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SUPPLEMENTARY MATERIAL:
Sparse Solutions to Nonnegative Linear Systems and Applications

A Auxiliary lemmas

We use the following technical lemmas in the proof.

Lemma A.1. Let δ > 0, and f(t) := (1 + δ)t − 1. Then for any t1, t2 ≥ 0, we have

f(t1) + f(t2) ≤ f(t1 + t2).

Proof. The proof follows immediately upon expansion:

f(t1 + t2)− f(t1)− f(t2) =
�
(1 + δ)t1 − 1

��
(1 + δ)t2 − 1

�
.

The term above is non-negative because δ, t1, t2 are all ≥ 0.

Lemma A.2 (Averaging). Let {ai, bi}ki=1 be non-negative real numbers, such that

k�

i=1

ai = A and

k�

i=1

bi = 1.

Then for any parameter C > 1, there exists an index i such that bi ≥ 1/(Ck), and ai ≤ bi ·A/(1− 1/C).

Proof. Let S := {i : bi ≥ 1/(Ck)}. Now since there are only k indices, we have
�

i∈[k]\S bi < k · 1/(Ck) < 1/C,
and thus �

i∈S

bi > (1− 1/C). (6)

Next, since all the ai are non-negative, we get that

�

i∈S

ai ≤ A.

Combining the two, we have �
i∈S ai�
i∈S bi

<
A

1− 1/C
.

Thus there exists an index i ∈ S such that ai < bi ·A/(1− 1/C) (because otherwise, we have ai ≥ biA/(1− 1/C)
for all i, thus summing over i ∈ S, we get a contradiction to the above). This proves the lemma.

Lemma A.3. For any 0 < x < 1 and δ > 0, we have

(1 + δ)x ≤ 1 + δx ≤ (1 + δ)x(1+δ).

Proof. For any 0 < θ < δ, we have
1

1 + θ
<

1

1 + θx
<

1 + δ

1 + θ
.

The first inequality is because x < 1, and the second is because the RHS is bigger than 1 while the LHS is
smaller. Now integrating from θ = 0 to θ = δ, we get

log(1 + δ) <
log(1 + xδ)

x
< (1 + δ) log(1 + δ).

Multiplying by x and exponentiating gives the desired claim.



Sparse Solutions to Nonnegative Linear Systems and Applications

B Gaussian mixtures

B.1 Proof of Lemma 3.5

Let f̂S�
be the empirical distribution over S �. Since |Ii| = 1

�1
, the induced partition S satisfies |S| ≤ 1

�d1
. Hence

by the Chernoff and union bounds, for n ≥ 8
�d1�

3 log
2

δ�d1
, with probability ≥ 1− δ,

|fS�
(S)− f̂S�

(S)| ≤
�
fS�(S)�d1�

3/2 + �d1�
3/2, ∀S ∈ S. (7)

For the set U ,

fS�
(U) =

�

S:f̂S� (S)≤�d�

fS�
(S)

≤ �+
�

S∈S

�
fS�(S)�d1�

3/2 +
�

S∈S
�d1�

3/2

≤ 2�,

where the second inequality follows from the concavity of
√
x. However b(U) = 2� and hence b(U) ≥ fS�

(U)(1−
2�).

By Equation (7),

|fS�
(S)− f̂S�

(S)| ≤
�
fS�(S)�d1�

3/2 + �d1�
3/2

≤
�

f̂S�(S)�d1�
3/2 + �d1�

3/2

≤ f̂S�
(S)

�√
�2/2 + �2/2

�

≤ f̂S�
(S)�.

The penultimate inequality follows from the fact that f̂S�
(S) ≥ �d1�. Hence f̂S�

(S) ≥ fS�
(S)(1− �). Furthermore

by construction b(S) ≥ f̂S�
(S)(1− 2�). Hence b(S) ≥ fS�

(S)(1− 3�) ∀S ∈ S �.

For the second part of the lemma observe that b and fS�
are distributions over S �. Hence

�

S∈S
|b(S)− fS�

(S)| = 2
�

S:b(S)≤fS� (S)

fS�
(S)− b(S)

≤ 2
�

S∈S

fS�
(S) · 3� = 6�.

B.2 Proof of Lemma 3.7

If p and I are simultaneously scaled or translated, then the value of
��p− pI

��
1
remains unchanged. Hence

proving the lemma for p = N(0, 1) is sufficient. We first divide I into I1, I2, I3 depending on the minimum and
maximum values of p(x) in the corresponding intervals.

I ∈





I1 if minx∈I p(x) ≥
�
�/(2π),

I2 if maxx∈I p(x) ≤
�

�/(2π),

I3 else.

The �1 distance between p and pI is

��p− pI
��
1
=

�

I∈I

�

x∈I

|p(x)− pI(x)|dx.
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We bound the above summation by breaking it into terms corresponding to I1, I2, and I3 respectively. Observe
that |I3| ≤ 2 and p(I) ≤ � ∀ I ∈ I3. Hence,

�

I∈I3

�

x∈I

|p(x)− pI(x)|dx ≤ 4�.

Since maxx∈I p(x) for every interval in I ∈ I2 is ≤
�
�/(2π), by Gaussian tail bounds

�

I∈I2

�

x∈I

|p(x)− pI(x)|dx ≤ 2
�

I∈I2

�

x∈I

p(x)dx

≤ 2
√
�.

For every interval I ∈ I1 we first bound its interval length and maximum value of p�(x). Note that

p(I) ≥ |I|min
y∈I

p(y).

In particular since p(I) ≤ � and miny∈I p(y) ≥
�
�/(2π), |I| ≤

√
2π�. Let s = maxx∈I |p�(x)|.

s = max
x∈I

|p�(x)| = max
x∈I

|x|√
2π

e−x2/2 ≤ max
x∈I

|x| ·max
x∈I

p(x).

Since miny∈I p(y) ≥
�

�/(2π), we have maxy∈I |y| ≤
�

log 1/�. Let y1 = argmaxy∈Ip(y) and y2 = argminy∈Ip(y),
then

maxy∈I p(y)

miny∈I p(y)
=

p(y2)

p(y1)

= e(y
2
1−y2

2)/2

= e(y1−y2)(y2+y1)/2

≤ e|I|
√

log 1
�

≤ e
√

2π� log 1
� .

Since pI(x) = p(I)/|I|, by Rolle’s theorem ∃x0 such that pI(x) = p(x0) ∀x. By first order Taylor’s expansion,
�

x∈I

|p(x)− pI(x)|dx ≤
�

x∈I

|(x− x0) max
y∈[x0,x]

|p�(y)|dx

≤ s

�

x∈I

|x− x0|dx

≤ s|I|2/2

≤ s

2

�
p(I)

miny∈I p(y)

�√
2π�

≤
√
2π�p(I)max

x∈I
|x| · maxy∈I p(y)

2miny∈I p(y)

≤ e
√

2π� log 1
� ·

�
π�/2 · p(I)max

x∈I
|x|,

where the last three inequalities follow from the bounds on |I|, s, and maxy∈I p(y)
miny∈I p(y) respectively. Thus,

�

x∈I

|p(x)− pI(x)|dx ≤ e
√

2π� log 1
�

�
π�/2 · p(I)max

x∈I
|x|

≤ e
√

2π� log 1
�

�
π�/2 ·

�

x∈I

p(x)(|x|+
√
2π�)dx.

Summing over I ∈ I1, we get the above summation is ≤ e
√

2π� log 1
�

�
π�/2(1+

√
2π�). Adding terms corresponding

to I1, I2, and I3 we get

��p− pI
��
1
≤ e

√
2π� log 1

� ·
�

π�/2 · (1 +
√
2π�) + 2

√
�+ 4� < 30

√
�.
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B.3 Proof of Theorem 3.8

Using Lemma 3.7 we first show that for every d-dimensional (I1, I2 . . . Id), �-flat Gaussian is close to the unflat-
tened one.

Lemma B.1. For every (I1, I2, . . . Id), �-good axis-aligned Gaussian distribution p = p1 × p2 × . . . pd, we have

��p− pS
��
1
≤ 30d

√
�.

Proof. By triangle inequality, the distance between any two product distributions is upper bounded by the sum
of distances in each coordinate. Hence,

��p− pS
��
1
≤

d�

i=1

���pi − pIi
i

���
1
≤ 30d

√
�,

where the second inequality follows from Lemma 3.7.

We now have all the tools to prove the main result on Gaussian mixtures.

Proof of Theorem 3.8. By triangle inequality,

���f̂ − f
���
1
≤

���f̂S − fS
���
1
+

���f̂S − f̂
���
1
+
��fS − f

��
1
.

We now bound each of the terms above. By Lemma 3.6, the first term is ≤ 74�. By triangle inequality for

f̂ =
�k�

r=1 ŵrp̂r,

���f̂S − f̂
���
1
≤

k��

r=1

ŵr

��p̂Sr − p̂r
��
1
≤ 30

√
2�,

where the last inequality follows from the fact that the allowed distributions in AS�
are (I1, I2, . . . Id), 2�2/d2-good

and by Lemma B.1. By triangle inequality,

��fS − f
��
1
≤

k�

r=1

wr

��pSr − pr
��
1

≤
�

r:wr≥�/k

wr

��pSr − pr
��
1
+

�

r:wr<�/k

wr

��pSr − pr
��
1

≤
�

r:wr≥�/k

wr

��pSr − pr
��
1
+ 2�

≤ 30
√
2�+ 2�.

where the last inequality follows from the proof of Lemma 3.6, where we showed that heavy components

are (I1, I2, . . . Id), 2�2/d2-good and by Lemma B.1. Summing over the terms corresponding to
���f̂S − fS

���
1
,

���f̂S − f̂
���
1
, and

��fS − f
��
1
, we get the total error as 74� + 30

√
2� + 30

√
2� + 2� ≤ 170�. The error probability

and the number of samples necessary are same as that of Lemma 3.6. The run time follows from the comments
in Section 3.2 and the bound on number of samples.

C Lower bounds

We now detail the proofs of Theorems 4.1 and 4.3.
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C.1 Proof of Theorem 4.1

We reduce hard instance of the Max k-cover problem to our problem as follows. For each set Si, we set Ai

(column i in A) to be the indicator vector of set Si. We also let b to be the vector with all entries equal to one.
In the Yes case, it is easy to construct a k-sparse x s.t. Ax = b, while in the No case, finding a solution of
sparsity o(k ln 1

� ) contradicts the hardness result stated above.

In the Yes case, we know there are k disjoint sets whose union is the universe, and we construct solution x∗ as
follows. We set x∗

i (the ith entry of x∗) to one if set Si is one of these k sets, and zero otherwise. It is clear that
Ax∗ is equal to b, and therefore there exists a k-sparse solution in the Yes case.

On the other hand, for every �-approximate non-negative solution x̂, we know that the number of non-zero
entries of Ax̂ is at most �m by definition. Define C to be the sub-collection of sets with non-zero entry in x̂, i.e.
{Si | x̂i > 0}. We know that each non-zero entry in Ax̂ is covered by some set in sub-collection C. In other
words, the union of sets in C has size at least (1− �)m. We imply that the number of sets in collection C should
be at least Ω(k ln( 1

�+δ )) since (1 − 1
k )

k is in range [ 14 ,
1
e ]. We can choose δ to be �, and therefore the sparsest

solution that one can find in the No case is Ω(k ln( 1� ))-sparse. Assuming P �= NP, it is not possible to find a
o(k ln 1

� )-sparse �-approximate solution when there exists a k-sparse solution, otherwise it becomes possible to
distinguish between the Yes and No cases of the Max k-Cover problem in polynomial time.

C.2 Proof of Theorem 4.3

Let n (which is O(m/ logm)) be the number of sets in the set system. Let A be the m× n matrix whose i, jth
entry is 1 if element i is in set j, and 0 otherwise. It is clear that in the Yes case, there exists a solution to
Ax = 1 of sparsity k. It suffices to show that in the No case, there is no �-approximate solution to Ax = 1 with
fewer than Ω(k/�2) entries.

Let us define C = 1/�2, for convenience. The proof follows the standard template in random matrix theory
(e.g. Rudelson and Vershynin [2010]): we show that for any fixed Ck-sparse vector x, the probability that
�Ax− 1�1 < 1/(4

√
C) is tiny, and then take a union bound over all x in a fine enough grid to conclude the claim

for all k-sparse x.

Thus let us fix some Ck sparse vector x and consider the quantity �Ax− 1�1. Let us then consider one row,
which we denote by y, and consider |�y, x�− 1|. Now each element of y is 1 with probability 1/k and 0 otherwise
(by the way the set system was constructed). Let us define the mean-zero random variable Wi, 1 ≤ i ≤ n, as
follows:

Wi =

�
1− 1/k with probability 1/k,

−1/k otherwise.

We first note that E[|�y, x� − 1|2] ≥ E[(
�

i Wixi)
2]. This follows simply from the fact that for any random

variable Z, we have E[|Z − 1|2] ≥ E[|Z − E[Z]|2] (i.e., the best way to “center” a distribution with respect to a
least squares objective is at its mean). Thus let us consider

E



��

i

Wixi

�2

 =

�

i

x2
i · E[W 2

i ] =
�

i

x2
i ·

1

k

�
1− 1

k

�
.

Since x is Ck-sparse, and since �x�1 ≥ 3k/4, we have
�

i x
2
i ≥ 1

Ck · �x�21 ≥ k/2C. Plugging this above and
combining with our earlier observation, we obtain

E[|�y, x� − 1|2] ≥ E



��

i

Wixi

�2

 ≥ 1

3C
. (8)

Now we will use the Paley-Zygmund inequality,5 with the random variable Z := |�y, x�−1|2. For this we need to
upper bound E[Z2] = E[|�y, x� − 1|4]. We claim that we can bound it by a constant. Now since �x�1 is between

5For any non-negative random variable Z, we have Pr(Z ≥ θE[Z]) ≥ (1− θ)2 · E[Z]2

E[Z2]
.
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3k/4 and 5k/4, we have |�y, x� −�
i Wixi| < 1/2. This in turn implies that E[Z2] ≤ 4(E[(

�
i Wixi)

4] + 4). We
will show that E[(

�
i Wixi)

4] = O(1).

E[(
�

i

Wixi)
4] =

�

i

W 4
i x

4
i + 3

�

i,j

W 2
i W

2
j x

2
ix

2
j

≤ 1

k
·
�

i

x4
i +

3

k2

�

i,j

x2
ix

2
j

≤ 1 +
3

k2
· (
�

i

x2
i )

2 = O(1).

Here we used the fact that we have 0 ≤ xi ≤ 1 for all i, and that
�

i x
2
i ≤ �

i xi ≤ 5k/4.

This implies, by using the Paley-Zygmund inequality, that

Pr

�
|�y, x� − 1| < 1

4
√
C

�
< 1− 1/10. (9)

Thus if we now look at the m rows of A, and consider the number of them that satisfy |�y, x�−1| < 1/(4
√
C), the

expected number is < 9m/10, thus the probability that there are more than 19m/20 such rows is exp(−Ω(m)).
Thus we have that for any Ck-sparse x with �x�1 ∈ [3k/4, 5k/4] and �x�∞ ≤ 1,

Pr

�
�Ax− 1�1 <

1

80
√
C

�
< e−m/40. (10)

Now let us construct an ��-net6 for the set of all Ck-sparse vectors, with �� = 1/m2. A simple way to do it is
to first pick the non-zero coordinates, and take all integer multiples of ��/m as the coordinates. It is easy to see
that this set of points (call it N ) is an �� net, and furthermore, it has size roughly

�
m

Ck

��m
��

�Ck

= O
�
m4Ck

�
.

Thus as long as m > 200Ck logm, we can take a union bound over all the vectors in the �� net, to conclude that
with probability e−Ω(m), we have

�Ax− 1�1 >
1

80
√
C

for all x ∈ N .

In the event that this happens, we can use the fact that N is an �� net (with �� = 1/m2), to conclude that
�Ax− 1�1 > 1

100
√
C

for all Ck-sparse vectors with coordinates in [0, 1] and �x�1 ∈ [3k/4, 5k/4].

This completes the proof of the theorem, since 1
100

√
C

is Ω(�), and k < m/ log2 m.

D Experiments

To get a better understanding of the accuracy of the analysis, we implemented our algorithm with some natural
settings for matrices A. We now give a brief summary of the results.

Random A

The most natural choice for A are m × n matrices, with each entry distributed independently. We picked each
entry uniformly in (0, 1), and then normalized the columns.7 The vector b is obtained by taking a random
combination of the first k columns of A. Here we observed the following: as n grows, keeping m fixed, the

6An �-net for a set S of points is a subset T such that for any s ∈ S, there is a t ∈ T such that �s− t�2 < �.
7Note that unlike the case of random Gaussian entries, the columns here are not incoherent, and nor does A possess

the restricted isometry property.
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number of non-zero entries in the solution (found by the algorithm) slowly grows, until it stabilizes. There is
also a disparity between the number of iterations of the algorithm (which we used to bound the sparsity), and
the actual sparsity. In order to allow for a large n relative to m, we fix a small value of m (15 below), and k = 5.
We also show the behavior with three choices of �.

In the table, the #iter refers to the average number of iterations for the �, �k�� refers to the average sparsity of
the solution obtained, and the ± denotes the standard deviation in the value of k�.

Table 1: Random A, with m = 15 rows, and n columns, varying �

n � = 0.005 � = 0.002 � = 0.001
#iter �k�� ± #iter �k�� ± #iter �k�� ±

10 75 5.78 2.36 169 5.78 2.36 391 6.22 3.68
15 92 7.11 4.11 274 8.33 4.69 552 8.33 4.69
20 116 8.56 7.23 325 9.22 7.72 694 9.56 8.84
40 129 11.6 9.81 430 13.8 7.85 919 14.2 8.34
60 155 13.7 15.4 648 15 18.1 1650 15.9 17.2
100 102 17.6 22.3 278 21.6 25.8 635 24.6 31.1
500 63 29.4 13.8 141 44.1 21.8 275 59.9 30.9
1000 60 30.2 9.46 164 52.2 25.6 279 64.6 27.9
2000 52 30.2 12.9 123 50.7 23.2 229 70.7 28.4

Gaussian mixture in one dimension

The next choice for A comes from our result on learning mixtures of Gaussians. Here we consider the one-
dimensional version, in which we are given a mixture of k Gaussians on a line, whose components we wish to
find. We picked k = 4, and unit variance for the Gaussians. The means were picked at random in the interval
(0, 20), which was discretized into 200 sub-intervals. We then considered 200 candidate Gaussians, with means
at the centers of each sub-interval. The goal is to approximate the given mixture by a mixture of these candidate
Gaussians (up to an error �) using as few components as possible.

The following table gives the results for varying �. We also give the true means, and the means of the Gaussians
used in the approximation we find.

Table 2: Experiment with k = 3, true means: {6.6, 9.2, 11.1}
� # iterations sparsity (k�) means found by algorithm

0.05 10 6 6.5, 6.7, 9.3, 11.0, 11.1, 11.4
0.02 18 11 6.5, 6.6, 6.7, 9.2, 9.3, 10.9, 11.0, 11.1,

11.2, 11.3, 11.4
0.01 68 12 6.5, 6.6, 6.7, 9.1, 9.2, 9.3, 10.9, 11.0,

11.1, 11.2, 11.3, 11.4
0.005 262 12 6.5, 6.6, 6.7, 9.1, 9.2, 9.3, 10.9, 11.0,

11.1, 11.2, 11.3, 11.4

We observe that the approximate solution we find uses Gaussians that are “close” to the component Gaussians.
(E.g., we use Gaussians with means 6.5, 6.6, 6.7 to approximate the effect of the Gaussian with mean 6.6). The
table below shows how the number of iterations and k� change when we set k = 4.
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Table 3: Experiment with k = 4

� # iterations sparsity (k�)
0.05 16 10
0.02 26 11
0.01 61 18
0.005 305 19


