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Abstract

Gaussian processes have been used in differ-
ent application domains such as classifica-
tion, regression etc. In this paper we show
that they can also be employed as a uni-
versal tool for developing a large variety of
Bayesian statistical hypothesis tests for re-
gression functions. In particular, we will use
GPs for testing whether (i) two functions are
equal; (ii) a function is monotone (even ac-
counting for seasonality effects); (iii) a func-
tion is periodic; (iv) two functions are propor-
tional. By simulation studies, we will show
that, beside being more flexible, GP tests
are also competitive in terms of performance
with state-of-art algorithms.

1 Introduction

Gaussian processes (GPs) have found widespread use
in machine learning, in different application domains
such as classification, regression etc. [O’Hagan and
Kingman, 1978, Neal, 1998, MacKay, 1998, Rasmussen
and Williams, 2006, Rasmussen, 2011, Gelman et al.,
2013]. The reason of such success can be attributed to
the great modeling flexibility of GPs. The aim of this
paper is to show that, because their flexibility, GPs
can also be employed as a universal tool for develop-
ing a large variety of Bayesian statistical hypothesis
tests. In particular, “as a proof of concept”, we will
show how GPs can be used for testing whether (i) two
functions are equal ; (ii) a function is monotone (even
accounting for seasonality effects); (iii) a function is
periodic; (iv) two functions are proportional (focus-
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ing on the proportionality of the intensity functions
of two counting processes). To develop such universal
tool, we follow a Bayesian estimation approach: any
decision is based on the posterior distribution. This
means that we place the GP as a prior distribution
on the unknown f and we determine the posterior dis-
tribution of f given the observations. Once we have
obtained the posterior distribution, we can perform
different hypothesis tests about f by simply asking dif-
ferent questions to the posterior. Besides these advan-
tages of GPs in terms of expressiveness and flexibility,
we show that our Bayesian estimation based equality,
monotonicity, periodicity and proportionality tests are
competitive in terms of power when compared with the
sate-of-art algorithms. After briefly introducing GPs,
we illustrate how to theoretically devise these tests by
exploiting the properties of GPs and Bayesian decision
making. Then, we assess the performance (power) of
these tests through simulation studies. For the equal-
ity test, we compare our GP test with two nonparamet-
ric frequentist methods [Neumeyer et al., 2003, Pardo-
Fernández et al., 2007] and with a Bayesian test based
on regression splines [Behseta and Kass, 2005], obtain-
ing, on average, better accuracy. For the monotonic-
ity test, we compare the GP based method with four
non-Bayesian methods: [Zheng, 1996, Bowman et al.,
1998, Baraud et al., 2005, Akakpo et al., 2014] and
three Bayesian methods (based on Bayes factors) [Sa-
lomond, 2014, Dunson, 2005, Scott et al., 2013]. Our
simulation study shows that our GP method achieves
the same average accuracy of the best among these al-
gorithms on standard benchmark functions. Moreover
we will show that, while the aforementioned methods
for monotonicity estimation have not been designed to
account for the presence of seasonality (i.e., a periodic
disturbance that affects the monotonic component),
thanks to the flexibility GPs, our monotonicity test
can be modified to account for seasonality disturbance.
We develop a this method that removes the seasonality
effects and test the monotonicity of the remaining non-
seasonal component with the classical Mann-Kendall
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test for monotonic trend with seasonality correction
(KS), obtaining very similar performance, although
KS requires the period of the seasonal component to be
known, while our GP method estimates it from data.
For the periodicity test, we compare the GP test for
period detection with the classical Fisher’s significance
test for periodic components. Also in this case we
prove by simulation that our method is competitive.
Finally, we show that the GP test for the proportion-
ality of intensity functions has much larger accuracy
than the traditional test based on the Schoenfeld resid-
uals [Grambsch and Therneau, 1994].

2 Gaussian Process

Consider the regression model

y = f(x) + v, (1)

where x ∈ X ⊆ R, f : R → R and v ∼ N(0, σ2),
and assume that we observe the training data (xi, yi)
for i = 1, . . . , n. Our goal is to employ these obser-
vations to make inferences about the unknown func-
tion f . Following the Bayesian estimation approach,
we place a prior distribution on the unknown f , and
employ the observations to compute the posterior dis-
tribution of f ; finally we use this posterior to make
inferences about f . Since f is a function, the Gaussian
process is a natural prior distribution for f [MacKay,
1998, Rasmussen and Williams, 2006]. Let GP (0, kθ)
denote a GP with zero mean function and covariance
function kθ : R × R → R+, which depends on a vec-
tor of hyperparameters θ. If f ∼ GP (0, kθ), then,
for any fixed m points x∗ = [x∗

1, . . . , x
∗
m]T , the vector

f∗ = [f(x∗
1), . . . , f(x

∗
m)]T is Gaussian distributed:

p(f∗|x∗, θ) = N(f∗;0,Kθ(x
∗,x∗)), (2)

with zero mean and covariance matrix Kθ(x
∗,x∗) =

[kθ(x
∗
i , x

∗
j )]ij for each i, j = 1, . . . ,m. Consider a set

of n inputs x = [x1, . . . , xn]
T and a vector of noisy

output data y = [y1, . . . , yn]
T . Based on the training

data (xi, yi) for i = 1, . . . , n, and given a test input
x∗ , we wish to find the posterior distribution of f∗ =
[f(x∗

1), . . . , f(x
∗
m)]T . From (1) and the properties of

the Gaussian distribution, it follows that [Rasmussen
and Williams, 2006, Sec. 2.2]:
[

y

f∗

]

∼ N

(

0,

[

Kθ(x,x) + σ2I Kθ(x,x
∗)

Kθ(x
∗,x) Kθ(x

∗,x∗)

])

. (3)

Hence, the posterior distribution of f∗ is

p(f∗|x∗,x,y, θ, σ2) = N(f∗; µ̂
θ
(x∗|x,y), K̂θ(x

∗,x∗|x)), (4)

with mean and covariance given by:

µ̂
θ
(x∗|x,y) = Kθ(x

∗,x)(Kθ(x,x) + σ2I)−1y, (5)

K̂θ(x
∗,x∗|x) = Kθ(x

∗,x∗) (6)

−Kθ(x
∗,x)(Kθ(x,x) + σ2I)−1Kθ(x,x

∗).
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Figure 1: Function f(x) = x
5 + 1

10cos(6πx) (blue) and
its noisy observations yi = f(xi) + vi (red) with xi =
i

300 , vi = N(0, 0.12), for i = 1, . . . , 300.

For ease of notation, hereafter we will omit θ, σ2

in p(f∗|x∗,x,y, θ, σ2). Once we have computed
p(f∗|x∗,x,y) we can make any inference about f∗.

2.1 Kernels, composition and marginalization

GP models use a kernel to define the covariance be-
tween any two function values: Cov(f(x), f(x∗)) =
kθ(x, x

∗). The kernel specifies which functions are
likely under the GP prior. Commonly used kernels
families include the squared exponential (SE), peri-
odic (PE), constant-linear-quadratic (QD):
QD: kθ(x1, x2) = s0 + s1x1x2 + s2x

2
1x

2
2,

SE: kθ(x1, x2) = σ2
s exp(−0.5(x1 − x2)

2/ℓ2s),
PE: kθ(x1, x2) = σ2

p exp(−2 sin(π(x1 − x2)/pe)
2/ℓ2p),

with hyperparameters si > 0, σs, ℓs > 0 and, respec-
tively, σp, ℓp > 0 with period pe. Positive semidefi-
nite kernels (i.e. those which define valid covariance
functions) are closed under addition and multiplica-
tion. This allows one to create richly structured and
interpretable kernels by kernel composition. In this
paper, we will focus on kernel summation. By sum-
ming kernels, we can model the data as a superposi-
tion of independent functions. For instance, in time se-
ries models, sums of kernels can express superposition
of different processes, possibly operating at different
scales. A typical example is a monotonic increasing
time series with seasonal variation, in which a mono-
tonic (linear) increasing function fa is superposed to a
periodic function fb, as shown in the example in Fig. 1.
To model a superposition of two (or more) functions,
we can assume two (or more) independent GP priors
for fa, fb, i.e., fa ∼ GP (0, ka

θa
), fb ∼ GP (0, kb

θb
), then

f = fa + fb ∼ GP (0, kc
θc
) = GP (0, ka

θa
+ kb

θb
) with

θc = (θa, θb). Moreover, assume we have determined
the posterior distribution of f but that we are inter-
ested on only, say, phenomenon fa, we can consider
the fb component as a disturbance and evaluate the
predictive distribution for fa only, which is:

p(f∗a |x
∗,x,y) = N(f∗a ; µ̂a(x

∗|x,y), K̂a(x
∗,x∗|x)), (7)

75



Running heading author breaks the line

0.2 0.4 0.6 0.8 1.0

-0.2

-0.1

0.1

0.2

0.3

0.4

Figure 2: Estimate of the quadratic or periodic com-
ponent for the example in Fig. 1.

with mean and covariance given by:

µ̂a(x
∗|x,y) = Ka

θa
(x∗,x)(Kc

θc
(x,x) + σ2I)−1y, (8)

K̂a(x
∗,x∗|x) = Ka

θa
(x∗,x∗) (9)

−Ka
θa
(x∗,x)(Kc

θc
(x,x) + σ2I)−1Ka

θa
(x,x∗).

Fig. 2 shows the mean µ̂a(x
∗|x,y) (µ̂b(x

∗|x,y) if in-
stead we focus on the periodic component) for the ex-
ample of Fig. 1, when ka

θa
is the quadratic kernel and

kb
θb

the periodic kernel.

2.2 Determining the hyperparameters

Once we have selected a kernel or a particular ker-
nel composition, we must determine the values of the
hyperparameters θ and the variance σ2. The proper
Bayesian procedure is to choose a prior for θ and σ2

and then determine the posterior distribution of the
quantities of interest. For instance, inferences on f∗

can be carried out by marginalizing out θ and σ2:

p(f∗|x∗,x,y) =

∫

p(f∗|x∗,x,y, θ, σ2)dP (θ, σ2).

No closed form solution exists for p(f∗|x∗,x,y) or for
the posterior of the hyperparameters and, therefore,
inferences must be computed numerically by Markov
Chain Monte Carlo methods (MCMC). The conver-
gence of MCMC methods can be quite slow when the
dimension of θ is high and, therefore, when we are
not interested in the posterior distribution of θ, σ2,
we can approximate the marginal of f∗ with (4) by
using the maximum a-posteriori (MAP) estimate for
the values of θ, σ2. This means that instead of per-
forming MCMC we maximize w.r.t. θ and σ2 the joint
marginal probability of y, θ, σ2, whose logarithm can
be computed analytically [Rasmussen and Williams,
2006, Ch.2]:

L(y, θ, σ2|x) = − 1
2y

T (Kθ(x,x) + σ2I)−1y

− 1
2 log |Kθ(x,x) + σ2I|

−n
2 log 2π + log p(θ, σ2).

(10)

The values of θ, σ2 can then be determined by maxi-
mizing this score. Unfortunately, optimizing over pa-
rameters is not a convex optimization problem, and the

space can have many local optima. To tackle this prob-
lem, we have used a global search algorithm based on
the algorithm developed by Ugray et al. [2007] and im-
plemented in MATLAB [2013] by the function “Glob-
alSearch”.

3 Equality test

An equality test is used to decide whether two regres-
sion functions are equal. In particular, our aim is to
compare two regression functions f1 and f2 given the
two independent samples (x(1),y(1)) and (x(2),y(2))
of, respectively, n1 and n2 observations. Nonpara-
metric frequentist tests for the equality of regression
curves are described in [Neumeyer et al., 2003, Pardo-
Fernández et al., 2007], while a Bayesian test based on
regression splines is presented in [Behseta and Kass,
2005]. We assume that the covariates x(1) and x(2)

have the same support X . Our aim is to develop an
equality test using GPs. A way to devise such test is to
assume the same GP prior GP (0, kθ) for the two func-
tions f1 and f2 and compute the posterior marginal
GPs p(f∗1 |x

∗,x(1),y(1)) and p(f∗2 |x
∗,x(2),y(2)) at the

n = n1 + n2 test inputs x∗ = [x(1),x(2)], which are
Gaussian and given by (4). In this way, the equal-
ity of the two functions is tested at the covariates of
the observations, that is, where we have the experi-
mental evidence. Note that the two posteriors share
the same hyperparameters and test inputs. The hy-
perparameters are determined by the MAP approach
described in Section 2.2. Assuming that f1 and f2
are independent Gaussian processes, we have that
p(y(1),y(2)|f1, f2) = p(y(1)|f1)p(y(2)|f2) and thus the
logarithm of the joint marginal of y(1),y(2), θ, σ2 is
equal to L(y(1), θ, σ2|x(1)) +L(y(2), θ, σ2|x(2)), where
L(y, θ, σ2|x) is given in (10). Let us denote the
means of the posterior distributions of f∗1 and f∗2
as µ̂

∗(1), µ̂
∗(2) and their covariance matrices as

K̂∗(1), K̂∗(2). Since the difference of two Gaus-
sian variables are Gaussian, it follows that the pos-
terior of ∆f∗ = f∗1 − f∗2 is also Gaussian with mean

∆µ̂
∗ = µ̂

∗(1) − µ̂
∗(2) and covariance matrix K̂∗

∆ =

K̂∗(1) + K̂∗(2). Then, we say that the two functions
are equal with posterior probability 1−α if the credi-
ble region for ∆f∗ includes the zero vector or, in other
words, if:

(∆µ̂
∗)T (K̂∗

∆)
−1∆µ̂

∗ ≤ χ2
ν(1− α), (11)

where χ2
ν(1−α) is the (1−α)-quantile of a Chi-squared

distribution with ν degrees of freedoms and ν is the
number of positive eigenvalues of K̂∗

∆. Indeed, as the
number n of test inputs is likely to be considerably
larger than the dimensionality of the covariance func-
tion, the matrix K̂∗

∆ is not full rank. Thus, we de-
compose it as PDPT , where D is the diagonal matrix
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Figure 3: Left: functions f1 (blue) and f2 (red) and
corresponding noisy observations. Right: estimated
credible region for f1 − f2 (dashed lines) and its true
value (continuous line).

of the eigenvalues λ1, . . . , λn (sorted in descending or-
der), and retain only the sub-matrices PνDνP

T
ν cor-

responding to the eigenvalues λ1, . . . , λν which verify
the condition λν+1/

∑n
i=1 λi < ǫ, where ǫ is a small,

positive constant. For the experiments of this paper
we have used ǫ = 0.01.

Fig. 3 shows the estimated credible region of f1 − f2
when f1(x) = x and f2(x) = x + sin(2πx) and n1 =
n2 = 100. As the region does not include the zero
function, we can conclude that f1 and f2 are different.

4 Monotonicity test

A continuously differentiable function f : X → R on a
closed interval X is said to be monotonically increas-
ing (or decreasing) in X if fd(x

′) = df
dx
(x′) > 0 (or

df
dx
(x′) < 0) for each x′ ∈ X . Without loss of gener-

ality, we will focus on monotonically increasing func-
tions. Our goal is to employ the training data to test
the positive monotonicity of f based on its first deriva-
tive. Monotonicity tests based on the derivative have
been proposed by [Hall and Heckman, 2000, Ghosal
et al., 2000]. Assuming as prior on f the Gaussian
Process GP (0, kθ), we compute the posterior of df

dx

given the training data and test inputs. Since differ-
entiation is a linear operator, the derivative of a GP
is another GP, whose mean and covariance functions
can be computed analytically [Rasmussen, 2003, Solak
et al., 2003, Riihimäki and Vehtari, 2010]:

Theorem 1. Assume that f ∼ GP (0, kθ) and that kθ
is differentiable, then it follows that

p(f∗d |x
∗,x,y)=N

(

f∗d ; µ̂θ
(x∗|x,y), K̂θ(x

∗,x∗|x)
)

(12)

where f∗d = [ df
dx
(x∗

1), . . . ,
df
dx
(x∗

m)]T ,

µ̂θ(x
∗|x,y) = Kd

θ(x
∗,x)(Kθ(x,x) + σ2I)−1y, (13)

K̂θ(x
∗,x∗|x) = Kd

θ
(x∗,x∗) (14)

−Kd
θ
(x∗,x)(Kθ(x,x) + σ2I)−1Kd

θ
(x∗,x)T,

with Kd
θ
(x∗,x) = [ ∂

∂xa

kθ(xa, xj)
∣

∣

xa=x∗

i

]ij , and

Kd
θ
(x∗,x∗) = [ ∂2

∂xa∂xb

kθ(xa, xb)
∣

∣

xa=x∗

i
,xb=x∗

l

]il for

i, l = 1, . . . ,m and j = 1, . . . , n. �

Thus, we can use GPs to make inferences about deriva-
tives and in particular test the monotonicity of f on
x∗ = x (again, the test is performed at the observa-
tions covariates). First, we define a loss function for
each decision:

L (f∗d , a) =

{

C0I{f∗
d
>0} if a = 0,

C1I{f∗
d
≯0} if a = 1.

(15)

where the notation f∗d > 0 (f∗d ≯ 0) indicates that all
(not all) values in f∗d are larger than 0, and where C0

and C1 are the losses we incur, respectively, by wrongly
taking action a = 0 (i.e., declaring that f∗d ≯ 0 when
actually f∗d > 0), and by wrongly taking action a = 1
(i.e., declaring that f∗d > 0 when actually f∗d ≯ 0).

Second, we compute the expected value of this loss
given the training data and the test inputs x∗. The
expected loss is given by:

E [L (f∗d , a)] =

{

C0P [f∗d > 0|x∗,x,y] if a = 0,

C1P [f∗d ≯ 0|x∗,x,y] if a = 1,

where we have exploited the fact that E[I{A}] = P [A].
Thus, we choose a = 1 if

C0P [f∗d > 0|x∗,x,y] ≤ C1P [f∗d ≯ 0|x∗,x,y]

equiv. P [f∗d > 0|x∗,x,y] > C1

C1+C0

,
(16)

or a = 0 otherwise. In the above derivation, we
have exploited the fact that P [f∗d ≯ 0|x∗,x,y] = 1 −
P [f∗d > 0|x∗,x,y]. When the last inequality in (16) is
satisfied, we can declare that fd > 0 with probability

C1

C1+C0

. For comparison with the traditional test we

may take C1

C0+C1

= 1 − α with α = 0.05; notice how-
ever that, while in the traditional tests a principled
way of choosing α is lacking, in this GP based test the
use of a Bayesian approach allows setting the decision
rule in a more informed way based on the losses C0 and
C1 expected for Type I and II errors. The probability
P [f∗d > 0|x∗,x,y] can be computed by Monte Carlo
(MC) sampling many vectors f∗d from (12) and com-
puting the proportion of runs in which the condition
f∗d > 0 is satisfied.

4.1 Accounting for Seasonality

In time series analysis, we must often deal with sea-
sonality effects, i.e., the function of interest may be
the superposition of a monotonic and a periodic func-
tion, (e.g., x/5+(1/10) cos(6πx)). This composition is
clearly non-monotonic. However, we may interpret the
periodic function as a seasonal component, i.e., a pe-
riodic disturbance that affects the non-seasonal com-
ponent (in the example x/5). In these cases, it is of
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Figure 4: Samples of f∗d for the non-periodic compo-
nent (x/5) of the example of Fig. 1.

interest to develop a statistical method that removes
the seasonality effects and test the monotonicity of the
remaining non-seasonal component. The development
of such test is immediate with GPs. We can simply
include a periodic kernel in the GP, i.e., f = fa + fb
with fa ∼ GP (0, ka

θa
) and fb ∼ GP (0, kb

θb
) (where kb

θb

is the periodic kernel). Then, we determine the poste-
rior distribution of the function f , remove the periodic
component fb as a disturbance and evaluate the poste-
rior distribution of the non periodic components only,
i.e., fa, as discussed at the end of Section 2.1. Fi-
nally, we use this posterior to perform the monotonic-
ity test on the non seasonal component. Fig. 4 shows
samples of f∗d (with x∗ = x) for the example of Fig.
1, when ka

θa
is the quadratic kernel, kb

θb
the periodic

kernel. The periodic component, considered a distur-
bance, has been removed, and thus all the derivatives
of f∗d are constant and distributed around 1

5 , that is
the actual derivative of the non seasonal component
fns(x) = x

5 . As all derivatives are positives, we can
declare with probability ≈ 1 that fns(x) is monotone
increasing in [0, 1].

5 Periodicity test

In this case our goal is to test if a function f : X → R

on a closed interval X (w.l.o.g. we can take X = [0, 1])
is periodic based on noisy observations of f . We can
detect the periodicity of the function only if its period
is less than half of the range of x, that is 0.5 as X =
[0, 1]. To perform this test, we use a GP with only
the periodic kernel. By defining a loss function similar
to that in Section 4, we declare that the function is
periodic if

P [pe < 0.5|x,y] ≥ C1

C1+C0

,

that is, if the posterior probability that the period
hyperparameter pe of the periodic kernel is less than
0.5 is greater than C1

C1+C0

. The posterior of the pe-
riod pe can be obtained by MCMC sampling from the
posterior obtained from the joint exp[L(y, θ, σ2|x)],
where L(y, θ, σ2|x) is given in (10). Fig. 5 shows
the posterior distribution of pe for the case in which
the observations are generated according to yi =
(1/10)cos(6πxi) + vi with xi = i/100, vi = N(0, 0.22),

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

Figure 5: Posterior distribution of pe computed on a
grid of 100 elements.

for i = 1, . . . , 100, and we use a uniform prior in [0, 1]
for pe and weak priors for the other parameters of the
periodic kernel. The maximum of pe is on 1/3 which
is the true period of the function.

6 Proportional intensity test

In this case we are interested in testing the propor-
tionality of the intensity function of counting processes
based on counts data generated by them. Let us as-
sume that the data are generated by a Poisson process
whose intensity λ(t, x) is a function of time t and of
a covariate x. Then, the number of counts y in the
time interval [t, t+∆t] has a Poisson distribution with

parameter Λ(t, x) =
∫ t+∆t

t
λ(τ, x)dτ . The proportion-

ality assumption, which is widely used to model λ(t, x),
states that x has a multiplicative effect on the intensity
and implies that

Λ(t, x) = Λ0(t)e
f(x) (17)

where Λ0(t) is a baseline function representing the time
dependence, whereas f(x) represents the dependence
on the covariate x. Proportional intensity is a strong
assumption which is not always necessarily reason-
able and needs to be checked. Popular proportional
intensity tests are based on the Schoenfeld residuals
[Grambsch and Therneau, 1994]. Here we focus on the
case where x is a categorical variable with two possi-
ble values x1 and x2 and we test whether the intensity
functions λ1(t) = λ(t, x1) and λ2(t) = λ(t, x2) are pro-
portional. This assumption implies the equality of the
derivatives of f1(t) = log[Λ1(t)] and f2(t) = log[Λ2(t)],
since from (17) we have:

d[log Λ1(t)− log Λ2(t)]

dt
=

d[f(x1)− f(x2)]

dt
= 0.

Then, to test the proportionality assumption, we as-
sume the same GP prior for f1(t) and f2(t) and com-
pute the posteriors given the associated counts, re-
spectively, y(1) and y(2), observed for each time bin
[ti, ti + ∆t], i = 1, . . . , n. As the likelihood of a
count data yi is not Gaussian but Poisson with pa-
rameter exp(f(ti)), conjugacy is lost and the posterior
distribution has to be obtained either by approxima-
tion (Laplace method or Expectation propagation) or
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MCMC methods [Rasmussen and Williams, 2006]. We
focus on the Laplace method that uses a Gaussian ap-
proximation of the posterior p(f |x,y) around its max-

imum f̂∗, thus recovering conjugacy as an approxima-
tion. The posterior mean and covariance matrix ob-
tained using the Laplace method are

µ̂θ(x
∗|x,y) = Kθ(x

∗,x)Kθ(x,x)
−1 f̂∗, (18)

K̂θ(x
∗,x∗|x) = Kθ(x

∗,x∗)

−Kθ(x
∗,x)(Kθ(x,x) +W−1)−1Kθ(x,x

∗),

where W = −∇∇ log p(y|f). As shown in Section 4,
the posterior distribution of the derivative of f1(t) and
f2(t) is obtained by using Kd

θ
(x∗,x∗) and Kd

θ
(x∗,x)

instead of Kθ(x
∗,x∗) and Kθ(x

∗,x) in (18). Finally,
the equality test for the derivatives is performed as
described in Section 3. The procedure can be ex-
tended to deal with continuous covariates, based on
the fact that the proportionality assumption implied

that ∂2[log Λ(t,x)]
∂t∂x

= 0 , as follows from (17).

7 Experiments

7.1 Equality test

In this section we study the behaviour of the GP-based
equality test by means of a simulation study taken
from Neumeyer et al. [2003]. Here n1 = n2 = 50 data
are sampled from the models

y(1) = f1(x
(1)) + v1; y(2) = f2(x

(2)) + v2,

where x(1) and x(2) are uniformly distributed in [0, 1],
v1,v2 are Gaussian noises with variances σ2

1 = 0.25
and σ2

2 = 0.5, respectively, and for f1 and f2 nine
benchmark cases are considered:

i f1(x) = f2(x) = 1,
ii f1(x) = f2(x) = ex,
iii f1(x) = f2(x) = sin(2πx),
iv f1(x) = 1, f2(x) = 1 + x,
v f1(x) = ex, f2(x) = ex + x,
vi f1(x) = sin(2πx), f2(x) = sin(2πx) + x,
vii f1(x) = 1, f2(x) = 1 + sin(2πx),
viii f1(x) = ex, f2(x) = ex + sin(2πx),
ix f1(x) = sin(2πx), f2(x) = 2 sin(2πx).

To limit the number of hyper-parameters to be esti-
mated in the GP regression, as we are not interested in
accurate estimates of the functions f1 and f2, we have
used the square exponential kernel alone. The hyper-
parameters have been estimated using the MAP ap-
proach with the weak prior G(σ2

s ; 2, 1/2)G(ℓs; 2, 1/2),
where G(x;α, β) is the pdf of a Gamma distribution
with mean α/β and variance α/β2. The simulations
results for the GP test are shown in Table 1 (aver-
aged over 1000 MC runs) and compared against those

of three frequentist tests: the test K
(2)
N in Neumeyer

et al. [2003], and the tests T 1
CM and T 2

CM in Pardo-
Fernández et al. [2007]. We have directly implemented
the T 1

CM and T 2
CM methods, and used, instead, the re-

sults in Neumeyer et al. [2003] for the K
(2)
N method.

Results show that the GP method is calibrated under
the null hypothesis (cases i,ii,iii) and, on average, is
the most accurate. The GP test always outperforms
the T 2

CM method. In cases iv, v and vi it has power

less than or similar to the K
(2)
N and T 1

CM methods;
however these two methods, perform rather poorly in
situations vii, viii and ix, where they are largely out-
performed by the GP test.

K
(2)
N T 1

CM T 2
CM GP

i 94.8 94.8 95.6 98.8
ii 94.9 96.0 96.9 97.0
iii 95.1 96.5 95.8 98.1
iv 95.0 96.3 85.8 95.4
v 94.8 95.4 85.2 95.0
vi 93.2 93.3 72.6 89.0
vii 57.4 11.7 81.4 95.2
viii 61.9 14.1 84.1 97.5
ix 51.3 7.0 51.0 98.6

av 81.04 67.23 83.15 96.1

Table 1: Percentage of MC runs in which the functions

were correctly classified by the K
(2)
N , T 1

CM , T 2
CM and

GP equality tests with α = 0.05. Last row reports the
average correct classification rate across all 9 cases.

To provide comparison with a Bayesian approach, we
consider the simulation study carried out in Behseta
and Kass [2005] using a test based on Bayesian regres-
sion adaptive splines (BARS) and compare the results
with those obtained by the GP test in the same situa-
tions. The data y(1) and y(2) are in the form of counts
on 10ms time bins of events generated by a Poisson
processes with intensity functions

x λ1(t) = rN(t; 47, 72); λ2(t) = rN(t; 47, 72),
xi λ1(t) = rN(t; 47, 72); λ2(t) = rN(t; 57, 72),
xii λ1(t) = rpχ2(t; 40); λ2(t) = rN(t; 57, 72).

where r is a positive constant, pχ2(t;κ) is the pdf
of a Chi-squared distribution with κ degrees of free-
dom and where the intensities, means and variances
are given, respectively, in events/s, ms, and ms2.
We assume a GP prior with square exponential ker-
nel and a weak prior G(σ2

s ; 2, 1/2)G(ℓs; 2, 1/2) on the
hyper-parameters, and use the Laplace approximation
to obtain the posterior distribution of the functions
f1(t) = logλ1(t) and f2(t) = logλ2(t). Table 2 com-
pares the rejection probabilities evaluated over 1000
MC runs for BARS and GP test in situations x, xi
and xii for two values of r. We have not directly im-
plemented the BARS test, but reported the results in
Behseta and Kass [2005]. The results for situation x
are not presented in the original paper, but as the test
is adjusted to have size α = 0.05, we expect the rejec-
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tion probabilities in this case to be very close to the
nominal value. Results show that the GP test is very
conservative under the null hypothesis (case x), as its
type I error is much smaller than α, and that under the
alternative hypothesis (cases xi and xii) it has equal or
better power than the BARS test.

x xi xii
BARS - 82|91 98|99
GP 100|100 82|100 100|100

Table 2: Percentage of MC runs in which the functions
were correctly classified BARS and GP equality tests
with α = 0.05 for r = 30|50.

7.2 Proportional intensity test

In this section we evaluate the behavior of the propor-
tional intensity test when data are generated based on
the models x, xi and xii in Section 7.1. In Table 3
the results of the GP test are compared with those
obtained with the Schoenfeld residuals test [Gramb-
sch and Therneau, 1994] implemented by the cox.zph
function in the R package survival (hereafter denoted
as ZPH). Like in the equality test with count data, the
GP test is very conservative under the null hypothesis
(case x). On the other side, the GP test outperforms
the ZPH test when the alternative hypothesis is true
(cases xi and xii).

x xi xii
ZPH 94|96 17|36 44|73
GP 100|100 73|99 100|100

Table 3: Percentage of MC runs in which the functions
were correctly classified by ZPH and GP test with α =
0.05 for r = 30|50.

7.3 Monotonicity test

This section reports the results of a simulation study
on eleven test functions that were used in previous
works as benchmarks:

g1=4(x− 1
2
)3I{x≤0.5}+0.1(x− 1

2
)− 1

4
exp(−250(x− 1

4
)2),

g2 = x
10
, g3 = − 1

10
exp(−50(x− 1

2
)2),

g4 = 1
10

cos(6πx), g5 = x
5
+ g3(x),

g6 = x
5
+ g4(x), g7 = x+ 1− 1

4
exp(−50(x− 1

2
)2),

g8 = x2

2
, g9 = 0,

g10 = x+ 1, g11 = x+ 1− 9
20

exp(−50(x− 1
2
)2).

Functions g2, g8, g10 are monotone increasing, while
all the other functions are non-monotone, see Fig.
6. Following [Scott et al., 2013, Akakpo et al., 2014,
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Figure 6: From left to right g1, g3, g4, g5, g6, g7, g11.

Salomond, 2014], the observations have been gener-
ated according to the model yi = g(xi) + vi, with
n = 100 equally spaced x values on (0, 1] and the vi
are i.i.d. Normal variables with zero-mean and stan-
dard deviation 0.1. We have generated 100 datasets
for each of the eleven test functions and compared
our GP monotonicity test (with α = 0.05) against
the results of seven alternative methods that previ-
ously appeared in literature. These methods are four
Bayesian algorithms denoted with S1: the method
from Salomond [2014], S2: smoothing spline test [Scott
et al., 2013], G: Gaussian regression spline-based test
[Scott et al., 2013], M : regression-spline test with
method-of-moments priors [Scott et al., 2013] and
three frequentist methods, U : U-test [Zheng, 1996],
B: the test from Baraud et al. [2005], A: the test
from Akakpo et al. [2014] We have not directly im-
plemented these methods but compared the perfor-
mance of our test with the results reported in [Scott
et al., 2013, Tab.1] for the same simulation setting.
For the frequentist tests, Scott et al. [2013] calcu-
lated a p-value under the null hypothesis of mono-
tonicity, and rejected the null whenever p ≤ po. For
the Bayesian tests, they rejected the null hypothesis
of monotonicity whenever the Bayes factor in favor of
a non-monotone function exceeded a critical value bo.
The thresholds po, bo were selected so that the frequen-
tist and Bayesian tests are calibrated when g = g9
(the zero function). Our GP method has been im-
plemented using the quadratic and square exponential
kernels, i.e., f = f1 + f2 with f1 ∼ GP (0, kQD) and
f2 ∼ GP (0, kSE). The hyperparameters have been es-
timated using the MAP approach with the following
weak prior

∏

i TN(si; 1, 5
2)TN(σ2

s ; 7, 5
2)TN(ℓs; 7, 5

2),
where TN(x;µ, σ2) is the pdf of a truncated Gaussian
distribution on R+. This prior penalizes the complex-
ity of the model as it assumes a length-scale for the SE
kernel much larger than the range of x ∈ (0, 1]. Thus,
a-priori the contribution of the SE kernel component
is reduced to an approximately constant term. The
simulation results are shown in Table 4. The results
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of our method are in the last column (GP). Looking
at the results for g9, it is evident that our GP test
with a weak prior and performed with α = 0.05 is au-
tomatically calibrated for the zero function. Our GP
test performs much better than the other tests on the
difficult function g3 (whose single oscillation is masked
by the noise). Conversely, it is not very powerful on
g8, as it cannot efficiently detect the monotonicity of
g8 close to zero at this level of noise. However, overall,
our GP based test obtains the same average accuracy
of the best method (the Gaussian regression spline-
based test).

S1 S2 G M U B A GP
g1 19 99 100 99 59 6 9 100
g2 83 72 74 63 59 64 33 73
g3 51 34 35 49 59 53 43 94
g4 73 80 91 98 0 92 92 99
g5 56 95 85 90 99 24 25 79
g6 86 96 99 100 34 77 75 92
g7 13 92 91 47 16 1 4 85
g8 98 80 93 93 41 100 100 41
g9 96 98 95 95 99 97 94 96
g10 99 99 97 99 28 100 99 99
g11 100 100 99 99 100 71 8 100

Av 70 86 87 85 54 62 60 87

Table 4: Percentage of MC runs in which the func-
tion was correctly classified by each monotonicity test.
Last row reports the average correct classification rate
across all 11 test functions.

7.3.1 Seasonality

The function g6 = x/5+(1/10) cos(6πx) is clearly non-
monotone, being the superposition of a linear and a
periodic function. To test for the monotonicity of its
non-periodic component we add a periodic Kernel to
the quadratic one used in the previous section, i.e.,
f = f1 + f2 with f2 ∼ GP (0, kPE); we assume the
prior TN(σ2

p; 7, 5
2)TN(ℓp; 7, 5

2)Unif(pe; 0, 1) for the
hyperparameters of the periodic kernel. Then, we de-
termine the posterior distribution of the function f
and retain non periodic components only, i.e., f1, the
periodic component f2 being a disturbance. Finally,
we employ this posterior to perform our monotonicity
test. Table 5 reports the accuracy of the monotonic
test for the functions g6 (monotonic without the sea-
sonal component) and g9+g4 (non monotonic without
the seasonal component) and compares it with that
of the Mann-Kendall trend test (KS) with seasonality
adjustment [Mann, 1945]. For fair comparison with
KS, which is a trend test, we have included only the
quadratic component in the GP kernel and not the
SE component which models local oscillations (such
as those of g1 or g5) which contradict monotonicity
but not the assumption that the function has a trend.
It can be verified that GP has similar performance

(sometimes better) as KS (which assumes that the pe-
riod is known).

σ KS GP
g6 0.1|0.2 100|70 100|81
g4 0.1 98 96

Table 5: Percentage of MC runs in which the function
was correctly classified by each trend test.

7.4 Periodicity test

In this case the goal is to test whether the function
of interest is periodic. We compare our GP method
described in Section 5 with the well known Fisher’s
significance test for periodic components [Fisher, 1929,
Percival, 1993, Wichert et al., 2004]. The simulations
results are shown in Table 6 for a periodic and non
periodic function under different levels of noise. Also
in this case, the performance of GP is high.

σ Fisher GP
g9 0.1 96 100
g4 0.1|0.2 100|39 96|35

Table 6: Percentage of MC runs in which the function
was correctly classified by each periodicity test.

8 Conclusions

We have proposed a novel Bayesian method based on
Gaussian Processes (GP) for performing hypothesis
tests on regression functions. The advantage of the
Bayesian approach is that, once we have obtained the
posterior distribution of the regression function f , we
can perform different hypothesis tests about f by sim-
ply asking different questions to the posterior. This
has allowed us to develop tests for equality, mono-
tonicity (which can also take into account seasonality),
periodicity and proportionality of regression functions.
We have evaluated the performance of our GP method
against state-of-art algorithms and shown that it is
very competitive. We plan to use this approach to im-
plement other tests for regression functions, time series
and spatial statistics.
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