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A Theorem proofs

Proof. Proof of Theorem 1.
The Hessian of the [se function is given by

diag(w © exp(u))

wT exp(u)
w ®exp(u))(w © exp(u))”
(wo (F;ET);EP(S))QP( ) (A1)

Viise,(u) =

There are two terms in the Hessian matrix. The first
term is
diag(w ©® exp(u))
wT exp(u)

This is a diagonal matrix where the diagonal entries
are nonnegative and sum to one. The second term is

(w © exp(u))(w © exp(u))”
(w” exp(u))?

This term is a rank-one matrix with a negative eigen-
value.

Writing Taylor’s theorem:
Ise,(v) = lsey,(u) + (Vise,(u), v — u)
1
+/ (1—t)(v —u) ' V2ise,(u +t(v —u))(v — u)dt
0
The terms in the integral can be bound

(v —uw)TV2se,(u+t(v —u)) (v —u)

< (0w R (v —w) (A2)
J wjexp(uj+t(vi—uy)) 2
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Eq. A.2 follows because the second term in the Hessian
will give a nonpositive value and Eq. A.3 follows be-
cause the diagonal entries are nonnegative and sum to
1. The integral has an upper bound of 3||[v—u|/%. O

Proof. Proof of Theorem 2.

The log partition function can be written as a sum
over only the hidden units to give a similar form to
Theorem 1. Define the set {hz}zil as the set of unique
binary vectors {0,1}7, and let H € {0,1}7*2” be the
matrix form of this set.

2J

f(8) = log> w;exp(hi'b) (A.5)
MZ:1

wi = Y log(1+exp(Wp, h;+ cm)) (A.6)

m=1

Equation A.5 can be equivalently written as

fo) =

with w not dependent on b. Plugging into Equation
17,

log w? exp(HTb) (A7)

F({b, " WHY) < f(6Y)
+ (Varplse,(HTB), HT (b — bY))
B O (A8)
To rewrite the inner product term, note that
Varplseo(HTY) = HTV,f(0F) (A.9)

(Varplseo HTV)NTH(D - b") = (Vof(0F)T(b—b")
The bound is simplified as

[HT(b—b")[]oc = max|h(b—b")| < J[|b— bl

Alternatively, this could be bound as

V|| byl
|6 — b1

[H (b~ ")
[[HT (b~ b°)]|

(A.10)

<
< (A.11)
The proof on ¢ follows with the same techniques. [

Proof. Proof of Theorem 3.
As in the proof for Theorem 2, let H € {0,1}7/%2’
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and V € {0,1}M 2™ \where each column is an unique
binary vector. Define U = VIWH and ©;; = vlc+

hib. Let u = vec(U) and w = vec(Q2). The log
partition function is equivalently written
21M 2J
i=1 j=1
f(@) = log (wT expu) (A.13)

Plugging this form into Equation 17:

Isew(uw) > lsey,(u”) + (Valsey, (ur), u — u)

1
+§\|Vec(U —UM|A (A.14)

Note that

(Valse,(u),u —u®) =

VVulseq(UH? = Vwf(6)

Writing the inner product in terms of W gives

tr((Vulseq(U)T (U - UY)) = tr((Vw)T (W — WF))
(A.16)

The bound is simplified:
[vee(U = U)||oe = max;,; [v] (W — WF)h|

VMW — WF|| go0 (A.17)

A

Combining these two elements proves Theorem 3. [

B Derivation of optimal steps

Proof. Proof of b* in Equation 25.
We want to find the minimizer of

mbin<VbF(0k), b—bk) + %Hb —bM|1%,

First, add an additional variable a such that the min-
imizer of the expanded problem is the same as the
original problem

= min  (V,F(8%),b—b") + ga2

b,a,|bj|<a,a>0

(B.1)

This is straightforward to solve:

= min (VbF(Gk), —a X sign(VbF(Gk)» + %CLQ

a,a>0

. 1
a = j||VbF(9k)||1 (B.2)

b* = b—%||VbF(0k)||1xsign(VbF(Ok)) (B.3)

O

tr((Vulseq(U)T (U — U*))
(A.15)

Proof. Proof of W* in Equation 28.

Let D = W — W¥*, and decompose D = ARB”, with
A and B denoting the left and right singular vectors
of Vw F(6%). Then we want to minimize the quantity

M
min tr(VwF(6%)D) + TJHDH%OO

As in the proof on the biases, add an additional vari-
able that will give the same minimizer and solve for
the solution.
MJ
= min  tr(VwF(0F)D) + —=a?
D,q,||D||s. <a (VwF(@")D) 2
MJ 5

= min tr(VwF(0F)D) + —2a
D,a,||D||s. <a ( w ( ) ) 2

MJ
= i A diag(R) + —=a?
o B [Fl]s.. <a ieg(R) + 2

Letting In; denote the M-dimensional identity matrix,
this gives:

—a

* — 7]:
R MJ M
a = [AlL
—1
R™ = (g7l > L) (B.6)
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C Discussion of using ¢, bound
instead of /., bound on [se function

[Bohning, 1992] introduces a bound on the Ise function

lser(v) < lser(u) + (Vylser(u), v —u)
-s—%(fu —u)'B(v—u) (C.1)
B = % [IJ - (1]1J1§} (C.2)

Where I is the J-dimensional identity matrix and 1; is
a J-dimensional ones vector. This is trivially extended
to use a nonnegative vector w in place of 1;. The
quadratic term is equivalently written

1 1 1
§(v —u)'Bv—u) = EHU T zmean(v —u)?
(C.3)
Because of the differences of logsumexp functions, the
mean term drops out and so this bound gives

lseu(v) < lsey,(u) + (Vylse,(u),v —u)

+ o — ull3 (C4)

2x2

Using Equation C.4 instead of Equation 17 in the
proofs in Supplemental Section A leads to looser
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bounds due to the high-dimensional nature of the ob-
servation space. However, it should be noted that it
may be possible to bound this more tightly.

First, examining the bound on the matrix W,

1
Zllvee(U — UM} (C:5)
1 oM oJ
= 1Y@ (W - Wh)? (C.6)
i=1 j=1
2M 2J

F (W= WH o (W - WH)u,(C.7)
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2]\4 2J
= (W =W o (W W) 3 S hyel)
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= itr(((WfWk)®(W*Wk))(2M+J1JxM))
M+J
= 2 W W (C8)

For realistic problems sizes of RBMs, the bound that
comes out of the logsumexp oo-norm bound is expo-
nentially tighter than the bound using logsumexp ¢o
norm bound.

Similar analysis on the bias terms reveals a bounding
term equations

F{b, ", W*Y) < £(6%) + (Vb f(6"),b—b")
k- v (©9)
FHB* e, WFY) < F(0%) + (Ve f(6%),c— ")

2M
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