Efficient Sparse Clustering of High-Dimensional Non-spherical Gaussian Mixtures

This notion of feature relevance is motivated by the
fact that the optimal clustering ψ∗ in Eq. 1 depends
on a given feature only when the corresponding coor-
dinate of β is non-zero.

We will demonstrate that the sample complexity of
clustering in high dimensions depends on the number
of non-zero coordinates ‖β‖0 = |S| ≤ s, and only log-
arithmically on the total number of features d.

In comparison, existing work on high-dimensional clus-
tering typically assumes ∆µ is sparse, and the relevant
features are given by its non-zero coordinates, i.e., the
coordinates along which mean separation occurs. So,
they cannot identify relevant features such as x1 in Fig-
ure 1. Also, some existing work on high-dimensional
GMM learning assumes sparsity of the covariance Σ
or its inverse Σ−1. These assumptions used in previ-
ous work are more restrictive than (and can be con-
sidered special cases of) our notion of relevant features
(nonzero coordinates of β ≡ Σ−1∆µ) which is precisely
what the optimal clustering function depends on.

We make the following additional assumption which
guarantees success of our computationally feasible
method that uses the `1 penalty.

A3) Restricted eigenvalue property: The covariance
matrix Σ satisfies

min
S⊆[d]: |S|≤s,v 6=0

{
‖Σv‖2
‖v‖2

: ‖vSc‖1 ≤ ‖vS‖1
}
≥ η > 0

where vS is the projection of v onto the coordinates
in S, and Sc = [d] \ S is the complement of S. A
similar assumption is required for feature selection in
supervised learning using `1 penalties (c.f. [28]). This
condition ensures that there cannot exist two different
values of the sparse vector β which correspond to sim-
ilar values for Σβ = ∆µ, and hence that a small error
in estimating the parameters (either ∆µ or Σ) must
imply small clustering and feature selection error.

While the above assumptions suffice to evaluate the
clustering performance in high dimensions, we also
seek to correctly identify the set of relevant features.
For this, we need to assume that each relevant feature
is “relevant enough” to be detectable using a finite
sample. Formally,

A4) Signal strength along each relevant feature: For
each i ∈ [d] such that β(i) 6= 0, let |β(i)| ≥ βmin,
where βmin > 0.

3 Proposed Method

Given samples X1, . . . , Xn from the unknown mixture
1
2N (µ1,Σ) + 1

2N (µ2,Σ), we propose a procedure com-
posed of three stages. First we aquire initial estimates

of mixture parameters using the algorithm of Hardt
and Price [11]. Next we estimate the discriminating
direction β := Σ−1∆µ by means of solving a convex
program analogous to the proposal of Cai and Liu [27]
for sparse supervised linear classification. Finally we
threshold the elements of the estimate of β to recover
the relevant features S.

Precisely, the steps are as follows.

1. Obtain estimates µ̂1, µ̂2, Σ̂ by invoking Algorithm
HardtPrice defined in Section 3.1 with ε, δ sat-
isfying ε = C(log(dn/δ)/n)1/6 for some constant
C.

2. For some λ > 0, set

β̂λ = argmin
z∈Rd

‖z‖1 (2)

subject to ‖Σ̂z − ∆̂µ‖∞ ≤ λ

where ∆̂µ = µ̂1−µ̂2

2 , ‖ · ‖∞ is the elementwise
absolute maximum, and λ is a tuning parame-
ter the choice of which is discussed below. Let
µ̂0 = µ̂1+µ̂2

2 . The estimated clustering is defined
as

ψ̂λ(x) =

{
1 if (µ̂0 − x)ᵀβ̂λ < 0,
2 o.w.

Proposition 1 in Section 4 ties the error in the esti-
mates of Σ̂ and ∆̂µ to the error of ψ̂λ. In this result,
the bound on the clustering error is minimized when
λ takes on the smallest value such that the true β is a
feasible point of the constraints in (2). A specific value
for λ is given in Corollary 3, based on a few additional
technical assumptions.

3. Estimate the relevant features S by thresholding
β̂λ:

Ŝ = {i : β̂λ(i) > c · λ
√
s}

where c > 0 is a constant.

Our results for support recovery hold when c > 2/η.

3.1 Algorithm HardtPrice

We describe below the algorithm HardtPrice pro-
posed by Hardt and Price [11] (section 3, algorithm
B), simplified in accordance to the assumption (A1).
Specifically, the version of the algorithm we state here
skips the steps necessary to learn different component
variances and the mixture weights.

The HardtPrice algorithm assumes the availability
of another algorithm, GMFitLowDim, for mixture
learning in a low-dimensional setting. The latter is
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any algorithm that, like HardtPrice, takes as input
a set of samples as described in (A1) together with
parameters ε, δ > 0, and has the same properties as
those of HardtPrice stated in Theorem 2, but only
for up to 2 dimensional mixtures.

Hardt and Price give a candidate for GMFitLowDim,
which combines a type of moment method approach
and a grid search over parameters. The algorithm in-
volves a large number of steps, and we do not restate
it here due to the space constraint. Since much of
the computational and statistical difficulty of general
Gaussian mixture learning is not present when only
considering such small dimensional cases, we believe
this does not take away from the exposition. In fact, in
our simulation experiments (section 5) we successfully
use an “off-the-shelf” EM based maximum likelihood
mixture learning algorithm as GMFitLowDim.

Input: Samples X1, . . . , Xn ∈ Rd; ε, δ > 0.

1. Set V̂ = maxi∈[d]

∑n
j=1

Xj(i)
2

n −
(∑n

j=1
Xj(i)
n

)2

,

ε∗ = ε
20 , δ∗ = δ

10d2 . Algorithm GMFitLowDim
will always be invoked with parameters ε∗ and δ∗.

Estimate µ̂1 and µ̂2:

2. For each i ∈ [d], use GMFitLowDim on the uni-
variate data X1(i), . . . , Xn(i) obtaining estimates
of the means ξ1(i) and ξ2(i).

3. If |ξ1(i) − ξ2(i)| ≤ εV̂ /4 for all i ∈ [d], put µ̂1 =
µ̂2 = ξ1 (and skip step 4).

4. Otherwise, let i be the smallest index such that
|ξ1(i)−ξ2(i)| > εV̂ /4 and, for each j ∈ [d]\{i} do:

a) Apply GMFitLowDim to the bivariate data
[X1(i), X1(j)], . . . , [Xn(i), Xn(j)] to obtain
mean estimates (νk(i), νk(j)) for k = 1, 2.

b) Let k ∈ {1, 2} such that |ξ1(i) − νk(i)| ≤
εV̂ /10. If such k does not exist, the algo-
rithm terminates with failure.

c) Set µ̂1(j) = νk(j) and µ̂2(j) = ν3−k(j).

Estimate Σ̂:

5. For each i ∈ [d], invoke GMFitLowDim on the
univariate data X1(i), . . . , Xn(i) and obtain an es-

timate of the diagonal element Σ̂(i; i).

6. For each i < j, invoke GMFitLowDim on the bi-
variate data [X1(i), X1(j)], . . . , [Xn(i), Xn(j)] and

obtain an estimate of Σ̂(i, j) = Σ̂(j, i).

7. Return µ̂1, µ̂2, Σ̂.

Intuitively, the algorithm works as follows. Note that
the marginal of a Gaussian mixture is the same as a
mixture of the marginals of the mixture components.
So, given sufficient data, the univariate mixture mean
estimates ξ1(i) and ξ2(i) learned in step 2 of the algo-
rithm will be close to µ1(i) and µ2(i) for all i ∈ [d],
up to ordering. I.e., having ξ1(i) and ξ2(i), it remains
only to decide whether ξ1(i) corresponds to the same
mixture component as ξ1(j), or to ξ2(j) instead, for
each other j ∈ [d]. To do this, in step 4 the algorithm
looks at bivariate marginals of feature pairs i, j, and
matches ξ1(i) to whichever one of ξ1(j) and ξ2(j) it
co-occurs with in the bivariate marginal.

Similarly, if the component covariances are identical
as we assume, then we only need to look at bivariate
marginals to get Σ(i, i), Σ(i, j), and Σ(j, j). Hardt and
Price allow for different component covariances as well,
where, similarly to learning the means, it is necessary
to decide if Σ1(i, j) belongs to the same component as
Σ1(k, l) or Σ2(k, l). To do this, Hardt and Price make
use of up to 4-dimensional marginals.

In the first stage, the algorithm fits mixtures indepen-
dently to the univariate projections of the data (step
2). However, it is important to note that the sub-
sequent steps, which use bivariate projections of the
data, recover information that cannot be obtained by
purely marginal methods. For instance, the marginal
method of [24] would fail to identify feature x1 in the
example in Figure 1 as relevant to the mixture, even
with infinite data. The Hardt and Price algorithm, on
the other hand, succeeds in this case, as demonstrated
in section 5.

4 Main Result

Our first result states that if the parameters of the
Gaussian mixture model in (A1) can be learnt accu-
rately in `∞ norm, then the misclustering rate of the
proposed method is small.

Proposition 1. Assume (A1). For any ε, if

max
(
‖µ1 − µ̂π(1)‖2∞, ‖µ2 − µ̂π(2)‖2∞, ‖Σ− Σ̂‖∞

)
≤ ε

for some permutation π : {1, 2} → {1, 2}, and if
ε‖β‖1 +

√
ε ≤ λ, then

L(ψ̂λ) ≤φ

(
max

(
∆ᵀ
µΣ−1∆µ − ε1√

∆ᵀ
µΣ−1∆µ + ε2

, 0

))
ε1 + ε2√

∆ᵀ
µΣ−1∆µ

where ε1 = (2λ + 3
√
ε)‖β‖1, ε2 = ε‖β‖21 + 3(λ +√

ε)‖β‖1, and φ is the standard normal density.

This result is similar to the classical results in classi-
fication error analysis of Fisher’s Linear Discriminant,
but with the key difference that the misclustering rate
is bounded in terms of the `∞ norms of the errors of
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the parameter estimates. This is crucial, as it will sub-
sequently allow us to obtain a rate that is only loga-
rithmic in the ambient dimension d. Before giving the
proof, we notice that the misclustering rate depends on
∆ᵀ
µΣ−1∆µ which can be regarded as the signal energy.

Proof. Since the clustering error does not change upon
flipping the labels assigned by ψ̂λ, WLOG we assume
π is the identity permutation.

It is easy to verify that

Υ(ψ∗) = Φ

(
−

∆ᵀ
µβ√

βᵀΣβ

)
= Φ

(
−
√

∆ᵀ
µΣ−1∆µ

)
where Φ is the standard normal CDF (whereas φ de-
notes the PDF). Also,

Υ(ψ̂λ) =
1

2
Φ

−|∆ᵀ
µβ̂λ|+ |(µ0 − µ̂0)ᵀβ̂λ|√

β̂ᵀ
λΣβ̂λ

+

+
1

2
Φ

−|∆ᵀ
µβ̂λ| − |(µ0 − µ̂0)ᵀβ̂λ|√

β̂ᵀ
λΣβ̂λ


where the appearance of the absolute values is to ac-
count for the minimum over permutations in the def-
inition of Υ – the overlap must not change if β̂λ is
negated.

So,

L(ψ̂λ) =Υ(ψ̂λ)−Υ(ψ∗)

≤Φ

−|∆ᵀ
µβ̂λ| − |(µ0 − µ̂0)ᵀβ̂λ|√

β̂ᵀ
λΣβ̂λ

−
− Φ

(
−
√

∆ᵀ
µΣ−1∆µ

)
. (3)

Clearly, ‖µ0 − µ̂0‖∞ ≤
√
ε and ‖∆µ − ∆̂µ‖∞ ≤

√
ε.

Since ∆µ = Σβ,

‖Σ̂β − ∆̂µ‖∞ ≤ ‖Σ̂β −∆µ‖∞ + ‖∆µ − ∆̂µ‖∞
≤ ‖Σ̂β − Σβ‖∞ +

√
ε

≤ ‖Σ̂− Σ‖∞‖β‖1 +
√
ε

≤ ε‖β‖1 +
√
ε ≤ λ

which implies that β is a feasible point for the opti-
mization problem (2). Hence, since β̂λ is an optimum

for (2), ‖β̂λ‖1 ≤ ‖β‖1, and

|(µ0 − µ̂0)ᵀβ̂λ| ≤ ‖µ0 − µ̂0‖∞‖β̂λ‖1 ≤
√
ε‖β‖1.

Next,

|∆ᵀ
µβ̂λ| ≥ |∆ᵀ

µβ| − |∆ᵀ
µ(β̂λ − β)|

= ∆ᵀ
µΣ−1∆µ − |∆ᵀ

µ(β̂λ − β)|

where

|∆ᵀ
µ(β̂λ − β)| ≤ |β̂ᵀ

λ(Σ̂β −∆µ)|+ |βᵀ(Σ̂β̂λ −∆µ)|

≤ ‖β‖1
(
‖Σ̂β −∆µ‖∞ + ‖Σ̂β̂λ −∆µ‖∞

)
≤ ‖β‖1

(
‖Σ̂β − ∆̂µ‖∞ + ‖Σ̂β̂λ − ∆̂µ‖∞+

+ 2‖∆µ − ∆̂µ‖∞
)

≤ 2(λ+
√
ε)‖β‖1

i.e.,

∆ᵀ
µΣ−1∆µ −

(
|∆ᵀ

µβ̂λ| − |(µ0 − µ̂0)ᵀβ̂λ|
)
≤

≤ (2λ+ 3
√
ε)‖β‖1 ≡ ε1.

And

β̂ᵀ
λΣβ̂λ ≤ βᵀΣβ + |β̂ᵀ

λΣβ̂λ − βᵀΣβ|

≤ βᵀΣβ + |β̂ᵀ
λΣβ̂λ − β̂ᵀ

λ∆µ|+ |(β̂λ − β)ᵀ∆µ|

≤ ∆ᵀ
µΣ−1∆µ + ‖Σβ̂λ −∆µ‖∞‖β‖1+

+ 2(λ+
√
ε)‖β‖1

where

‖Σβ̂λ −∆µ‖∞ ≤ ‖Σβ̂λ − Σ̂β̂λ‖∞ + ‖Σ̂β̂λ − ∆̂µ‖∞+

+ ‖∆̂µ −∆µ‖∞
≤ ‖Σ− Σ̂‖∞‖β‖1 + λ+

√
ε

≤ ε‖β‖1 + λ+
√
ε (4)

so

β̂ᵀ
λΣβ̂λ −∆ᵀ

µΣ−1∆µ ≤ ε‖β‖21 + 3(λ+
√
ε)‖β‖1 ≡ ε2.

Let L =
∆ᵀ
µΣ−1∆µ−ε1√

∆ᵀ
µΣ−1∆µ+ε2

; combining these with (3),

L(ψ̂λ) ≤ Φ (−L)− Φ(−
√

∆ᵀ
µΣ−1∆µ)

≤ φ (max (L, 0)) (
√

∆ᵀ
µΣ−1∆µ − L)

≤ φ (max (L, 0))
ε1 + ε2√

∆ᵀ
µΣ−1∆µ

.

The following result from [11] provides us `∞ control
over the GMM parameters.

Theorem 2 (Hardt and Price [11]). Given ε, δ > 0
and n samples from the model (A1), if

n = O

(
1

ε6
log

(
d

δ
log

(
1

ε

)))
,

then, with probability at least 1−δ, Algorithm Hardt-
Price in Section 3.1 produces estimates µ̂1, µ̂2 and Σ̂
such that, for some permutation π : {1, 2} → {1, 2},

max

(
max
i=1,2

(
‖µi − µ̂π(i)‖2∞

)
, ‖Σ− Σ̂‖∞

)
≤

≤ ε
(

1

4
‖µ1 − µ2‖2∞ + ‖Σ‖∞

)
.
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Combining Proposition 1 and Theorem 2, we have the
following result under (A2) and (A3). We defer the
proof to the supplement.

Corollary 3. Assume (A1), (A2), (A3), ‖Σ‖2 ≤ D0,
and ‖µ1 − µ2‖2∞ < D. Given δ > 0, there is some
constant c1 such that, setting

λ = c1

(
log(dn/δ)

n

)1/6 √
D0s(∆

ᵀ
µΣ−1∆µ)

η
+

+
√
c1

(
log(dn/δ)

n

)1/12

,

with probability at least 1− δ,

L(ψ̂λ) ≤C0φ

(√
∆ᵀ
µΣ−1∆µ

6

)
×

×max

[
s
√

∆ᵀ
µΣ−1∆µ

η2

(
log(dn/δ)

n

)1/6

,

√
s

η

(
log(dn/δ)

n

)1/12
]

for some constant C0.

Remark: Hence it follows that n = Ω
(
s6 log(d)

)
, sup-

pressing the dependence on other parameters.

4.1 Recovery of relevant features

We derive a bound for ‖β− β̂λ‖∞ under (A3) and then
guarantee recovery of relevant features under (A4),
i.e., when the non-zero components of β are large
enough.

Theorem 4. Assume the conditions of Proposition 1
hold. We have

‖β − β̂λ‖∞ ≤
2λ
√
s

η
.

If, in addition, (A4) holds, η > 2/c, and βmin >
2cλ
√
s, then

Ŝ = S.

Proof. We first establish two results that are crucial.
First, if β is sparse and S denotes the support of β,
then

‖(β − β̂λ)Sc‖1 = ‖β̂λ,Sc‖1 = ‖β̂λ‖1 − ‖β̂λ,S‖1
≤ ‖β‖1 − ‖β̂λ,S‖1 = ‖βS‖1 − ‖β̂λ,S‖1
≤ ‖(β − β̂λ)S‖1.

Second, note that

‖Σ(β − β̂λ)‖∞ = ‖∆µ − Σβ̂λ‖∞ ≤ 2λ

using Eq. (4).

Therefore, we can write

‖β − β̂λ‖∞ ≤ ‖β − β̂λ‖2

≤ 2λ

‖Σ(β − β̂λ)‖∞
‖β − β̂λ‖2

≤ 2λ
√
s

‖Σ(β − β̂λ)‖2
‖β − β̂λ‖2

≤ 2λ
√
s

minv{‖Σv‖2/‖v‖2 : ‖vSc‖1 ≤ ‖vS‖1}

≤ 2λ
√
s

η
.

The result follows using (A4) since βmin > 2cλ
√
s >

λ
√
s
(
c+ 2

η

)
.

Corollary 5. Assume (A1)-(A4). Under the condi-
tions of Corollary 3, given δ > 0, if

βmin = ω

(
s

(
log(dn/δ)

n

)1/12
)
,

then Ŝ = S with probability at least 1− δ.

Thus, in order to recover the support, we require at
least n = Ω

(
(s/βmin)12 log(d)

)
, suppressing the de-

pendence on other parameters.

4.2 Relaxing model assumptions

When Σ1 6= Σ2, the true clustering ψ∗ defined in sec-
tion 2 is no longer equivalent to the Bayes optimal de-
cision rule for the latent classification problem, since
the latter is in general quadratic. Hence, our results
on the clustering error (Corollary 3) do not have a
straightforward extension to the unequal covariance
case.

However, the quantity β := Σ−1
w ∆µ, where now Σw =

p1Σ1 + p2Σ2, does still have a meaningful interpreta-
tion when Σ1 6= Σ2. Namely, it is the Fisher discrim-
inant direction, which has been used in the Gaussian
mixture learning literature (e.g. [10]) as a key quantity
of interest to estimate, since projecting on this direc-
tion maximizes the between cluster variance. Corol-
lary 5, which establishes a sample complexity for es-
timating the support of the vector β which is loga-
rithmic in the dimension, depends only on the esti-
mation of ∆µ and Σw with `∞ norm control on the
error. Hardt and Price [11] do provide results with pre-
cisely such a guarantee for learning Gaussian mixtures
of the more general form p1N (µ1,Σ1) + p2N (µ2,Σ2).
Hence, the same proof technique should lead to an
analogous result without assuming that p1 = p2 = 1

2
or Σ1 = Σ2 = Σ.
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Figure 2: Values of entries of β̂λ given by solving (2) using either EM or the Hardt and Price parameter estimates
as input.

5 Simulation Results

In this section, we show the viability of our proposed
method using simulated datasets. We implemented a
version of the Hardt and Price algorithm, with mi-
nor modifications motivated by practicality, as well
as a linear programming formulation for the problem
in (2). We used the EM-based maximum likelihood
Gaussian mixture learning algorithm in the R package
EMCluster [29] as the subroutine GMFitLowDim in
the Hardt and Price algorithm. R code is available in
the supplementary material.

The first simulated dataset captures the issue depicted
in Figure 1. We set d = 50, ∆µ = (2, 0, . . . , 0), and
Σ = I except for Σ(1, 2) = Σ(2, 1) = 0.85. Clearly, the
true support of β = Σ−1∆µ is {1, 2}, so there are s = 2
relevant variables. After sampling n = 200, we first
apply the EM algorithm in the EMCluster package to
the full dimensional dataset, and use the estimated
parameters as input to (2). The results (Figure 5a)
clearly show that this approach fails to identify the
relevant features. In contrast, using the Hardt and
Price parameter estimates (Figure 5b), the relevant
features stand out for a wide range of values for λ.

The second dataset is high-dimensional – we draw
n = 150 samples from a mixture with d = 200, where
we set β to have s = 5 non-zero coordinates each
set to 5, Σ was generated randomly from a Wishart
distribution with degrees of freedom 2d and subse-
quently rescaled to have eigenvalues in [0.5, 2], and
µ1 = −µ2 = Σβ. The results in Figure 5c show the
importance of the sparsifying effect from using λ > 0
in (2), since the coefficients of the relevant features
are not isolated until λ is increased to ≈ 4.5, at which
point each of the 5 relevant features is identified.

Finally, the third dataset serves to show that the equal
component weight and equal component covariance as-
sumptions are not crucial to the proposed method,

when using the original algorithm of Hardt and Price
rather than the simplified version in section 3.1.
Specifically, we violate the model in (A1) and draw
n = 500 samples from p1N (µ1,Σ1) + p2N (µ2,Σ2),
where p1 = 0.4 = 1 − p2, d = 100, Σ1 6= Σ2

each generated independently as above, β is set to
have s = 5 non-zero values each of which is 2, and
µ1 = −µ2 = (p1Σ1 + p2Σ2)β. As demonstrated by the
results in Figure 5d, the proposed method is indeed
applicable to this more general setting.

6 Discussion and Open questions

The primary goal of this paper was to demonstrate a
method for high-dimensional clustering which, in con-
trast to existing work, provably identifies relevant fea-
tures that are not distinguished by the marginal sep-
aration of component means alone. The method we
present is computationally feasible and statistically ef-
ficient with sample complexity that primarily depends
on the number of relevant dimensions, and only loga-
rithmically on the total number of features. However,
this goal was achieved by considering a very simple
model - a mixture of two non-spherical Gaussians with
same covariance and mixture weights. While we be-
lieve that it will be straightforward to adapt our results
to allow uneven mixture weights and different covari-
ance matrices, extending our approach to handle more
than two components is a difficult problem and is the
topic of ongoing work. Theoretically, the bounds we
have demonstrated can be tightened in a few places,
particularly for support recovery using a primal-dual
witness argument. Additionally, it will be interesting
to demonstrate matching lower bounds for this prob-
lem to establish optimality of the sample complexity.
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