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Abstract

We consider the problem of multi-task learn-
ing in which tasks belong to hidden clusters.
We formulate the learning problem as a novel
convex optimization problem in which linear
classifiers are combinations of (a small num-
ber of) some basis. Our formulation jointly
learns both the basis and the linear combi-
nation. We propose a scalable optimization
algorithm for finding the optimal solution.
Our new methods outperform existing state-
of-the-art methods on multi-task sentiment
classification tasks.

1 Introduction

We focus on the problem of multi-task learning, where
there are many tasks, which can be combined naturally
into groups. An example of such a setting is predicting
sentiment of product reviews. Different reviewers may
use the same wording or superlatives to describe var-
ious levels of satisfaction and therefore hidden groups
may exist in which similar wording is used to convey
a different meaning. One reviewer may write “An OK
product” to convey highest sentiment, while another
may use the same exact language to describe a prod-
uct she was not satisfied with. The latter reviewer may
express high-sentiment by writing “great product” or
“best product”, while the former may write “bad prod-
uct” about a product he was not happy with. Ad-
ditionally, there are numerous products, and product
categories or types, and typically there are few reviews
on most products. The problem is, given a large set of
reviews, written by many users on numerous products,
how should one build a sentiment predictor?
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There are two extreme approaches. In the first ap-
proach, a single predictor is built based on all the data.
Although large amounts of data are used, such a pre-
dictor would suffer from the internal bias caused by the
differences between the reviewers and product types.
An alternative approach is to build an individual senti-
ment predictor per reviewer or per product (or both).
A tailored predictor is expected to work well when
trained on large amounts of data for each reviewer and
product, unfortunately, in most cases, there are only
a few samples per reviewer and product.

In this work we propose an alternative intermediate
approach - build an individual predictor for each task,
yet restrict all such predictors to be based on a small
set of possible atoms. We formulate the problem as
jointly clustering tasks and building individual senti-
ment predictors based on the clusters. We cast the
problem as an optimization problem, which is not-
convex, and thus may involve many local solutions.
We manipulate the optimization problem, converting
it into a min-max problem, which, with additional re-
laxation, yields a convex optimization problem. We
derive two specific formulations, one based on hinge-
loss (SVM) and the other based on the logistic loss.
We derive efficient optimization procedures, and eval-
uate our algorithm on sentiment analysis tasks, with
various reviewers and product types. Our study shows
the superiority of our proposed algorithm over base-
lines and algorithms designed for a similar setting.

2 Related Work

In recent years, there has been a large body of work on
multi-task learning and domain adaptation. In domain
adaptation it is assumed that there is a single task to
be performed but data may come from few domains or
sources, and additionally, there is only unlabeled data
from the task of interest. In this work we focus on the
complementary problem of multi-task learning, where
there could be many tasks, some of them very differ-
ent from each other, and additionally, there is a small
amount of labeled-data for each task. We focus on an
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approach in which models for all tasks are constructed
simultaneously.

A well studied line of work is learning a model per task,
yet with some constraint or regularization relating the
models. Argyriou et al. [3] proposed to learn a model
per task, yet all models should lie on a small dimen-
sional subspace. Obozinski et al. [23] took a similar
approach, with a different constraint, that all mod-
els share a small set of features. Evgeniou et al. [7]
used similar modeling, requiring that all models will
be close to each other. Gu and Han [8] proposed a
related approach for learning a single task by par-
titioning the data into clusters, each locally linearly
separable. A classifier is finally learned as a combi-
nation of a global model and per-cluster model. Ja-
cob et al [14] proposed combining penalties on the dis-
tance between and within clusters, along with a global
penalty, which they relax and solve in primal form.
Zhong and Kwok [28] proposed to learn two sets of
models to be combined in prediction, the first captures
the shared structure and the second captures varia-
tions specific to each task. The works of both Ando
and Zhang [2], and of Amit et al. [1], are closer to our
work. They learn by finding a linear transformation
of inputs, which is used by all tasks, and then one
model per task, working on the output of the shared
representation.

There are numerous works on Bayesian models and al-
gorithms for multi-task learning, mainly by sharing a
prior, which can be used to relate tasks [13, 27]. Other
works [4, 18, 26] use Gaussian process predictors. Re-
cent work has suggested using complex linear combi-
nation classifiers when classes have distinct subpopu-
lations [9, 12] and classification trees for identifying
interesting subgroups in the data [19].

A direction closer to ours is to both group tasks and
learn a model per such group. The SHAMO algo-
rithm [6] clusters tasks, and learns a model per clus-
ter. SHAMO groups tasks into K clusters with a K-
means like approach. In each cluster, all tasks share
the same linear classifier and grouping between tasks
is performed by iteratively learning classifiers for the
current groups and updating the groups based on the
cross task errors of the classifiers. When learning the
task models, SHAMO uses a random permutation over
the dataset. This permutation affects the learning re-
sult as SHAMO converges to a local minimum. Kang
et al [15] use similar modelling, but cast learning as a
mixed integer program.

A related algorithm to our suggested formulation is
the GO-MTL algorithm [16]'. GO-MTL assumes there
are a small number of K latent basis tasks and each

'We thank the authors for sharing their code.
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per-task classifier is built as a linear combination of
the basis. The authors propose a logistic regression
based implementation to which we compare our work.
GO-MTL was shown [16] to have state-of-the-art per-
formance, and thus we do not compare to other algo-
rithms it outperforms.

The work of Maurer et al. [20] proposed to learn a
(large) dictionary of base models, and set each model
to be a linear combination (called code elements) of a
small number of dictionary elements. The optimiza-
tion problem they develop is not convex and solved by
alternating minimization over the dictionary and code.

To conclude, in this work we focus on task clustering
in the context of sentiment analysis, similar to the ap-
proach suggested in previous work ([6]). We suggest
a formulation that simultaneously learns a task dic-
tionary and code vectors ([16]), and derive a convex
formulation and optimization method.

3 Problem Setting

There are T tasks, where each task t is associated with
a distribution D; over inputs (x,y) where x € RM
and y € Y. In this work we focus on binary classi-
fication and assume ) = {+1,—1}. We assume to
have N samples from all tasks S = {(x;,y;,¢;)} where
t; € {1...T}. We further assume that an instance was
generated by first sampling its task identity t; from a
fixed unknown multinomial distribution P and there-
after the input and label (x;,y;) were sampled from
D;. In this work we focus on linear classifiers, where a
model w; € RM is associated with a task ¢. Given an
input x; belonging to task t;, its predicted label is de-
fined to be sign (wy, - x;). We denote by W € RM*T
the matrix of all T' linear models. That is, the model
w; associated with task ¢ is the tth column of the ma-
trix W. The goal of a learning algorithm is to generate
a matrix W given a sample S.

4 Convex Multi-Task Clustering and
Learning

Our primary assumption is that the T tasks can be
clustered into K task-clusters, which we formulate by
factoring the parameter matrix W into a product of
two matrices: F € RM*K and G € REXT. The tth
column of the matrix G, denoted by g, € R¥ asso-
ciates task ¢t with one of K clusters. For example, if
the kth element of g, is one, and all other elements
of g, are zero, we would say that ¢ is associated with
cluster k. The kth column of the matrix F', denoted
by f, € RM is a (base) model associated with cluster
k. A pair of matrices F,G defines T linear classifiers
with W = FG, or w; = Fg,.
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Figure 1: Sample results on the XOR (left) and PLUS
(middle) datasets. Samples are divided into 20 tasks,
each assigned to one of two groups. The right figure
displays the structure found by the algorithm where
each row/column represents a task and each cell repre-
sents the correlation between tasks. The figure shows
that the method successfully identifies the two groups.

Given a labeled sample S = {(x;,¥;,ti)} a common
practice in learning a linear model (F, G) is to perform
structural risk minimization (SRM), picking a model
that is simple (in some sense) and performs well on
the training data. Learning is then being cast as an
optimization problem,

N
CY U(FG, (xi,yi,t:)) + R(F,G)

i=1

where the first term is the empirical error evaluated us-
ing a non-negative loss function ¢ (W, (x;,yi,t;)). We
work with functions that evaluate a model by applying
the appropriate task model ¢; on the input, that is,

C(W, (%0, yi,ti)) = £ (we,, (Xi,94)) -

We focus now on the hinge loss defined by
0 (wy;, (x4,y;)) = max{0,1 — (wy, - x;)y;)}. Later, in
Sec. 7 we will generalize our method to other loss func-
tions, and the logistic loss in particular. The second
term is a regularization that penalizes pairs (F,G) ac-
cording to their complexity, and the constant C' > 0 is
a tradeoff parameter. A common regularization func-
tion is the squared Euclidean norm, here applied on
the base models, R(F,G) = 3||F||*>. To summarize,
our learning problem is written as the following opti-
mization problem, where we write the hinge loss with
slack variables,

N
ﬁ%}ﬂm”cgé &
s.t. & >0,
§i>1—(Fgy,) xiyi fori=1...N
g, €{0, 1} |lglla=1 fort=1...T

The two last constraints ensure that the matrix G is a
proper clustering matrix.

We proceed by computing the dual of (1) over F
and {¢;} by reducing it to SVMs objective. We de-
note by f € RMX the column vector which is the
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stacking of the columns of the matrix F', that is,
£
x; € RM and an assignment vector g:, € RE we
define z; € RMX to be the column vector composed
of K blocks of dimension M. The kth block is de-
fined to be the kth element of g, times x;, that is,
z; = ((9,,)1%; ... (9:,)kx; ). Note that the new in-
puts are implicit functions of the cluster allocation ma-
trix z; = z,(G,x;), and that z;-z; = (x;-X;)(gy, - g¢,)-

f}) Additionally, given an input

By construction we have that, (Fg,. ) x; = f - 2.

Thus, we rewrite (1) as,

2
+C A 92
Jmin SIS ;5 )
st. &>0,6>1—F-zy; fori=1...N
g, €{0,1}%  |lgJla=1 fort=1...T

The last optimization problem defined over f and {¢;}
can be identified with the primal problem of SVM [5]
with inputs {(z;,y;)}, and thus it is equivalent to,

Hgn max Z% Z%ajyiyj (xix;)(gy,9:,) (3)

,J
st. a; €[0,C] fori=1...N
g, € {0,135 |lg)ll2=1 fort=1...T
and the optimal solution satisfies f = Z —1 0GYiZ;.
We define a new matrix variable £ = GTG € RT*T

which is interrupted as a cluster association matrix.
It is a PSD block-diagonal matrix of rank K with ele-
ments in {0,1}. We have that E, ; = 1 iff tasks ¢ and
s belong to the same task cluster. We re-write (3) in
terms of the new matrix E,

Z oYy (x
4,7

st. a; €[0,C) N
Ex0, Ec{0,1}7*T  rank(E)=K
Etﬂg:l fort=1...T

mbln max Z a; — i xj)(thz,tﬂ (4)

fori=1...

Now consider the case of two clusters where E is of
rank 2 and has two diagonal blocks. If we know that
the data should have balanced clusters, then we would
favor the case of two similarly sized blocks rather than
one large block and one small block. We propose to
add a penalty defined to be the number of non-zero
elements in E, that is Zt < Et,s. This constraint would
favor the former case of two balanced clusters. Thus
we add to the objective the term Zt,s E, s, for some,
non-negative parameter x > 0.

At this point we remove the rank constraint and allow
the optimal rank to be learned by the algorithm. We
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will later show that clustering is still obtained. The
resulting problem is not convex due to the constraint
E € {0,1}T*T which we thus relax to E € [0,1]7*7.
The resulting optimization problem is,

(5)

mbin max O(E,a)

{ai
st. a; €[0,0] fori=1...N
E>0, Ec[0,1]7*T
Et’tzl fort=1...T
O(E,a) =

D - % > a0y (i %) (Bre,) + 1) By
i irj b

The final formulation is a saddle-point convex problem
in both o and E, which follows similar arguments ap-
plied in other contexts [17, 25, 22]. Since the algorithm
is based on a saddle point formulation for multi-task
learning, we call it asap-mdt.

We illustrate the power of our formulation using two
synthetic datasets shown in the left and middle pan-
els of Fig. 1. Both datasets contain 20 tasks, where
the first 11 tasks are assigned with one linear classi-
fier and the remaining 9 tasks with another. There
are 4 training examples from each task, two of which
with positive label and two with negative label. In
the first dataset (left panel) the two classifiers are the
x-axis, in one case the top half-space contains exactly
inputs with positive label, and in the other case the
points with negative label. That is, the two classifiers
are (0,1) and (0,—1). In the middle data set (middle
panel) the two classifiers are the y-axis and the x-axis,
that is (1,0) and (0,1). The right panels shows the
matrix E learned by our algorithm (for both datasets,
after sorting the matrix). Clearly the algorithm iden-
tified that there are two tasks, and also identified cor-
rectly what tasks are associated. In other words, the
algorithm combined the twenty training sets of size 4
to 2 training sets of size 44 and 36 respectively. In some
cases, such as the provided synthetic datasets, the al-
gorithm identifies hard clusters. In other cases, it is
possible to obtain hard clusters by decomposing the
matrix F into GG and performing additional clus-
tering or thresholding over the matrix G.

5 Optimization

We solve (5) using a gradient-projection algorithm
over the convex function (defined over E),

D(F) = I{n&)}( O(E,a)st. o; €[0,C] fori=1...N .

It is a convex function since it is a point-wise maxi-
mum over convex functions. Additionally, the matrix
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with (i,j)th elements (x; - X;)(Ey, ¢;) is convex, since
the matrix F is convex. The function D(E) can be
computed by solving the optimization problem which
essentially is the dual of SVMs. There are numerous
algorithms for solving it, such as SDCA [24].

Given some matrix FE! we compute the gra-
dient VgD(E") VeO(E' a') where o
arg max, O(E", ) such that «o; € [0,C], and perform
a gradient step Z' + E' — §VD(E?). Since D(E") is
symmetric in E? the gradient and Z* are symmetric as
well. The algorithm then defines the next matrix E¢*?
to be the projection of Z! over the constraint set,

E={E:E=0,Ec[0,1]"" B, =1fort=1...T}.

The projection is performed by sequentially projecting
over each constraint individually with an additional
correction step [10] that ensures the convergence of
the projection onto all constraints. Projecting a sym-
metric matrix Z over the PSD cone is performed by
setting all the negative eigenvalues of Z to zero. Pro-
jecting the matrix Z over the constraint Z € [0, 1]T*T
is performed by clipping elements larger than one, to
one, and lower than zero, to zero. Finally, projecting
the matrix Z on the set of matrices with ones on the
diagonal is performed by setting the diagonal elements
to one. This sequence of projections is performed until
convergence. The projection algorithm is summarized
in lines 10-19 of Alg. 1.

The gradient-projection steps are performed until a
convergence criteria is met. The algorithm is sum-
marized in lines 1-9 of Alg. 1. We empirically found
that normalizing all features to be within [0,1] im-
proves performance and therefore added an additional
feature-wise normalization step to our implementa-
tion.

Given E, SDCA [24] converges to an e optimal solu-
tion in O((N + C)log(1)) for a smooth loss. Each
gradient step takes O(N?) time, and a run of the pro-
jection loop takes O(T® + T% + T) = O(T?). Thus
if the function perform n iterations in the projection
function, and m iterations overall, the total time is
O(mx ((N+C)log(1)+ N?+nT?)). The dominating
factor here is nT? as few iterations are not enough,
and n is typically large. It is important to note that,
in practice, alpha is not computed from scratch but
rather from the previously found alpha, which empir-
ically becomes increasingly faster as the optimization
progresses. Our analysis in the paper is theoretical
and intended as a worst case upper bound.

We have additionally experimented with a one-shot
algorithm summarized in Alg. 2, which performs two
iterations of solving a with an intermediate step for
solving E. Its run time is faster than the algorithm
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Algorithm 1 Gradient Projection Optimization Algorithm

1: Input: S = {(x;,y,t:) Y,

2: Parameters: C,k,0 >0

3: Initialize: E° =T ¢ R™*T t=1

4: repeat

5: Set Z! + E'™1 — §VDg(E'™1)

6: Set E' + PROJECTg(Z?)

T Set t +—t+1

8 until [|[E*~! — E?| is smaller than tolerance

9: return E?
10: function PrOJECTg(P)
11: repeat
12: Set [U, A] + Eig(P)
13: Set @ = R + U Diag(max(0,A1,1),...,max(0,Arr))) UT
14: Set Qs < min{l, max{0,Q; s}} fort,s=1...T
15: SetQt,telfortzl...T
16: Set P« P—(R—Q)
17: until change in P is smaller than tolerance
18: return P

19: end function

> Projects P on the set £

> P=UAUT

> Project on the PSD cone, set Q=R
> Project on box contraints

> Project on all diagonal elements equal one
> Correction step [10]

Algorithm 2 Single-shot Algorithm

Input: S = {(x;,yi,t:)} Y,
Parameters: C,x,§ >0
Initialize: E° = I ¢ RTXT
Set a® = argmax, O(E°, a) such that «; € [0,C]
repeat
Set Zt « B! — 6V zO(EY, o)
Set E' + PROJECTg(Z?)
Sett+t+1
until ||E'™! — E?| is smaller than tolerance
Set a* = arg max, O(E*, «) such that «; € [0, C]
: return E* o*

— =
= O

that solves the problem exactly, and in some cases
its additional error compared to the first algorithm
is small.

6 Illustration

We illustrate the properties of our algorithm using
product reviews from Amazon. Each review is com-
posed of one or more paragraphs, and an additional nu-
meric score with one to five stars. We omitted reviews
with three stars. We downloaded about 1,000 reviews
from 32 product domains, and represented each review
using token bi-grams.

In our first experiment we generated 192 tasks as fol-
lows. We divided the reviews of each domain into two
sets with 480 reviews in each set. A review in the first
set was assigned with a positive label y = +1 iff the
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product it covered was rated with five stars. Other-
wise, if the product was rated with four stars or less, it
was assigned with a negative y = —1 label. A similar
process was performed in the second set, except here,
a positive label was assigned to reviews with two or
more stars, and a negative label only to reviews with
a product that was rated with a single star. Each of
these sets was partitioned randomly to three sets each
with 160 reviews. From these 160 reviews, 64 were
used for training, 64 for evaluation and 32 for tuning.
To conclude, we generated T' = 32 x 2 x 3 = 192 tasks,
with V = 192 x 64 = 12,288 training examples. We
removed all features that appeared less than 2 times in
the combined training sets, yielding bag-of-words rep-
resentation in dimension of M = 34,008. Note, there
are two “super” tasks, 32 x 3 = 96 tasks where only re-
views with five stars were considered positive, and 96
tasks where only reviews with one star were considered
negative.

We executed the algorithm with parameters chosen
to illustrate the algorithm’s best non-trivial solution
(the trivial solution is when all tasks belong to the
same cluster). The matrix E is shown in the top-left
panel of Fig. 2, clearly there are two blocks each with
92 tasks, and corresponding exactly to the two ways
the labels were generated from product star-scores.
From E we also computed the matrix G satisfying
GTG = E. The matrix appears in the second panel
from the left of Fig. 2, where each column corresponds
to one of the tasks. To better visualize the result,
we display only the top four rows of the G matrix as
all other values are near zero. From the plot we ob-



Convex Multi-Task Learning by Clustering

0 50 100 150
0 50 100 150 1

1
0 0
50
1
100 Y
2
150
0 3
-1

0 5 10 15 20 25
0 5 10 15 20 25

1
0 0
1
0
2
) 3
-1

Figure 2: Results obtained by running on a sentiment
dataset with 32 domains and two thresholds (top panel
pair) and on a single domain dataset with three thresh-
olds (bottom panel pair). Each panel pair shows the
clustering matrix learned (E, left column) and its cor-
responding coefficients matrix (G, right panel).

serve that there are only two non-zero rows. The first
row is fixed to +1 across all tasks, while the second
row alternates between +1 and —1, corresponding to
the tasks in which only a score of one star is consid-
ered a negative review (i.e. most reviews are positive)
versus tasks in which only a score of five stars is con-
sidered a positive review. In other words, we have
g, € {(+1,+41,0...0),(+1,-1,...0)}. Thus, there
are two possible classifiers, one is f; + f5 (when most
reviews are positive) and the other is f; — f5 (when
most reviews are negative).

We present in Tab. 1 the features with highest (posi-
tive) weight and lowest (negative) weight for f; (two
left columns) and f, (two right columns). Clearly,
most of the ten features with highest weight contain
words with positive sentiment, e.g. best, love and great.
Additionally, more features with negative weights are
with negative sentiment than positive. Recall that the
actual classifiers are either, the sum of these two vec-
tors, which gives stronger bias towards positive label,
or the difference, which gives higher bias towards neg-
ative label. For example, in the former case the weight
of the word good is 0.22 — 0.15 = 0.07 > 0 (see third
and second columns, second line). On the contrary, in
the later case the weight of the same word, good, is now
—0.15 — 0.22 < 0. Similarly, the weight of the word
great is now 0.16 — 0.29 < 0 (third column, first line,
and first column third line). There are less words with
positive sentiment that have positive weights, such as
The best, I Love and FExcellent.
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We repeated the above experiment, but with a slightly
different setting. First, we took only reviews of a sin-
gle product (or domain) - namely shoes. Second, we
split the reviews into three sets and not two. In the
first set, as above, only instances with five stars were
associated with a positive review. In the third set,
also as above, only instances with one star were asso-
ciated with a negative review. Both sets are as before.
The second set had balanced labeling, reviews with
four or five stars were considered positive, while re-
views with one or two stars were considered negative.
The second set therefore overlaps with both the first
and the third sets. Finally, each of these groups was
partitioned randomly into ten sets. To conclude, here
we had 1 x 3 x 10 = 30 tasks, with three underlying
tasks. As before, the training set is of size 64, the test
of size 64 and validation set of size 32. Since we have
less tasks and all come from the same domain, we used
only features that appeared five times or more, ending
with 8,813 features.

The matrix E is shown in the left-bottom panel of
Fig. 2, clearly there are three blocks each with 10 tasks,
and corresponding exactly to the three ways the labels
were generated from product star-scores. Note that
the second task group (middle threshold) is similar to
the other two tasks in close to equal amount. Typical
value in the block of the first line and second column
is 0.68, and the third line and second column is 0.75.
(Typical value in the block of the first line and third
column is 0.02). That is, the algorithm detected that
the classification task based on the middle threshold
lies between the other tasks. This is further observed
in the matrix G shown in the right panel of Fig. 2.
The first two features of the vectors g, correspond-
ing to the three task types are, [0.69,0.73] , [1,0] and
[0.75,—0.67]. The weight vector for each task is a lin-
ear combination of f; and f, with the above weights.
All tasks are using the first vector f; with positive
weights. The first task adds the second vector, the
middle one ignores it, and third subtracts it. That is,
again, the task with middle threshold has about the
average classification vector of the other two tasks. Fi-
nally, the words of f, and f, appear in Tab. 2. As ex-
pected there are domain unique sentiment words (com-
fortable) as well as general words (great, love, good,
disappointed, not buy). Interestingly, There are no
features in f, with very low values (negative far from
zero). It is still under investigation.

7 Logistic regression

Our approach can be generalized to other loss meth-
ods, using the same steps detailed in Sec. 4. Specif-
ically, we derive our algorithm with the logistic loss
function [11], instead of the hinge loss used in SVM.
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fi(4) fi(-) fa(+) fa(-)

BEST (0.16) | NoT (-0.27) || GREAT (0.29) | 7 (-0.11)
LOVE (0.16) | coop (-0.15) || cooDp (0.22) | NEG_BUY (-0.11)
GREAT (0.16) | BETTER (-0.11) || Love (0.16) | !-! (-0.09)
THE-BEST (0.11) | DISAPPOINTED  (-0.10) || VERY (0.14) | NEG.! (-0.09)
! (0.09) | 7 (-0.10) || NICE (0.14) | NEG_EVEN  (-0.09)
EXCELLENT (0.07) | BAD (-0.09) || WELL (0.11) | WASTE (-0.09)
I-LOVE (0.07) | NO (-0.09) || BEST (0.17) | pO-NOT (-0.08)
PERFECT (0.07) | ! (-0.08) || MORE (0.10) | JUNK (-0.08)
AWESOME (0.07) | poTs (-0.08) || WORKS (0.09) | WORST (-0.08)
YOU-NOT (0.07) | PRETTY (-0.08) || PERFECT (0.09) | BAD (-0.08)

Table 1: features with highest (positive) weight and lowest (negative) weight for f; (two left columns) and f,
(two right columns) when running on multiple domains

fi(+) fi(=) fa(+)

GREAT (0.17) | NotT (-0.18) || NoT (0.15)
COMFORTABLE (0.16) | DISAPPOINTED (-0.06) || VERY (0.10)
! (0.13) | BACK (-0.05) || sHOE (0.10)
THEY-ARE (0.09) | OF-THE (-0.05) || sHOEs (0.07)
LOVE (0.09) | # (-0.05) || size (0.07)
WEAR (0.06) | UNCOMFORTABLE  (-0.05) || GooD (0.06)
WELL (0.05) | ON-THE (-0.05) || LIKE (0.06)
GOOD (0.05) | ORDERED (-0.04) || # (0.06)
VERY-COMFORTABLE ~ (0.05) | THEY-WERE (-0.04) || GREAT (0.05)
BEST (0.05) | NEG_BUY (-0.04) || cOMFORTABLE (0.05)

Table 2: features with highest (positive) weight and lowest (negative) weight for f; (two left columns) and f,

(right column) when running on a single domain. The negative words of f, were omitted as they had low weights

We begin with the general formulation, similar to (1)

N

1
min = ||F||2+C log(1 + exp(—(Fg, ) - X;y;
Py 2l ; 8( p(—(Fgy,) - xiyi))

st. g, €{0,1}%, |lgla=1 fort=1...T. (6)

Moving to the dual form [21] and applying the steps
depicted in Sec. 4 we obtain the primal-dual form,

(7)

minmax O(F,a)
E {a;}

st. a; €[0,C]) fori=1...N
E=0, Ec[0,1]"*T,
Et,tzl fOI’til...jj7

where we define H(a) = alog(a) + (C — a)log(C — a)
and,

O(E,a)=
1
£ Ero—Y H(a;)- gzai%‘yz‘yj (xi %) Bt
t,s [ %7

We solve the new formulation using methods detailed
in Sec. 5. The main difference is the computation of
the gradient. We call this variant which is based on
the logistic-loss asap-mt-lr and the one based on the
SVM is called asap-mt-svm.

71

8 Experiments

We evaluated our suggested approach in the context of
sentiment analysis using an extensive array of datasets.
We evaluated six algorithms all together. Our two
baselines are single task learning (STL) and indepen-
dent task learning (ITL). In STL all samples are con-
sidered to originate from a single learning task. We
learn a single SVM classifier, with a linear kernel, for
all samples. In ITL no task relation is modeled. A
single linear SVM classifier is learned for each task
independently of the other tasks. Gradient descent
was used to solve SVM’s objective. We evaluated
SHAMO [6] and GO-MTL [16], the former is closest in
spirit to our approach, while the latter has been shown
to achieve state-of-the-art results in a similar setting.

Our comparison includes two types of datasets - sin-
gle domain and multiple domain. In the single domain
dataset, all reviews originated from a single Amazon
category such as books. In the multiple domain, each
review may belong to one of a few categories. Within
each domain, the samples are split into multiple sub
tasks. The sentiment of each review is classified based
on a score threshold, as previously explained in Sec. 6,
and multiple threshold classification tasks may be in-
cluded in one dataset. The number of tasks in a single
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dataset equals: domains X splits x thresholds. We
summarize the structure of each dataset in Tab. 6.
Parameters of all algorithms are chosen using a devel-
opment split of the dataset, thereafter the same pa-
rameters are used when testing. Both GO-MTL and
ASAP-MT require two learning parameters, for the
matching ¢; and 5 norms. GO-MTL requires an ad-
ditional parameter of K for the number of expected
basis vectors, a hidden parameter in our method. The
number of iterations for learning GO-MTL can also be
tweaked and we select the best number of iterations us-
ing the development set. SHAMO requires the number
of clusters K and the learner parameter (SVM in our
case), while ITL and STL require only a single param-
eter each - the one of SVM. We report the average task
accuracy.

Tab. 3 summarizes the results of running on six do-
mains of the sentiment dataset, where each time only
a single domain, and two thresholds, are used. We
observe that STL performs worst, as it learns a single
model for all tasks, then SHAMO and ITL perform
about the same. ITL overfits as models are learned
with smaller amount of data, while SHAMO is non-
convex in nature. GO-MTL performs second best,
as was also observed previously [16]. Our algorithms,
ASAP-MT-SVM and ASAP-MT-LR, perform the best
on four out of the six domains, where the latter method
is slightly better than the former (the former obtains
better results on the development set, which suggests
that the difference in results is due to parameter se-
lection). Our algorithm groups tasks into clusters (as
SHAMO and GO-MTL), yet it is convex (as STL and
ITL), thus it combines the best of both worlds. Tab. 4
summarizes similar results for four thresholds. This
problem is harder, as there are four “super” tasks, and
not two as before. Indeed the accuracy values in this
table are in general lower than in the previous ones,
yet the trend remains, ASAP-MT obtains the best re-
sults in four out of six domains and with one additional
result on par with GO-MTL. Finally, Tab. 5 summa-
rizes the results of running on different variations of
the sentiment dataset, each containing multiple do-
mains, and the trend remains, STL is worst, then ITL
and SHAMO (slightly better), GO-MTL, and finally,
ASAP-MT-SVM and ASAP-MT-LR (best in two out
of three).

9 Summary

We proposed a multitask learning approach, that per-
forms both clustering of tasks and learning a model
per task. It can also be thought of as learning a
dictionary and constructing models by combining (a
small number of) dictionary elements. As opposed to
most similar models, it is convex. Our empirical study
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DOMAIN [GOMTL SHAMO ITL STL [MT-SVM MT-LR
BOOKS 75.3 72.9 75.3 65.9| 75.3 77.6
SHOES 75.5 72.4 74.5 63.3| 76.3 77.1
SOFTWARE | 77.9 76.0 75.0 62.5| 75.0 76.0
SPORTS 75.8 73.2 75.3 65.4| 77.3 76.3
TOYS 76.0 80.7 75.8 68.0| 75.0 75.5
VIDEOS 74.7 72.7 75.0 59.6| 75.5 75.8

Table 3: Average task accuracy when running on
sentiment datasets, with a single domain, and using
two thresholds. Six algorithms are compared: GO-
MTL [16], SHAMO [6], single task learning (STL),
independent task learning (ITL), as well as, ASAP-
MT-SVM and ASAP-MT-LR.

DOMAIN GOMTL SHAMO ITL STL |MT-SVM MT-LR
BOOKS 71.5 72.3 70.0 65.6| 71.9 72.7
SHOES 76.5 71.5 72.3 64.8| 74.4 76.9
SOFTWARE | 71.0 70.0 69.6 66.0| 74.2 74.2
SPORTS 75.2 73.8 72.7 64.8| 74.2 75.2
TOYS 75.6 71.5 74.8 64.6| 74.8 74.8
VIDEOS 71.0 71.3 69.2 59.6| 74.2 72.9

Table 4: Average task accuracy when running on sen-
timent datasets, with a single domain, and four thresh-
olds.

SUBSET | GOMTL SHAMO ITL STL |MT-SVM MT-LR
PAIR 72.6 73.5 71.2 66.0| 75.7 75.4
MEDIUM | 78.4 70.7 70.7 67.5| 76.7 76.7
LARGE 79.4 74.8 71.9 69.9| 77.0 79.5

Table 5: Average task accuracy when running on senti-
ment datasets with multiple domains. There are three
group types: pair (two domains), medium (6 domains)
and large (12 domains).

TYPE DOMAINS NSP NTH TASKS TRAIN TEST
TAB. 3 1 6 2 12 384 384
TAB. 4 1 3 4 12 240 480
PAIR 2 3 4 24 480 960
MEDIUM 6 3 4 72 1440 2880
LARGE 12 3 4 144 2880 5760

Table 6: Number of domains, splits, thresholds, tasks,
training and testing samples of the presented datasets.

showed that our method, ASAP-MT-SVM/LR, out-
performs state-of-the-art methods, such as GO-MTL
and SHAMO. We plan to derive generalization bounds
for our formulation, analyze the convergence proper-
ties of the algorithms, and develop formulations for
more complex problems.
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