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Abstract

We give an efficient algorithm for finding
sparse approximate solutions to linear sys-
tems of equations with nonnegative coeffi-
cients. Unlike most known results for sparse
recovery, we do not require any assump-
tion on the matrix other than non-negativity.
Our algorithm is combinatorial in nature, in-
spired by techniques for the set cover prob-
lem, as well as the multiplicative weight up-
date method.

We then present a natural application to
learning mixture models in the PAC frame-
work. For learning a mixture of k axis-
aligned Gaussians in d dimensions, we give an
algorithm that outputs a mixture of O(k/�3)
Gaussians that is �-close in statistical dis-
tance to the true distribution, without any
separation assumptions. The time and sam-
ple complexity is roughly O(kd/�3)d. This
is polynomial when d is constant – precisely
the regime in which known methods fail to
identify the components efficiently.

Given that non-negativity is a natural as-
sumption, we believe that our result may find
use in other settings in which we wish to ap-
proximately explain data using a small num-
ber of a (large) candidate set of components.

1 Introduction

Sparse recovery, or the problem of finding sparse so-
lutions (i.e., solutions with a few non-zero entries) to
linear systems of equations, is a fundamental problem
in signal processing, machine learning and theoretical
computer science. In its simplest form, the goal is to
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find a solution to a given system of equations Ax = b
that minimizes �x�0 (which we call the sparsity of x).

It is known that sparse recovery is NP hard in gen-
eral. It is related to the question of finding if a set
of points in d-dimensional space are in general posi-
tion – i.e., they do not lie in any (d − 1) dimensional
subspace [Khachiyan, 1995]. A strong negative result
in the same vein is due to Arora et al. [1993] and
(independently) Amaldi and Kann [1998], who prove
that it is not possible to approximate the quantity

min{�x�0 : Ax = b} to a factor better than 2(log n)1/2

unless NP has quasi polynomial time algorithms.

While these negative results seem forbidding, there are
some instances in which sparse recovery is possible.
Sparse recovery is a basic problem in the field of com-
pressed sensing, and in a beautiful line of work, Candes
et al. [2006], Donoho [2006] and others show that con-
vex relaxations can be used for sparse recovery when
the matrix A has certain structural properties, such as
incoherence, or the so-called restricted isometry prop-
erty (RIP). However the focus in compressed sensing
is to design matrices A (with as few rows or ‘measure-
ments’ as possible) that allow the recovery of sparse
vectors x given Ax. Our focus is instead on solving
the sparse recovery problem for a given A, b, similar to
that of [Natarajan, 1995, Donoho and Elad, 2003]. In
general, checking if a given A possesses the RIP is a
hard problem [Bandeira et al., 2012].

Motivated by the problem of PAC learning mixture
models (see below), we consider the sparse recovery
problem when the matrix A, the vector b, and the so-
lution we seek all have non-negative entries. In this
case, we prove that approximate sparse recovery is al-
ways possible, with some loss in the sparsity. We ob-
tain the following trade-off:

Theorem 1.1. (Informal) Suppose the matrix A and
vector b have non-negative entries, and suppose there
exists a k-sparse1 non-negative x∗ such that Ax∗ = b.
Then for any � > 0, there is an efficient algorithm that
produces an xalg that is O(k/�3) sparse, and satisfies
�Axalg − b�1 ≤ � �b�1.

1I.e., has at most k nonzero entries.
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The key point is that our upper bound on the error
is in the �1 norm (which is the largest among all �p
norms). Indeed the trade-off between the sparsity of
the obtained solution and the error is much better un-
derstood if the error is measured in the �2 norm. In this
case, the natural greedy ‘coordinate ascent’, as well as
the algorithm based on sampling from a “dense” solu-
tion give non-trivial guarantees (see Natarajan [1995],
Shalev-Shwartz et al. [2010]). If the columns of A are
normalized to be of unit length, and we seek a so-
lution x with �x�1 = 1, one can find an x� such that

�Ax� − b�2 < � and x� has only O( log(1/�)�2 ) non-zero co-
ordinates. A similar bound can be obtained for general
convex optimization problems, under strong convex-
ity assumptions on the loss function [Shalev-Shwartz
et al., 2010].

While these methods are powerful, they do not apply
(to the best of our knowledge) when the error is mea-
sured in the �1 norm, as in our applications. More
importantly, they do not take advantage of the fact
that there exists a k-sparse solution (without losing a
factor that depends on the largest eigenvalue of A† as
in Natarajan [1995], or without additional RIP style
assumptions as in Shalev-Shwartz et al. [2010]).

The second property of our result is that we do not rely
on the uniqueness of the solution (as is the case with
approaches based on convex optimization). Our algo-
rithm is more combinatorial in nature, and is inspired
by multiplicative weight update based algorithms for
the set cover problem, as described in Section 2. Fi-
nally, we remark that we do not need to assume that
there is an “exact” sparse solution (i.e., Ax∗ = b), and
a weaker condition suffices. See Theorem 2.1 for the
formal statement.

Are there natural settings for the sparse recovery prob-
lem with non-negative A, b? One application we now
describe is that of learning mixture models in the PAC
framework [Valiant, 1984, Kearns et al., 1994].

Learning mixture models

A common way to model data in learning applications
is to view it as arising from a “mixture model” with
a small number of parameters. Finding the parame-
ters often leads to a better understanding of the data.
The paradigm has been applied with a lot of suc-
cess to data in speech, document classification, and
so on [Reynolds and Rose, 1995, Titterington et al.,
1985, Lindsay, 1995]. Learning algorithms for Gaus-
sian mixtures, hidden Markov models, topic models
for documents, etc. have received wide attention both
in theory and practice.

In this paper, we consider the problem of learning
a mixture of Gaussians. Formally, given samples

from a mixture of k Gaussians in d dimensions, the
goal is to recover the components with high probabil-
ity. The problem is extremely well studied, starting
with the early heuristic methods such as expectation-
maximization (EM). The celebrated result of Das-
gupta [1999] gave the first rigorous algorithm to re-
cover mixture components, albeit under a separation
assumption. This was then improved in several subse-
quent works (c.f. Arora and Kannan [2001], Vempala
and Wang [2002], Dasgupta and Schulman [2007]).

More recently, by a novel use of the classical method
of moments, Kalai et al. [2010] and Belkin and Sinha
[2010] showed that any d-dimensional Gaussian mix-
ture with a constant number of components k can be
recovered in polynomial time (without any strong sep-
aration). However the dependence on k in these works
is exponential. Moitra and Valiant [2010] showed that
this is necessary if we wish to recover the true compo-
nents, even in one dimension.

In a rather surprising direction, Hsu and Kakade
[2013], and later Bhaskara et al. [2014] and Anderson
et al. [2014] showed that if the dimension d is large (at
least kc for a constant c > 0), then tensor methods
yield polynomial time algorithms for parameter recov-
ery, under mild non-degeneracy assumptions. Thus
the case of small d and much larger k seems to be the
most challenging for current techniques, if we do not
have separation assumptions. Due to the lower bound
mentioned above, we cannot hope to recover the true
parameters used to generate the samples.

Our parameter setting. We consider the case of
constant d, and arbitrary k. As mentioned earlier,
this case has sample complexity exponential in k if we
wish to recover the true components of the mixture
(Moitra and Valiant [2010]). We thus consider the
corresponding PAC learning question (Valiant [1984]):
given parameters �, δ > 0 and samples from a mix-
ture of Gaussians as above, can we find a mixture of
k Gaussians such that the statistical distance to the
original mixture is < � with success probability (over
samples) ≥ (1− δ)?

Proper vs improper learning. The question
stated above is usually referred to as proper learning:
given samples from a distribution f in a certain class
(in this case a mixture of k Gaussians), we are required

to output a distribution f̂ in the same class, such that���f − f̂
���
1
≤ �. A weaker notion that is often studied

is improper learning, in which f̂ is allowed to be ar-
bitrary (it some contexts, it is referred to as density
estimation).

Proper learning is often much harder than improper
learning. To wit, the best known algorithms for proper
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learning of Gaussian mixtures run in time exponential
in k. It was first studied by Feldman et al. [2006],
who gave an algorithm with sample complexity poly-
nomial in k, d, but run time exponential in k. Later
works improved the sample complexity, culminating in
the works by Daskalakis and Kamath [2014], Acharya
et al. [2014], who gave algorithms with optimal sample
complexity, for the case of spherical Gaussians. We
note that even here, the run times are poly(d, 1/�)k.

Meanwhile for improper learning, there are efficient al-
gorithms known for learning mixtures of very general
one dimensional distributions (monotone, unimodal,
log-concave, and so on). A sequence of works by Chan
et al. [2013, 2014] give algorithms that have near-
optimal sample complexity (of Õ(k/�2)), and run in
polynomial time. However it is not known how well
these methods extend to higher dimensions.

In this paper we consider something in between proper
and improper learning. We wish to return a mixture
of Gaussians, but with one relaxation: we allow the al-
gorithm to output a mixture with slightly more than k
components. Specifically, we obtain a tradeoff between
the number of components in the output mixture, and
the distance to the original mixture. Our theorem here
is as follows

Theorem 1.2. (Informal) Suppose we are given sam-
ples from a mixture of k axis-aligned Gaussians in d
dimensions. There is an algorithm with running time

and sample complexity O
�

1
�3 ·

�
kd
�3

�d�
, and outputs a

mixture of O(k/�3) axis-aligned Gaussians which is
�-close in statistical distance to the original mixture,
with high probability.

The algorithm is an application of our result on solving
linear systems. Intuitively, we consider a matrix whose
columns are the probability density functions (p.d.f.)
of all possible Gaussians in Rd, and try to write the
p.d.f. of the given mixture as a sparse linear combi-
nation of these. To obtain finite bounds, we require
careful discretization, which is described in Section 3.

Is the trade-off optimal? It is natural to ask if
our tradeoff in Theorem 1.1 is the best possible (from
the point of view of efficient algorithms). We conjec-
ture that the optimal tradeoff is k/�2, up to factors of
O(log(1/�)) in general. We can prove a weaker result,
that for obtaining an � approximation in the �1 norm
to the general sparse recovery problem using polyno-
mial time algorithms, we cannot always get a sparsity
better than k log(1/�) unless P = NP.

While this says that some dependence on � is necessary,
it is quite far from our algorithmic bound of O(k/�3).
In Section 4, we will connect this to similar dispari-
ties that exist in our understanding of the set cover

problem. We present a random planted version of the
set cover problem, which is beyond all known algo-
rithmic techniques, but for which there are no known
complexity lower bounds. We show that unless this
planted set cover problem can be solved efficiently, we
cannot hope to obtain an �-approximate solution with
sparsity o(k/�2). This suggests that doing better than
k/�2 requires significantly new algorithmic techniques.

1.1 Basic notation

We will write R+ for the set of non-negative reals. For
a vector x, its ith co-ordinate will be denoted by xi,
and for a matrix A, Ai denotes the ith column of A.
For vectors x, y, we write x ≤ y to mean entry-wise
inequality. We use [n] to denote the set of integers
{1, 2, . . . , n}. For two distributions p and q, we use
�p− q�1 to denote the �1 distance between them.

2 Approximate sparse solutions

2.1 Outline

Our algorithm is inspired by techniques for the well-
known set cover problem: given a collection of n sets
S1, S2, . . . , Sn ⊆ [m], find the sub-collection of the
smallest size that covers all the elements of [m]. In
our problem, if we set Ai to be the indicator vector of
the set Si, and b to be the vector with all entries equal
to one, a sparse solution to Ax = b essentially covers
all the elements of [m] using only a few sets, which
is precisely the set cover problem. The difference be-
tween the two problems is that in linear equations, we
are required to ‘cover’ all the elements precisely once
(in order to have equality), and additionally, we are
allowed to use sets fractionally.

Motivated by this connection, we define a potential
function which captures the notion of covering all the
elements “equally”. For a vector x ∈ Rn, we define

Φ(x) :=
�

j

bj(1 + δ)(Ax)j/bj (1)

This is a mild modification of the potential function
used in the multiplicative weight update method (Fre-
und and Schapire [1997], Arora et al. [2012]). Suppose
for a moment that �b�1 = 1. Now, consider some x
with �x�1 = 1. If (Ax)j = bj for all j, the poten-
tial Φ(x) would be precisely (1 + δ). On the other
hand, if we had (Ax)j/bj varying significantly for dif-
ferent j, the potential would (intuitively) be signifi-
cantly larger; this suggests an algorithm that tries to
increment x coordinate-wise, while keeping the poten-
tial small. Since we change x coordinate-wise, having
a small number of iterations implies sparsity. The key
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to the analysis is to prove that at any point in the al-
gorithm, there is a “good” choice of coordinate that we
can increment so as to make progress. We now make
this intuition formal, and prove the following

Theorem 2.1. Let A be an m × n non-negative ma-
trix, and b ∈ Rm be a non-negative vector. Suppose
there exists a k-sparse non-negative vector x∗ such
that �Ax∗�1 = �b�1 and Ax∗ ≤ (1 + �0)b, for some
0 < �0 < 1/16. Then for any � ≥ 16�0, there is an ef-
ficient algorithm that produces an xalg that is O(k/�3)
sparse, and satisfies �Axalg − b�1 ≤ � �b�1.

Normalization

For the rest of the section, m,n will denote the dimen-
sions of A, as in the statement of Theorem 2.1. Next,
note that by scaling all the entries of A, b appropri-
ately, we can assume without loss of generality that
�b�1 = 1. Furthermore, since for any i, multiplying
xi by c while scaling Ai by (1/c) maintains a solution,
we may assume that for all i, we have �Ai�1 = 1 (if
Ai = 0 to start with, we can simply drop that column).
Once we make this normalization, since A, b are non-
negative, any non-negative solution to Ax = b must
also satisfy �x�1 = 1.

2.2 Algorithm

We follow the outline above, having a total of O(k/�3)
iterations. At iteration t, we maintain a solution x(t),
obtained by incrementing precisely one co-ordinate of
x(t−1). We start with x(0) = 0; thus the final solution
is O(k/�3)-sparse.

We will denote y(t) := Ax(t). Apart from the potential
Φ introduced above (Eq.(1)), we keep track of another
quantity:

ψ(x) :=
�

j

(Ax)j .

Note that since the entries of A, x are non-negative,
this is simply �Ax�1.

Running time. Each iteration of the algorithm can
be easily implemented in time O(mn log(mn)/δ) by
going through all the indices, and for each index,
checking for a θ in multiples of (1 + δ).

Note that the algorithm increases ψ(x(t)) by at least
1/Ck in every iteration (because the increase is pre-
cisely θ, which is ≥ 1/Ck), while increasing Φ as slowly
as possible. Our next lemma says that once ψ is large
enough (while having a good bound on Φ), we can get
a “good” solution. I.e., it connects the quantities Φ
and ψ to the �1 approximation we want to obtain.

Lemma 2.2. Let x ∈ Rn satisfy the condition Φ(x) ≤

procedure solve({A, b, k, �})
// find an �-approximate solution.

begin
1 Initialize x(0) = 0; set parameters T = Ck/δ2;

C = 16/�; δ = �/16.
for t = 0, . . . , T − 1 do

2 Find a coordinate i and a scaling θ > 0 such
that θ ≥ 1/Ck, and the ratio
Φ(x(t) + θei)/Φ(x

(t)) is minimized.
3 Set x(t+1) = x(t) + θei.

end

4 Output xalg = x(t)/
��x(t)

��
1
.

end

(1 + δ)(1+η)ψ(x), for some η > 0. Then we have

����
Ax

ψ(x)
− b

����
1

≤ 2

�
η +

1

δψ(x)

�
. (2)

Proof. For convenience, let us write y = Ax, and �y =
y

�y�1
(i.e., the normalized version). Note that since

each column of A has unit �1 norm, we have ψ(x) =
�Ax�1 = �y�1. Since �y and b are both normalized, we
have

��y − b�1 = 2 ·
�

j : �yj>bj

(�yj − bj).

From now on, we will denote S := {j : �yj > bj},
and write p :=

�
j∈S bj . Thus to prove the lemma, it

suffices to show that

�

j∈S

(�yj − bj) ≤
�
η +

1

δψ(x)

�
. (3)

Now, note that the LHS above can be written as�
j∈S bj

� �yj

bj
− 1

�
. We then have

(1+δ)
ψ(x)

p ·�j∈S bj

� �yj
bj

−1
�
≤ (1 + δ)

�
j∈S

bj
p ·
�

yj
bj

−ψ(x)
�

≤
�

j∈S

bj
p

· (1 + δ)

�
yj
bj

−ψ(x)
�

(convexity)

≤ 1

p
·
�

j

bj(1 + δ)

�
yj
bj

−ψ(x)
�

(sum over all j)

≤ 1

p
· Φ(x) · (1 + δ)−ψ(x)

≤ 1

p
· (1 + δ)ηψ(x) (hypothesis on Φ).

Thus taking logarithms (to base (1+δ)), we can bound
the LHS of Eq.(3) by

p

ψ(x)
log(1+δ)(1/p) + pη ≤ 1

δψ(x)
+ η.
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The last inequalities use the standard facts that ln(1+
δ) ≥ δ/2 (for δ < 1), and p ≤ 1, and p ln(1/p) ≤ (1/e)
for any p. This shows Eq. (3), hence the lemma.

The next lemma shows that we can always find an
index i and a θ as we seek in the algorithm.

Lemma 2.3. Suppose there exists a k-sparse vector x∗

such that Φ(x∗) ≤ (1 + δ)(1+�0). Then for any C > 1,
and any x(t) ∈ Rn, there exists an index i, and a scalar
θ ≥ 1/(Ck), such that

Φ(x(t) + θei) ≤ (1 + δ)θ(1+�0)(1+δ)/(1−(1/C))Φ(x(t)).

Proof. x∗ is k-sparse, so we may assume w.l.o.g., that
x∗ = θ1e1 + θ2e2 + · · ·+ θkek. Let us define

Δi = Φ(x(t) + θiei)− Φ(x(t)).

First, we will show that

k�

i=1

Δi ≤ Φ(x(t))
�
(1 + δ)(1+�0) − 1

�
. (4)

To see this, note that the LHS of Eq.(4) equals

�

j

bj

�
k�

i=1

(1 + δ)(A(x(t)+θiei))j/bj − (1 + δ)(Ax(t))j/bj

�

=
�

j

bj(1 + δ)(Ax(t))j/bj

�
k�

i=1

(1 + δ)(A(θiei))j/bj − 1

�

≤
�

j

bj(1 + δ)(Ax(t))j/bj
�
(1 + δ)(Ax∗)j/bj − 1

�
.

In the last step, we used the fact that the function
f(t) := (1 + δ)t − 1 is sub-additive (Lemma A.1), and

the fact that x∗ =
�k

i=1 θiei. Now, using the bound
we have on Φ(x∗), we obtain Eq. (4). Furthermore,
since �x∗�1 = 1,

�
i θi = 1.

Now we can apply the averaging lemma A.2 with the
numbers {Δi, θi}ki=1, to conclude that for any C > 1,
there exists an i ∈ [k] such that θi ≥ 1/(Ck), and

Δi ≤ Φ(x(t)) · (1 + δ)(1+�0) − 1

1− (1/C)
.

Thus we have that for this choice of i, and θ = θi,

Φ(x(t) + θei) ≤ Φ(x(t))

�
1 + θ · (1 + δ)(1+�0) − 1

1− (1/C)

�
.

Now we can simplify the term in the parenthesis using
Lemma A.3 (twice) to obtain

1 + θ · (1 + δ)(1+�0) − 1

1− (1/C)
≤ 1 +

θ · δ(1 + �0)

1− (1/C)

≤ (1 + δ)θ(1+�0)(1+δ)/(1−(1/C)).

This completes the proof of the lemma.

Proof of Theorem 2.1. By hypothesis, we know that
there exists an x∗ such that �Ax∗�1 = 1 (or equiva-
lently �x∗�1 = 1) and Ax∗ ≤ (1 + x∗)b. Thus for this
x∗, we have Φ(x∗) ≤ (1+δ)(1+�0), so Lemma 2.3 shows
that in each iteration, the algorithm succeeds in find-
ing an index i and θ > 1/Ck satisfying the conclusion
of the lemma. Thus after T steps, we end up with
ψ(x(T )) ≥ 1/δ2, thus we can appeal to Lemma 2.2.
Setting η := 2(�0 + δ + 1/C), and observing that

(1 + �0)(1 + δ)/(1− 1/C) < 1 + η,

the lemma implies that the �1 error is ≤ 2(η + δ) < �,
from our choice of η, δ. This completes the proof.

Remark 2.4. The algorithm above finds a column to
add by going through indices i ∈ [m], and checking
if there is a scaling of Ai that can be added. But in
fact, any procedure that allows us to find a column
with a small value of Φ(x(t+1))/Φ(x(t)) would suffice
for the algorithm. For example, the columns could be
parametrized by a continuous variable, and we may
have a procedure that only searches over a discretiza-
tion.2 We could also have an optimization algorithm
that outputs the column to add.

3 Learning Gaussian mixtures

3.1 Notation

Let N(µ,σ2) denote the density of a d-dimensional
axis-aligned Gaussian distribution with mean µ and
diagonal covariance matrix σ2 respectively. Thus
a k-component Gaussian mixture has the density�k

r=1 wrN(µr,σ
2
r). We use f to denote the under-

lying mixture and pr to denote component r. We use
(ˆ) to denote empirical or other estimates; the usage
becomes clear in context. For an interval I, let |I| de-
note its length. For a set S, let n(S) be the number of
samples in that set.

3.2 Algorithm

The problem for finding components of a k-component
Gaussian mixture f can be viewed as finding a sparse
solution for system of equations

Aw = f, (5)

where columns of A are the possible mixture compo-
nents and w is the weight vector and f is the den-
sity of the underlying mixture. If f is known exactly,
and A is known explicitly, (5) can be solved using
solve({A, f, k, �}).

2This is a fact we will use in our result on learning
mixtures of Gaussians.
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However, a direct application of solve has two main
issues. Firstly, f takes values over Rd and thus is an
infinite dimensional vector. Thus a direct application
of solve is not computationally feasible. Secondly f is
unknown and has to be estimated using samples. Also,
for algorithm solve’s performance guarantees to hold,
we need an estimate f̂ such that f̂(x) ≥ f(x)(1 − �),
for all x. This kind of a global multiplicative condi-
tion is difficult to satisfy for continuous distributions.
To avoid these issues, we carefully discretize the mix-
ture of Gaussians. More specifically, we partition Rd

into rectangular regions S = {S1, S2, . . .} such that
Si ∩ Sj = ∅ and ∪S∈SS = Rd. Furthermore we flat-
ten the Gaussian within each region to induce a new
distribution over Rd as follows:

Definition 3.1. For a distribution p and a partition
S, the new distribution pS is defined as follows.3 If
x, y ∈ S for some S ∈ S, then pS(x) = pS(y) ∀S ∈ S,
p(S) = pS(S).

Note that we use the standard notation that p(S) de-
notes the total probability mass of the distribution p
over the region S. Now, let AS be a matrix with rows
indexed by S ∈ S and columns indexed by distribu-
tions p such that AS(S, p) = p(S). AS is a matrix with
potentially infinitely many columns, but finitely many
rows (number of regions in our partition).

Using samples, we generate a partition of Rd such that
the following properties hold. (a) fS(S) can be esti-
mated to sufficient multiplicative accuracy for each set
S ∈ S. (b) If we output a mixture of O(k/�3) Gaus-
sians ASw� such that

�
S∈S |(ASw�)(S) − fS(S)| is

small, then �Aw� − f�1 is also small.

For the first one to hold, we require the sets to have
large probabilities and hence requires S to be a coarse
partition of Rd. The second condition requires the
partition to be ‘fine enough’, that a solution after par-
titioning can be used to produce a solution for the
corresponding continuous distributions. How do we
construct such a partition?

If all the Gaussian components have similar variances
and the means are not too far apart, then a rectangu-
lar grid with carefully chosen width would suffice for
this purpose. However, since we make no assumptions
on the variances, we use a sample-dependent partition
(i.e., use some samples from the mixture to get a rough
estimate for the ‘location’ of the probability mass). To
formalize this, we need a few more definitions.

Definition 3.2. A partition of a real line is given by
I = {I1, I2, . . .} where Its are continuous intervals,
It ∩ It� = ∅ ∀t, t�, and ∪I∈II = R.

3We are slightly abusing notation, with pS denoting
both the p.d.f. and the distribution itself.

Since we have d dimensions, we have d such partitions.
We denote by Ii the partition of axis i. tth of coordi-
nate i is denoted by Ii,t.

For ease of notation, we use subscript r to denote
components (of the mixture), i to denote coordinates
(1 ≤ i ≤ d), and t to denote the interval indices cor-
responding to coordinates. We now define induced
partition based on intervals and a notion of “good”
distributions.

Definition 3.3. Given partitions I1, I2, I3, . . . Id for
coordinates 1 to d, define I1, I2, I3, . . . Id-induced par-
tition S = {Sv} as follows: for every d-tuple v, x ∈ Sv

iff xi ∈ Ii,vi
∀v.

Definition 3.4. A product distribution p = p1 × p2 ×
. . .× pd is (I1, I2, I3, . . . Id), �-good if for every coordi-
nate i and every interval Ii,t, pi(Ii,t) ≤ �.

Intuitively, �-good distributions have small mass in ev-
ery interval and hence binning it would not change the
distribution by much. Specifically in Lemma B.1, we
show that for such distributions

��p− pS
��
1
is bounded.

We now have all the tools to describe the algorithm.
Let �1 = �3/kd2. The algorithm first divides Rd into
a rectangular gridded fine partition S with ≈ �−d

1 bins
such that most of them have probability ≥ �d+1

1 . We
then group the bins with probability < �d+1

1 to create a
slightly coarser partition S �. The resulting S � is coarse
enough that fS�

can be estimated efficiently, and is
also fine enough to ensure that we do not lose much of
the Gaussian structure by binning.

We then limit the columns of AS�
to contain only

Gaussians that are (I1, I2, . . . Id), 2�2/d2-good. In
Lemma B.1, we show that for all of these we do not
lose much of the Gaussian structure by binning. Thus
solve(AS�

, b, k, �) yields us the required solution. With
these definitions in mind, the algorithm is given in
Learn({(x1, . . . x2n), k, �}). Note that the number of
rows in AS�

is |S �| ≤ |S| = �−d
1 .

We need to bound the time complexity of finding a
Gaussian in each iteration of the algorithm (to apply
Remark 2.4). To this end we need to find a finite set of
candidate Gaussians (columns of AS�

) such that run-
ning solve using a matrix restricted to these columns
(call it AS�

finite) finds the desired mixture up to error �.
Note that for this, we need to ensure that there is at
least one candidate (column of AS�

finite) that is close to
each of the true mixture components.

We ensure this as follows. Obtain a set of n� samples
from the Gaussian mixture and for each pair of samples
x, y consider the Gaussian whose mean is x and the
variance along coordinate i is (xi − yi)

2. Similar to
the proof of the one-dimensional version in Acharya
et al. [2014], it follows that for any �� choosing n� ≥
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Ω((��)−d), this set contains Gaussians that are �� close
to each of the underlying mixture components. For
clarity of exposition, we ignore this additional error
which can be made arbitrarily small and treat �� as 0.

procedure Learn({(x1, . . . x2n), k, �})
begin

1 Set parameter �1 = �3/(kd2).
2 Use first n samples to find I1, I2 . . . Id such that

number of samples x such that xi ∈ Ii,t is n�1.
Let S be the corresponding induced partition.

3 Use the remaining n samples to do:

4 Let U = ∪Sv : n(Sv) ≤ n�d1�.

5 Let S � = {U} ∪ {S ∈ S : n(Sv) > n�d1�}.
6 Set b(U) = 2� and

∀S ∈ S � \ {U}, b(S) = (1− 2�)n(S)�
S∈S�\{U} n(S)

7 Let AS�
be the matrix with columns

corresponding to distributions p that are
(I1, I2, . . . Id), 2�2/d2-good axis-aligned
Gaussians, and AS�

finite be the candidates obtained
as above, using �� = �1/10.

8 solve(AS�
finite, b, k, 64�) using Remark 2.4.

9 Output the w.

end

3.3 Proof of correctness

We first show that b satisfies the necessary conditions
for solve that are given in Theorem 2.1. The proof fol-
lows from Chernoff bound and the fact that empirical
mass in most sets S ∈ S � is ≥ �d1�.

Lemma 3.5 (Appendix B.1). If n ≥ 8
�d1�

3 log
2

δ�d1
, then

with probability ≥ 1− δ

∀S ∈ S �, b(S) ≥ fS�
(S)(1− 3�),

and
�

S∈S� |fS�
(S)− b(S)| ≤ 6�.

Using the above lemma, we now prove that Learn re-

turns a good solution such that
���fS − f̂S

���
1
≤ O(�).

Lemma 3.6. Let n ≥ max
�

2
�21

log 2d
δ , 8

�d1�
3 log

2
δ�d1

�
.

With probability ≥ 1 − 2δ, Learn returns a solution
f̂ such that the resulting mixture satisfies

���fS − f̂S
���
1
≤ 74�.

Proof. We first show that AS�
has columns corre-

sponding to all the components r, such that wr ≥ �/k.
For a mixture f let fi be the projection of f on co-
ordinate i. Note that f̂i(Ii,t) = �1 ∀i, t. Therefore

by Dvoretzky-Kiefer-Wolfowitz theorem (see, Massart
[1990]) and the union bound if n ≥ 2

�21
log 2d

δ , with

probability ≥ 1− δ,

fi(Ii,t) ≤ �1 + �1 ≤ 2�1 ∀i, t.

Since fi =
�k

r=1 wrpr,i, with probability ≥ 1− δ,

pr,i(Ii,t) ≤
2�1
wr

∀i, r.

If wr ≥ �/k, then pr,i(Ii,t) ≤ 2�2/d2 and thus AS�

contains all the underlying components r such that
wr ≥ �/k. Let w∗ be the weights corresponding to
components such that wr ≥ �/k. Therefore �w∗�1 ≥
1 − �. Furthermore by Lemma 3.5, b(S) ≥ fS�

(1 −
3�) ≥ (1 − 3�)(AS�

w∗)(S). Therefore, we have �b� =���AS�
w∗/ �w∗�

��� and

b(S) ≥ (1− 3�)(AS�
w∗)(S) �w∗� / �w∗�

≥ (1− 4�)(AS�
w∗/ �w∗�)(S).

Hence, By Theorem 2.1, algorithm returns a solu-

tion AS�
w� such that

���AS�
w� − b

���
1

≤ 64�. Thus

by Lemma 3.5,
�

S∈S� |(AS�
w�)(S) − fS�

(S)| ≤ 70�.

Let f̂ be the estimate corresponding to solution w�.
Since fS�

and f̂S�
are flat within sets S, we have���f̂S� − fS�

���
1
≤ 70�.

Since S � and S differ only in the set U and by
Lemma 3.5, fS(U) = fS�

(U) ≤ �/(1− 3�), we have
���f̂S − fS

���
1
≤

���f̂S� − fS�
���
1
+ 2fS(U) ≤ 74�.

Note that the total error probability is ≤ 2δ.

We show that flattened Gaussians in one dimension
are close to the corresponding unflattened Gaussian.

Lemma 3.7 (Appendix B.2). Let p be a one dimen-
sional Gaussian distribution and I = (I1, I2, . . .) be a
partition of the real line such that ∀I ∈ I, I is a contin-
uous interval and p(I) ≤ �. Then

��p− pI
��
1
≤ 30

√
�.

Lemma 3.6 shows that f̂S is close to fS . Lemma 3.7
shows that in one dimension flattened Gaussians are
close to the unflatttend one. We extend Lemma 3.7 to
d dimensions and prove

Theorem 3.8 (Appendix B.3). Let �1 = �3/kd2 and

n ≥ max
�

2
�21

log 2d
δ , 8

�d1�
3 log

2
δ�d1

�
. Then given 2n sam-

ples from an axis-aligned Gaussian mixture f , with
probability ≥ 1 − 2δ, Learn returns an estimate mix-
ture f̂ with at most O(k/�3) components such that

���f̂ − f
���
1
≤ 170�.

The run time of the algorithm is O (1/�1)
d
.
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If we consider the leading term in sample complexity,
for d = 1 our bound is Õ(k2/�6), and for d > 1, our
bound is Õ((kd2)d/�3d+3). While this is not the opti-
mal sample complexity (see Acharya et al. [2014]), we
gain significantly in the running time.

4 Lower bounds

We now investigate lower bounds towards obtaining
sparse approximate solutions to nonnegative systems.
Our first result is that unless P = NP, we need to lose
a factor at least log(1/�) in the sparsity to be �-close
in the �1 norm. Formally,

Theorem 4.1. For any � > 0, given an instance
of the sparse recovery problem A, b that is promised
to have a k-sparse nonnegative solution, it is NP-
hard to obtain an o

�
k ln

�
1
�

��
-sparse solution xalg with

�Axalg − b�1 < � �b�1.

Theorem 4.1 is inspired by the hard instances of Max
k-Cover problem [Feige, 1998, Feige et al., 2004, Feige
and Vondrák, 2010].

Hard Instances of Max k-Cover. For any c > 0,
and δ > 0, given a collection of n sets S1, S2, . . . , Sn ⊆
[m], it is NP-Hard to distinguish between the follow-
ing two cases:
Yes case: There are k disjoint sets in this collection
whose union is [m].
No case: The union of any � ≤ ck sets of this collection
has size at most (1− (1− 1

k )
� + δ)n.

Proof outline, Theorem 4.1. We reduce hard instance
of the Max k-cover problem to our problem as follows.
For each set Si, we set Ai (column i in A) to be the
indicator vector of set Si. We also let b to be the vec-
tor with all entries equal to one. In the Yes case, it is
easy to construct a k-sparse x s.t. Ax = b, while in the
No case, finding a solution of sparsity o(k ln 1

� ) contra-
dicts the hardness result stated above. The details are
deferred to the supplement.

Second, we show that unless a certain variant of set
cover can be solved efficiently, we cannot hope to ob-
tain an �-approximate solution with sparsity o(k/�2).
We will call this the planted set cover problem:

Definition 4.2. (Planted set cover (k,m) problem)
Given parameters m and k > m3/4, find an algorithm
that distinguishes with probability > 2/3 between the
following distributions over set systems over m ele-
ments and n = O(m/ logm) sets:
No case: The set system is random, with element i in
set j with probability 1/k (independently).
Yes case: We take a random set system with n − k
sets as above, and add a random k-partition of the ele-
ments as the remaining k sets. (Thus there is a perfect
cover using k sets.)

To the best of our knowledge, solving this distinguish-
ing problem is beyond our algorithmic techniques. The
situation is similar in spirit to the planted clique and
planted dense subgraph problems on random graphs,
as well as random 3-SAT [Alon et al., 1998, Bhaskara
et al., 2010, Feige, 2002]. This shows that obtaining
sparse approximate solutions with sparsity o(k/�2) re-
quires significantly new techniques. Formally, we show
the following (proof deferred to the supplement).

Theorem 4.3. Let m3/4 < k < m/ log2 m. Any
algorithm that finds an o(k/�2) sparse �-approximate
solution to non-negative linear systems can solve the
planted set cover (k,m) problem.

5 Experiments

To better understand the analysis, we implemented
our algorithm with some natural settings for matrices
A. We now give a brief summary of the results (tables
are deferred to the supplement).

Random A: The most natural choice for A arem×n
matrices, with each entry distributed independently.
We picked each entry uniformly in (0, 1), and then
normalized the columns.4 The vector b is obtained by
taking a random combination of the first k columns
of A. Here we observed the following: as n grows,
keeping m fixed, the number of non-zero entries in
the solution (found by the algorithm) slowly grows,
until it stabilizes. There is also a disparity between
the number of iterations of the algorithm (which we
used to bound the sparsity), and the actual sparsity.
In order to allow for a large n relative to m, we fix a
small value of m (= 15), and k = 5. We also show the
behavior with varying �.

Gaussian mixture in one dimension The next
choice for A comes from our result on learning mix-
tures of Gaussians. Here we consider the one-
dimensional version, in which we are given a mixture
of k Gaussians on a line, whose components we wish
to find. We picked k = 4, and unit variance for the
Gaussians. The means were picked at random in the
interval (0, 20), which was discretized into 200 sub-
intervals. We then considered 200 candidate Gaus-
sians, with means at the centers of each sub-interval.
The goal is to approximate the given mixture by a
mixture of these candidate Gaussians (up to an error
�) using as few components as possible. In the supple-
ment, we show the results for varying �. We also give
the true means, and the means of the Gaussians used
in the approximation found by the algorithm.

4Note that unlike the case of random Gaussian entries,
the columns here are not incoherent, and nor does A pos-
sess the restricted isometry property.
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21-24, 2002, page 5, 2002.
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