Stochastic Spectral Descent for Restricted Boltzmann Machines: Supplemental Material

David Carlson¹

Volkan Cevher²

Lawrence Carin¹

¹ Department of Electrical and Computer Engineering, Duke University ²Laboratory for Information and Inference Systems (LIONS), EPFL

A Theorem proofs

Proof. Proof of Theorem 1. The Hessian of the *lse* function is given by

$$\nabla^{2} lse_{\boldsymbol{\omega}}(\boldsymbol{u}) = \frac{\operatorname{diag}(\boldsymbol{\omega} \odot \exp(\boldsymbol{u}))}{\boldsymbol{\omega}^{T} \exp(\boldsymbol{u})} - \frac{(\boldsymbol{\omega} \odot \exp(\boldsymbol{u}))(\boldsymbol{\omega} \odot \exp(\boldsymbol{u}))^{T}}{(\boldsymbol{\omega}^{T} \exp(\boldsymbol{u}))^{2}} (A.1)$$

There are two terms in the Hessian matrix. The first term is

$$\frac{\operatorname{diag}(\boldsymbol{\omega}\odot\exp(\boldsymbol{u}))}{\boldsymbol{\omega}^T\exp(\boldsymbol{u})}$$

This is a diagonal matrix where the diagonal entries are nonnegative and sum to one. The second term is

$$-\frac{(\boldsymbol{\omega}\odot\exp(\boldsymbol{u}))(\boldsymbol{\omega}\odot\exp(\boldsymbol{u}))^T}{(\boldsymbol{\omega}^T\exp(\boldsymbol{u}))^2}$$

This term is a rank-one matrix with a negative eigenvalue.

Writing Taylor's theorem:

$$lse_{\omega}(\boldsymbol{v}) = lse_{\omega}(\boldsymbol{u}) + \langle \nabla lse_{\omega}(\boldsymbol{u}), \boldsymbol{v} - \boldsymbol{u} \rangle$$
$$+ \int_{0}^{1} (1 - t)(\boldsymbol{v} - \boldsymbol{u})^{T} \nabla^{2} lse_{\omega}(\boldsymbol{u} + t(\boldsymbol{v} - \boldsymbol{u}))(\boldsymbol{v} - \boldsymbol{u}) dt$$

The terms in the integral can be bound

$$(\boldsymbol{v} - \boldsymbol{u})^{T} \nabla^{2} lse_{\boldsymbol{\omega}} (\boldsymbol{u} + t(\boldsymbol{v} - \boldsymbol{u}))(\boldsymbol{v} - \boldsymbol{u})$$

$$\leq (\boldsymbol{v} - \boldsymbol{u}) \frac{\operatorname{diag}(\boldsymbol{\omega} \cdot \operatorname{ocpx}(\boldsymbol{u} + t(\boldsymbol{v} - \boldsymbol{u})))}{\boldsymbol{\omega}^{T} \operatorname{exp}(\boldsymbol{u} + t(\boldsymbol{v} - \boldsymbol{u}))} (\boldsymbol{v} - \boldsymbol{u}) \quad (A.2)$$

$$= \sum_{j=1}^{J} \frac{\omega_{j} \operatorname{exp}(u_{j} + t(v_{j} - u_{j}))}{\boldsymbol{\omega}^{T} \operatorname{exp}(\boldsymbol{u} + t(\boldsymbol{v} - \boldsymbol{u}))} (v_{j} - u_{j})^{2}$$

$$\leq \operatorname{max}_{\boldsymbol{c} \geq 0, ||\boldsymbol{c}||_{1} = 1} \sum_{j=1}^{J} c_{j} (v_{j} - u_{j})^{2} \quad (A.3)$$

$$= ||\boldsymbol{v} - \boldsymbol{u}||_{\infty}^{2} \quad (A.4)$$

Eq. A.2 follows because the second term in the Hessian will give a nonpositive value and Eq. A.3 follows because the diagonal entries are nonnegative and sum to 1. The integral has an upper bound of $\frac{1}{2}||\boldsymbol{v}-\boldsymbol{u}||_{\infty}^2$. \square

Proof. Proof of Theorem 2.

The log partition function can be written as a sum over only the hidden units to give a similar form to Theorem 1. Define the set $\{h_i\}_{i=1}^{2^J}$ as the set of unique binary vectors $\{0,1\}^J$, and let $\mathbf{H} \in \{0,1\}^{J \times 2^J}$ be the matrix form of this set.

$$f(\boldsymbol{\theta}) = \log \sum_{i=1}^{2^J} \omega_i \exp(\boldsymbol{h}_i^T \boldsymbol{b})$$
 (A.5)

$$\omega_i = \sum_{m=1}^{M} \log(1 + \exp(\mathbf{W}_{m,.} \mathbf{h}_i + c_m)) (A.6)$$

Equation A.5 can be equivalently written as

$$f(\boldsymbol{\theta}) = \log \boldsymbol{\omega}^T \exp(\mathbf{H}^T \boldsymbol{b})$$
 (A.7)

with ω not dependent on b. Plugging into Equation 17.

$$f(\{\boldsymbol{b}, \boldsymbol{c}^{k}, \mathbf{W}^{k}\}) \leq f(\boldsymbol{\theta}^{k}) + \langle \nabla_{\mathbf{H}^{T}\boldsymbol{b}} lse_{\boldsymbol{\omega}}(\mathbf{H}^{T}\boldsymbol{b}^{k}), \mathbf{H}^{T}(\boldsymbol{b} - \boldsymbol{b}^{k}) \rangle + \frac{1}{2} ||\mathbf{H}^{T}(\boldsymbol{b} - \boldsymbol{b}^{k})||_{\infty}^{2}$$
(A.8)

To rewrite the inner product term, note that

$$\nabla_{\mathbf{H}^T \boldsymbol{b}} lse_{\boldsymbol{\omega}} (\mathbf{H}^T \boldsymbol{b}^k) = \mathbf{H}^T \nabla_{\boldsymbol{b}} f(\boldsymbol{\theta}^k) \quad (A.9)$$
$$(\nabla_{\mathbf{H}^T \boldsymbol{b}} lse_{\boldsymbol{\omega}} (\mathbf{H}^T \boldsymbol{b}^k))^T \mathbf{H} (\boldsymbol{b} - \boldsymbol{b}^k) = (\nabla_{\boldsymbol{b}} f(\boldsymbol{\theta}^k))^T (\boldsymbol{b} - \boldsymbol{b}^k)$$

The bound is simplified as

$$||\mathbf{H}^T(\boldsymbol{b}-\boldsymbol{b}^k)||_{\infty} \quad = \quad \max_i |\boldsymbol{h}_i^T(\boldsymbol{b}-\boldsymbol{b}^k)| \leq J||\boldsymbol{b}-\boldsymbol{b}^k||_{\infty}$$

Alternatively, this could be bound as

$$||\mathbf{H}^{T}(\boldsymbol{b} - \boldsymbol{b}^{k})||_{\infty} \leq \sqrt{J}||\boldsymbol{b} - \boldsymbol{b}_{k}||_{2} \quad (A.10)$$

 $||\mathbf{H}^{T}(\boldsymbol{b} - \boldsymbol{b}^{k})||_{\infty} \leq ||\boldsymbol{b} - \boldsymbol{b}_{k}||_{1} \quad (A.11)$

The proof on c follows with the same techniques. \square

Proof. Proof of Theorem 3.

As in the proof for Theorem 2, let $\mathbf{H} \in \{0,1\}^{J \times 2^J}$

and $\mathbf{V} \in \{0,1\}^{M \times 2^M}$, where each column is an unique binary vector. Define $\mathbf{U} = \mathbf{V}^T \mathbf{W} \mathbf{H}$ and $\mathbf{\Omega}_{ij} = \mathbf{v}_i^T \mathbf{c} + \mathbf{h}_j^T \mathbf{b}$. Let $\mathbf{u} = \text{vec}(\mathbf{U})$ and $\boldsymbol{\omega} = \text{vec}(\boldsymbol{\Omega})$. The log partition function is equivalently written

$$f(\boldsymbol{\theta}) = \log \sum_{i=1}^{2^M} \sum_{j=1}^{2^J} \mathbf{\Omega}_{ij} \exp \mathbf{U}_{ij}$$
 (A.12)

$$f(\boldsymbol{\theta}) = \log(\boldsymbol{\omega}^T \exp \boldsymbol{u})$$
 (A.13)

Plugging this form into Equation 17:

$$lse_{\omega}(\boldsymbol{u}) \geq lse_{\omega}(\boldsymbol{u}^{k}) + \langle \nabla_{\boldsymbol{u}} lse_{\omega}(\boldsymbol{u}^{k}), \boldsymbol{u} - \boldsymbol{u}^{k} \rangle + \frac{1}{2} ||\operatorname{vec}(\mathbf{U} - \mathbf{U}^{k})||_{\infty}^{2}$$
(A.14)

Note that

$$\langle \nabla_{\boldsymbol{u}} lse_{\boldsymbol{\omega}}(\boldsymbol{u}), \boldsymbol{u} - \boldsymbol{u}^{k} \rangle = \operatorname{tr}((\nabla_{\mathbf{U}} lse_{\boldsymbol{\Omega}}(\mathbf{U}))^{T}(\mathbf{U} - \mathbf{U}^{k}))$$
$$\mathbf{V} \nabla_{\mathbf{U}} lse_{\boldsymbol{\Omega}}(\mathbf{U})\mathbf{H}^{T} = \nabla_{\mathbf{W}} f(\boldsymbol{\theta})$$
(A.15)

Writing the inner product in terms of W gives

$$\operatorname{tr}((\nabla_{\mathbf{U}} lse_{\mathbf{\Omega}}(\mathbf{U}))^{T}(\mathbf{U} - \mathbf{U}^{k})) = \operatorname{tr}((\nabla_{\mathbf{W}})^{T}(\mathbf{W} - \mathbf{W}^{k}))$$
(A.16)

The bound is simplified:

$$||\operatorname{vec}(\mathbf{U} - \mathbf{U}^{k})||_{\infty} = \max_{i,j} |\boldsymbol{v}_{i}^{T}(\mathbf{W} - \mathbf{W}^{k})\boldsymbol{h}_{j}|$$

$$\leq \sqrt{MJ}||\mathbf{W} - \mathbf{W}^{k}||_{S^{\infty}}(A.17)$$

Combining these two elements proves Theorem 3. \Box

B Derivation of optimal steps

Proof. Proof of b^* in Equation 25. We want to find the minimizer of

$$\min_{\boldsymbol{b}} \langle \nabla_{\boldsymbol{b}} F(\boldsymbol{\theta}^k), \boldsymbol{b} - \boldsymbol{b}^k \rangle + \frac{J}{2} ||\boldsymbol{b} - \boldsymbol{b}^k||_{\infty}^2$$

First, add an additional variable a such that the minimizer of the expanded problem is the same as the original problem

$$= \min_{\boldsymbol{b}, a, |b_j| \le a, a \ge 0} \langle \nabla_{\boldsymbol{b}} F(\boldsymbol{\theta}^k), \boldsymbol{b} - \boldsymbol{b}^k \rangle + \frac{J}{2} a^2$$
(B.1)

This is straightforward to solve:

$$= \min_{a,a \ge 0} \langle \nabla_{\boldsymbol{b}} F(\boldsymbol{\theta}^k), -a \times \operatorname{sign}(\nabla_{\boldsymbol{b}} F(\boldsymbol{\theta}^k)) \rangle + \frac{J}{2} a^2$$

$$a^* = \frac{1}{7} ||\nabla_{\boldsymbol{b}} F(\boldsymbol{\theta}^k)||_1 \tag{B.2}$$

$$b^* = b - \frac{1}{I} ||\nabla_b F(\theta^k)||_1 \times \operatorname{sign}(\nabla_b F(\theta^k))$$
 (B.3)

Proof. Proof of \mathbf{W}^* in Equation 28.

Let $\mathbf{D} = \mathbf{W} - \mathbf{W}^k$, and decompose $\mathbf{D} = \mathbf{A}\mathbf{R}\mathbf{B}^T$, with \mathbf{A} and \mathbf{B} denoting the left and right singular vectors of $\nabla_{\mathbf{W}}F(\boldsymbol{\theta}^k)$. Then we want to minimize the quantity

$$\min_{\mathbf{D}} \operatorname{tr}(\nabla_{\mathbf{W}} F(\boldsymbol{\theta}^k) \mathbf{D}) + \frac{MJ}{2} ||\mathbf{D}||_{S^{\infty}}^2$$

As in the proof on the biases, add an additional variable that will give the same minimizer and solve for the solution.

$$= \min_{\mathbf{D},a,||\mathbf{D}||_{S_{\infty}} < a} \operatorname{tr}(\nabla_{\mathbf{W}} F(\boldsymbol{\theta}^{k}) \mathbf{D}) + \frac{MJ}{2} a^{2}$$

$$= \min_{\mathbf{D},a,||\mathbf{D}||_{S_{\infty}} < a} \operatorname{tr}(\nabla_{\mathbf{W}} F(\boldsymbol{\theta}^{k}) \mathbf{D}) + \frac{MJ}{2} a^{2}$$

$$= \min_{a,\mathbf{F},||\mathbf{F}||_{S_{\infty}} < a} \boldsymbol{\lambda}^{T} \operatorname{diag}(\mathbf{R}) + \frac{MJ}{2} a^{2}$$

Letting \mathbf{I}_M denote the M-dimensional identity matrix, this gives:

$$\mathbf{R}^* = \frac{-a}{MI} \mathbf{I}_M \tag{B.4}$$

$$a = ||\lambda||_1 \tag{B.5}$$

$$\mathbf{R}^* = \left(\frac{-1}{MJ}||\boldsymbol{\lambda}||_1 \times \mathbf{I}_M\right) \tag{B.6}$$

C Discussion of using ℓ_2 bound instead of ℓ_∞ bound on lse function

[Böhning, 1992] introduces a bound on the lse function

$$lse_{1}(\boldsymbol{v}) \leq lse_{1}(\boldsymbol{u}) + \langle \nabla_{\boldsymbol{u}} lse_{1}(\boldsymbol{u}), \boldsymbol{v} - \boldsymbol{u} \rangle$$
$$+ \frac{1}{2} (\boldsymbol{v} - \boldsymbol{u})^{T} \mathbf{B} (\boldsymbol{v} - \boldsymbol{u})$$
(C.1)

$$\mathbf{B} = \frac{1}{2} \left[\mathbf{I}_J - \frac{1}{J} \mathbf{1}_J \mathbf{1}_J^T \right]$$
 (C.2)

Where **I** is the *J*-dimensional identity matrix and $\mathbf{1}_J$ is a *J*-dimensional ones vector. This is trivially extended to use a nonnegative vector $\boldsymbol{\omega}$ in place of $\mathbf{1}_J$. The quadratic term is equivalently written

$$\frac{1}{2}(\boldsymbol{v} - \boldsymbol{u})^T \mathbf{B}(\boldsymbol{v} - \boldsymbol{u}) = \frac{1}{4}||\boldsymbol{v} - \boldsymbol{u}||_2^2 - \frac{1}{4}\text{mean}(\boldsymbol{v} - \boldsymbol{u})^2$$
(C.3)

Because of the differences of logsumexp functions, the mean term drops out and so this bound gives

$$lse_{\omega}(\mathbf{v}) \leq lse_{\omega}(\mathbf{u}) + \langle \nabla_{\mathbf{u}} lse_{\omega}(\mathbf{u}), \mathbf{v} - \mathbf{u} \rangle + \frac{1}{2 \times 2} ||\mathbf{v} - \mathbf{u}||_{2}^{2}$$
 (C.4)

Using Equation C.4 instead of Equation 17 in the proofs in Supplemental Section A leads to looser

bounds due to the high-dimensional nature of the observation space. However, it should be noted that it may be possible to bound this more tightly.

First, examining the bound on the matrix \mathbf{W} ,

$$\frac{1}{4}||\operatorname{vec}(\mathbf{U} - \mathbf{U}^{k})||_{2}^{2} \qquad (C.5)$$

$$= \frac{1}{4} \sum_{i=1}^{2^{M}} \sum_{j=1}^{2^{J}} (\mathbf{v}_{i}^{T}(\mathbf{W} - \mathbf{W}^{k})\mathbf{u}_{j})^{2} \qquad (C.6)$$

$$\leq \frac{1}{4} \sum_{i=1}^{2^{M}} \sum_{j=1}^{2^{J}} \mathbf{v}_{i}^{T}((\mathbf{W} - \mathbf{W}^{k}) \odot (\mathbf{W} - \mathbf{W}^{k}))\mathbf{u}_{j}(C.7)$$

$$= \frac{1}{4} \operatorname{tr}(((\mathbf{W} - \mathbf{W}^{k}) \odot (\mathbf{W} - \mathbf{W}^{k})) \sum_{i=1}^{2^{M}} \sum_{j=1}^{2^{J}} \mathbf{h}_{j} \mathbf{v}_{i}^{T})$$

$$= \frac{1}{4} \operatorname{tr}(((\mathbf{W} - \mathbf{W}^{k}) \odot (\mathbf{W} - \mathbf{W}^{k})) (\frac{2^{M+J}}{4} \mathbf{1}_{J \times M}))$$

$$= \frac{2^{M+J}}{16} ||\mathbf{W} - \mathbf{W}||_{F}^{2} \qquad (C.8)$$

For realistic problems sizes of RBMs, the bound that comes out of the logsum exp ∞ -norm bound is exponentially tighter than the bound using log sumexp ℓ_2 norm bound.

Similar analysis on the bias terms reveals a bounding term equations

$$f(\{\boldsymbol{b}, \boldsymbol{c}^{k}, \mathbf{W}^{k}\}) \leq f(\boldsymbol{\theta}^{k}) + \langle \nabla_{\boldsymbol{b}} f(\boldsymbol{\theta}^{k}), \boldsymbol{b} - \boldsymbol{b}^{k} \rangle$$

$$+ \frac{2^{J}}{8} ||\boldsymbol{b} - \boldsymbol{b}^{k}||_{\infty}^{2} \quad (C.9)$$

$$f(\{\boldsymbol{b}^{k}, \boldsymbol{c}, \mathbf{W}^{k}\}) \leq f(\boldsymbol{\theta}^{k}) + \langle \nabla_{\boldsymbol{c}} f(\boldsymbol{\theta}^{k}), \boldsymbol{c} - \boldsymbol{c}^{k} \rangle$$

$$+ \frac{2^{M}}{8} ||\boldsymbol{c} - \boldsymbol{c}^{k}||_{\infty}^{2} \quad (C.10)$$