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Abstract

Restricted Boltzmann Machines (RBMs) are
widely used as building blocks for deep learn-
ing models. Learning typically proceeds by
using stochastic gradient descent, and the
gradients are estimated with sampling meth-
ods. However, the gradient estimation is a
computational bottleneck, so better use of
the gradients will speed up the descent al-
gorithm. To this end, we first derive upper
bounds on the RBM cost function, then show
that descent methods can have natural ad-
vantages by operating in the `∞ and Shatten-
∞ norm. We introduce a new method called
“Stochastic Spectral Descent” that updates
parameters in the normed space. Empiri-
cal results show dramatic improvements over
stochastic gradient descent, and have only
have a fractional increase on the per-iteration
cost.

1 Introduction

Deep learning methods are becoming increasingly pop-
ular for feature extraction applications, having pro-
duced state-of-the-art results for many classification
problems [Bengio, 2012]. The impressiveness of the re-
sults are unfortunately matched by the (often) extraor-
dinary amount of computation that goes into training
them.

Instead of optimizing the cost function generated by
a deep network model directly, we can use a divide
and conquer strategy via Restricted Boltzmann Ma-
chines (RBMs). An RBM is a probabilistic genera-
tive model over binary observations and binary hidden
nodes, with connections only between the observed vis-
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ible nodes and unobserved hidden nodes. Indeed, one
can exploit RBMs as a building block for learning Deep
Restricted Boltzmann Machines (DRBMs) [Salakhut-
dinov and Hinton, 2009], Deep Belief Networks (DBN)
[Hinton et al., 2006] and Deep Sigmoid Belief Nets
[Neal, 1992, Mnih and Gregor, 2014]. To this end,
this paper introduces a new method, motivated by con-
vex optimization principles, to improve the efficiency
of training the RBM models.

To explain the novelty in our approach, we first elab-
orate on the specific computational challenge we ad-
dress in this paper. The training objective of the RBM
model is expressed as a minimization of a non-convex
composite objective over a matrix, that connects the
hidden and visible units as well as bias terms for both
the visible and hidden units. The first term in the ob-
jective is convex and captures the partition function
of the RBM. The second term is concave and encodes
the influence of the observations. Since calculating
the gradient of the individual terms imposes a signifi-
cant computational burden, we leverage Monte Carlo
integration via Contrastive Divergence (CD) [Hinton,
2002, Tieleman and Hinton, 2009] to obtain statistical
estimates.

Because the cost of estimating the gradients is a ma-
jor bottleneck, our key contention is that exploiting
the information in the gradients more effectively can
greatly speed up the overall inference. To achieve this
desideratum, we change the space in which our gradi-
ent method operates to better match the geometry of
the RBM problem. Indeed, we treat the matrix vari-
able explicitly as a matrix by choosing a normed space
based on the Shatten-∞ norm (i.e., the spectral norm).
We use a similar idea for the bias variables and operate
in the `∞-space. Changing the normed space impacts
the optimization radius, which can provably improve
optimization efficiency in the deterministic setting.

Our algorithm, termed stochastic spectral descent
(SSD) operates as follows: we obtain the stochastic
gradient estimates using CD. We then use an appro-
priate sharp-operator, which applies a nonlinear trans-
formation on the gradient. We update the putative

111



Stochastic Spectral Descent for Restricted Boltzmann Machines

solution using the gradient-sharp and a constant step-
size. For the matrix variables, the sharp operator takes
the singular value decomposition of the gradient and
sets all the nontrivial singular values to the trace-norm
of the gradient. For the bias terms, the sharp-operator
replaces the vector coefficients simply with their sign
(i.e., ±1) and multiplies the overall vector with the
`1-norm of the original gradient.

From a deterministic convex optimization perspective,
the proposed algorithm is almost classic [Nesterov,
2012]. In fact, we can derive the algorithm as a
majorization-minimization method by minimizing an
upper bound of the objective equation. However, to
the best of our knowledge, its application to learning
deep networks is novel, where the deterministic gra-
dient estimates are replaced by their stochastic esti-
mates. While we do not provide a rigorous conver-
gence proof of our algorithm in this paper, we provide
enough empirical evidence to justify its usage.

Recent work on improving the efficiency of training
RBMs largely focus on stochastic gradient descent and
its variations. These variations include autotuning of
the step-size in SGD [Schaul et al., 2012], the En-
hanced Gradient method [Cho et al., 2013], and us-
ing a variable metric [Duchi et al., 2010]. For train-
ing RBMs, we can also change the cost function to
improve training quality. Dropout RBM [Srivastava
et al., 2014], for instance, emprically reduces the num-
ber of dead units. Here, the focus is on using the ge-
ometry for theory-based algorithms instead of improv-
ing step-size selection or gradient estimates. However,
like the Dropout procedure, the SSD empirically learns
an RBM that has higher usages of hidden nodes with
fewer “dead units.”

2 Preliminaries and Model Definitions

2.1 Notation

Bold lower-case letters represent vectors, and bold
upper-case letters represent matrices. 〈·, ·〉 denotes an
inner product, and x � y denotes element-wise mul-
tiplication. The `p norm for a vector x is defined
||x||p = (

∑
n |xm|p)1/p. Letting λ be the vector of sin-

gular values of a matrix X ∈ RM×N , then the Shatten

p-norm is defined as ||X||Sp
= (

∑min(M,N)
n=1 λpn)1/p and

||X||S∞ = max(λ).

The gradient of a function f is Lipschitz continuous
with parameter L > 0 if ||∇f(x)−∇f(y)||p ≤ L||x−
y||q, where q is the dual norm to p. Functions that
are Lipschitz gradient have an upper bound f(y) ≤
f(x) + 〈∇f(x), (y − x)〉 + L

2 ||x − y||
2
q. When this

is the `2 norm, minimizing the upper surrogate leads
to the gradient method, which the stochastic gradient
method mirrors. The upper bounds for the RBM are

given in Section 3.

2.2 Restricted Boltzmann Machines

The RBM is a two-layer binary Markov Random Field,
where the observed binary stochastic visible units
v ∈ {0, 1}M have pairwise connections to the binary
stochastic hidden units h ∈ {0, 1}J . There are no pair-
wise connections within the visible units, nor within
hidden units. The negative energy for a state {v,h}
is

−E(v,h;θ) = vT c+ hT b+ vTWh (1)

with θ = {c, b,W}, c ∈ RM , b ∈ RJ , and W ∈
RM×J . The joint probability of the model is defined as
pθ(v,h) = exp(−E(v,h;θ))/Zθ,where Zθ is the par-
tition function. The likelihood for an observation v is:

pθ(v) =
1

Zθ

∑
h

exp(−E(v,h;θ)) (2)

Zθ =
∑
v

∑
h

exp(−E(v,h;θ)) (3)

The sum over h denotes the sum over all 2J binary
vectors, and likewise for v. The optimization goal is
to minimize the negative log-likelihood of the model,
defined for N data samples {vn}n=1,...,N as:

arg min
θ
F (θ) =

−1

N

N∑
n=1

log pθ(vn) = f(θ)− g(θ) (4)

f(θ) = log
∑
v

∑
h

exp(vT c+ hT b+ vTWh) (5)

g(θ) =
1

N

N∑
n=1

log
∑
h

exp(vTn c+ hT b+ vTn Wh)

The gradients of the objective function are dependent
on expectations of the model:

∇WF (θ) = Epθ(v,h)[vh
T ]− Ep0

[vhT ] (6)

∇bF (θ) = Epθ(v,h)[h]− Ep0
[h] (7)

∇cF (θ) = Epθ(v,h)[v]− 1

N

N∑
n=1

vn (8)

where p0 denotes 1
N

∑N
n=1 pθ(h|vn). The gradients

cannot be directly calculated in all but the smallest
problems, so Monte Carlo integration is used to es-
timate the gradients. Sampling from pθ(v,h) is in-
tractable, so Persistent Contrastive Divergence (PCD)
sampling schemes [Hinton, 2002, Tieleman and Hin-
ton, 2009] are used to generate approximate samples.

In general, explicit objective function evaluations
are intractable, but Annealed Importance Sampling
[Salakhutdinov and Murray, 2008] allows tight esti-
mates of the log partition function. Given the estimate
on logZθ, the objective function is analytic.
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2.3 Deep Belief Nets

A Deep Belief Net (DBN) [Hinton et al., 2006] is an
(L+1)-layer deep model of binary nodes. The bottom
layer consists of the visible units v ∈ {0, 1}M , and L
hidden layers are stacked on top. Each hidden layer

is a binary vector, h` ∈ {0, 1}J`

. The top two hidden
layers are jointly drawn from a RBM:

p(hL,hL−1) ∝ exp(−E(hL,hL−1)) (9)

−E(hL,hL−1) = (hL)T bL + (hL−1)T bL−1

+(hL−1)WLhL (10)

Given hL−1, the DBN is a directed generative model
with the same form of the Sigmoid Belief Net [Neal,
1992]. The hidden layers, h1, . . . ,hL−2, and the visible
units are generated by:

p(h`j |h`+1) = Bern(σ(b`j +

J`+1∑
k=1

W `+1
jk h`+1

k ))(11)

p(vm|h1) = Bern(σ(c`m +
J1∑
j=1

W 1
mjh

`+1
j )) (12)

Learning a Sigmoid Belief Network or a DBN is a
challenging problem, and much recent work has ex-
plored approximate learning using recognition models
[Hinton et al., 1995, Mnih and Gregor, 2014, Gregor
et al., 2014]. In [Hinton et al., 2006], it was shown that
greedy layer-wise training of RBMs would provide an
effective “pre-training” initialization of the DBN.

The pre-training method starts by training v and
h1 as an RBM. Then, using samples from the first-
layer RBM for h1, h1 and h2 are trained as an
RBM. This procedure continues until the last layer
is trained. “Fine-tuning” updates using the cost func-
tion of the DBN show only minor performance gains
[Hinton et al., 2006].

The model is evaluated by using variational evidence
lower bounds. Considering a 3-layer DBN, the model
likelihood is lower bounded by:

log pθ(v) ≥ Eq[log p(v|h1; W1, c)]− Eq[log q(h1)]

+Eq[log p(h1; W2, b1, b2)] (13)

The second hidden layer, h2, is analytically inte-
grated out, and the variational distributions q are
set during the greedy layer-wise training. Recent
methods have explored methods to learn better vari-
ational distributions [Mnih and Gregor, 2014, Gregor
et al., 2014] in these models. To evaluate the term
Eq[p(h1; W2, b1, b2)], first the log partition function
is estimated by Annealed Importance Sampling (AIS)
and then exp(−Eθ(v)) is estimated through Monte-
Carlo integration. Further details can be found in
[Salakhutdinov and Murray, 2008].

3 Learning Restricted Boltzmann
Machines

To the best of our knowledge, virtually all RBM train-
ing approaches operate in the Euclidean space, which
leads to stochastic gradient descent and its variations.
Because the gradients are expensive to estimate, ex-
ploiting the information in the gradients can dramat-
ically speed up inference.

The non-convex objective function of the RBM is

F (θ) = f(θ)− g(θ) (14)

where f(θ) comes from the log partition function and
g(θ) depends on the data. Both f(θ) and g(θ) are
convex functions, so the objective function can be an-
alyzed as the sum of a convex and concave function.
The key algorithmic idea is the use of majorization-
minimization to update the parameters. We first find
an upper bound on the function F (θ), and then steps
are taken to minimize this upper bound. The function
f(θ) is examined first.

3.1 Upper bounds on the log partition
function, f(θ)

Lipschitz-gradient functions have a quadratic upper
bound with a function-dependent parameter L:

f(u) ≤ f(v) + 〈∇f(v),u− v〉+
L

2
||u− v||2 (15)

If the norm is `2, this bound is minimized by taking a
step in the negative direction of the gradient, with u =
v−L−1∇f(v). Our function f(θ) is not dependent on
the `2 and Frobenius norms, but instead is bound by
the `∞ and the S∞ norms.

The analysis in this paper hinges on the form of this
inequality for functions of the form log

∑
j ωj exp(uj):

Theorem 1. Define a function lseω(u) =

log
∑J

j=1 ωj exp(uj), then this function has an
upper bound independent of ω:

lseω(v) ≤ lseω(u) + 〈∇lseω(u),v − u〉+
1

2
||v − u||2∞

(16)

Proof. See Supplemental Section A.

Critically, this inequality is independent of the con-
stant vector ω.

The bound given in Theorem 1 is different than the `2
bound on the lse function in the literature [Böhning,
1992], which in the RBM case is

lseω(v) ≤ lseω(u) + 〈∇lseω(u),v − u〉+
1

4
||v − u||22

(17)
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However, in the RBM the lse function has a dimen-
sionality of the number of possible states, which is
2M+J . Using the established `2 bound instead of the
`∞ bound would lead to exponentially looser estimates
in realistic problem sizes, as well as not correctly cap-
turing the geometry. See Supplemental Section C for
further details.

Theorem 1 is directly utilized to bound the function
f(θ). Let θk = {bk, ck,Wk}, then:

Theorem 2. The bias terms have an upper bound

f({b, ck,Wk}) ≤ f(θk) + 〈∇bf(θk), b− bk〉

+
J

2
||b− bk||2∞ (18)

f({bk, c,Wk}) ≤ f(θk) + 〈∇cf(θk), c− ck〉

+
M

2
||c− ck||2∞ (19)

Proof. See Supplemental Section A.

Given the gradient with respect to b, Equation 18 is
bound independently of ck and Wk, but the gradient
is dependent on the current values of these parameters.

Next, the majorization function on W for f is bound
by the Shatten-∞ norm:

Theorem 3. f({bk, ck,W}) has an upper bound:

f({bk, ck,W}) ≤ f(θk) + tr((W −Wk)T∇Wf(θk))

+MJ
2 ||W −Wk||2S∞ (20)

Proof. See Supplemental Section A.

3.2 Majorization bounds on F (θ)

Because of the convexity of g(θ), the bounds on g(θ)
are:

g({b, ck,Wk}) ≥ g(θk) + 〈∇bg(θk), b− bk〉 (21)

g({bk, c,Wk}) ≥ g(θk) + 〈∇cg(θk), c− ck〉 (22)

g({bk, ck,W}) ≥ g(θk) + 〈∇Wg(θk),W −Wk〉

Combining these inequalities with the inequalities on
f(θ) for the bias terms b and c gives

F ({b, ck,Wk}) ≤ F (θk) + 〈∇bF (θk), b− bk〉

+
J

2
||b− bk||2∞ (23)

F ({bk, c,Wk}) ≤ F (θk) + 〈∇cF (θk), c− ck〉

+
M

2
||c− ck||2∞ (24)

These majorization bounds for the bias terms on f are
not minimized in the direction of the gradient. Instead

Algorithm 1 RBM Stochastic Spectral Descent

1: Inputs: v1,...,N , J, α
2: Initialize: b = 0, c = 0, Wmj ∼ N (0, .1)
3: for i do=1,. . .
4: Sample a minibatch v1,...,B
5: [dW,db,dc]=CDGradEstimate(v1,...,B ,θ)
6: b = b− (sum(abs(db))/J)sign(db)
7: c = c− (sum(abs(dc))/M)sign(dc)
8: [A,λ,B] = svd(dW)
9: W = W − α(||λ||1/MJ)ABT

10: end for

the minimizers are

b∗ = bk − 1
J ||∇bf(θk)||1 × sign(∇bF (θk)) (25)

c∗ = ck − 1
M ||∇cf(θk)||1 × sign(∇cF (θk)) (26)

Derivations for Equations 25 and 26 can be found in
Supplemental Section B.

The bound on the objective function for W is:

F ({bk, ck,W}) ≤ F (θk) + tr(∇WF (θk)(W −Wk))

+
MJ

2
||W −Wk||2S∞ (27)

Because the term ||W −Wk||2S∞ is dependent on the
largest eigenvalue, the minimization of this majoriza-
tion function is not maximized in the direction of the
gradient. Representing the gradient by its singular

value decomposition ∇WF (θ) =
∑min(M,J)

k=1 λkakb
T
k ,

this bound is minimized at:

W∗ = W − ||λ||1
MJ

rank(∇WF (θk))∑
k=1

akb
T
k (28)

The derivation for Equation 28 can be found in Sup-
plemental Section B.

3.3 Stochastic Spectral Descent

In Section 3.2 the majorization bounds on the objec-
tive function are given for each set of parameters b,
c, and W. In a gradient descent scheme, the gradient
would be exactly calculated between each of the up-
dates. In an RBM, the cost of estimating the gradient
is high and mini-batches are necessary for large data
to reasonably estimate the gradients. To set the step-
size on W on the SSD, we can simply use 1/MJ , which
can exhibit slow convergence. However, the presence
of local strong convexity in g(θ) suggests that we can
choose a higher-step-size, which might potentially de-
pend on the minibatch size. Overall, with some exper-
imentation, we found the following setting robust in
many of the scenarios we tested, the step-size on W is
set to 1√

MJ
, and b and c are set to 1

M and 1
J respec-

tively. This procedure is summarized in Algorithm 1.
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3.4 Discussion of potential issues

The proposed algorithm exploits the natural geometry
of the logsumexp function and how it relates to the
RBM cost function. There are a few concerns about
using these projections instead of using the gradients
directly, including the additional computational cost
of the projection, the inexact nature of the estimating
the gradient, and the effect of small mini-batches on
the ability to estimate the eigenvectors of the gradient.
These concerns are addressed below.

Computational Cost of the Spectral Norm
The cost of computing the singular value decom-
position is in general not trivial, and requires
O(MJmin(M,J)) time to calculate. However, in the
RBM, the cost of estimating the gradient is expen-
sive. The cost of a single Gibbs sample from v(k−1) →
vk, the key operation of contrastive divergence, costs
O(MJ). A mini-batch of size Nbatch and Contrastive
Divergence order C (the number of Gibbs iterations)
costs O(MJNbatchC). Previous work has shown that
a large Contrastive Divergence order is necessary to
fit the generative model, with C ≥ 25 [Salakhutdinov
and Murray, 2008]. In our experiments, the compu-
tational cost of calculating the SVD is essentially free
compared to the computational cost of estimating the
gradient.

Issues with Noisy Gradient Estimation
The method for estimating the gradient is to take a
mini-batch of data and estimate the gradient on g(θ)
and estimate the gradient on f(θ) with samples via
persistent Contrastive Divergence. From SVD theory,
if the small batch sizes cause additive white Gaussian
noise, the expectation of the eigenvalues is biased up-
wards. However, the expectations of the subspaces
does not change. In practice, these issues don’t seem
to affect the performance.

Effect of mini-batches smaller than min(M,J)
In many cases, it’s of interest to use very small
mini-batches of size r << min(M,J). In this case
rank(∇WF (θ)) ≤ 2r, which gives a low rank matrix.
Learning is noisier but still provides competitive re-
sults, as shown in Section 5.1.

4 Related Work

Other optimization procedures have attempted to
adapt to geometry. ADAgrad [Duchi et al., 2010] pro-
vides a element-wise step size scheme that dynami-
cally adapts to the geometry of the data with the-
oretical guarantees on the regret bound. In machine
learning problems with very noisy gradients, ADAgrad
may reduce the step-size too quickly, so ADAdelta
[Zeiler, 2012] and RMSprop [Tieleman and LeCun,
2012] were introduced to provide schemes that adapt
to the geometry of the problem with alternative step-

size reduction. These methods have shown empirically
good performance in autoencoder models, and here we
will show results on both ADAgrad and RMSprop in
RBMs. These methods all attempt to learn the geom-
etry, where the proposed algorithm is given the geom-
etry of the problem.

Recent work has also focused on the SGD step-size.
[Schulz et al., 2010] explored the convergence of RBM
when a constant step size is used, as well as model di-
vergence when using smaller numbers of Contrastive
Divergence steps. [Schaul et al., 2012] explored au-
tomatic step-size selection for deep models, but did
not specifically consider RBMs. [Yuille, 2004] explored
when the CD based descent would converge.

Dropout [Srivastava et al., 2014] exploits model av-
eraging to improve the gradient descent algorithms
by preventing co-adaptation. Empirically, using a
dropout RBM models decreases the number of dead
units as compared to traditional RBMs. However,
Dropout RBMs differ from traditional RBMs due to
the penalization scheme on the model, and does not
give maximum likelihood estimates of the model, so is
not compared to here.

5 Experiments

Experiments were performed on simulated data and
the MNIST dataset. Estimation of the model likeli-
hood 1

N

∑
n log p(vn) = −F (θ) is calculated through

AIS [Salakhutdinov and Murray, 2008] with 10,000
temperature scales evenly spaced from 0 to 1 and 100
particles. The base distribution in AIS was set to inde-
pendent binary draws at the mean of the observations.
The performance of SSD was compared to stochastic
gradient descent (SGD), ADAgrad [Duchi et al., 2010],
and RMSprop [Tieleman and LeCun, 2012]. The step-
size in ADAgrad was set to 0.1, and the step size
in RMSprop was set to 0.1 with a decay parameter
of 0.999, which were optimal at both J = 25 and
J = 100 in the MNIST data set. We compared to
SGD with constant step sizes set at 0.1 and 0.01. The
algorithms all shared the same initialization for each
problem with the bias terms set to zero vectors, and
the pairwise weights W initialized to random Gaussian
draws with variance 0.01. The CD order was set to 25;
this was chosen based on the results of [Salakhutdinov
and Murray, 2008], that empirically showed a higher
number was necessary for good model estimates. The
batch size was set to 2J unless otherwise stated.

5.1 Synthetic Data

Experiments were run on synthetic data sets with M =
100 and J = 25. N = 5000 data samples were used.
The observations were approximately generated from
the model by first drawing random binary vectors, and
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Figure 1: Results on simulated M = 100, J = 25 datasets, all plots shown in the log scale on iterations (Left) W
set to a full matrix. (Middle) W set to a matrix with rank 5. All algorithms converge to the same approximate
objective value, but SSD gets to that level in fewer iterations. (Right) W set to a full matrix, but the batch size
is set to 10.
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Figure 2: Learning curves for a single-layer RBM on MNIST showing the mean log p(v) versus the number
of iterations. (Left) J=25 (Middle) J=100 (Right) J=500. SSD shows improved performance over competing
algorithms across all levels of J for this dataset.

then running 10,000 Gibbs iterations using the true
parameters.

In the first synthetic data example, W was set to ran-
dom Gaussian weights with variance 0.5 to mimic a full
rank matrix, and the biases were set to zeros. Figure 1
(left) shows the mean log p(v) for all of the data sam-
ple versus the log of the number of iterations. Here,
SSD reaches the saturating value with a full order of
magnitude fewer iterations. Larger step-sizes on SGD
were unstable.

The next simulated dataset was generated from a low-
rank matrix on W. This is meant to address con-
cerns on the ability of the algorithm to fit low-rank
data when the steps on W are full-rank. The pair-
wise matrix W was set to ABT with A ∈ RM×R and
B ∈ RJ×R, with R = 5. A was generated from ran-
dom Gaussians with variance 1, and B was generated
from random Gaussian with variance 0.5. The biases
were set to zero. Here, the performance from SSD is
still better than SGD, although the performance mar-
gin is smaller.

Finally, to examine the effects of small batch sizes, a
random full-weight matrix was generated as in the first
example. In this example, SSD still performs quite
well. The improvement in performance is less than the
cases where the gradient is better estimated, however.

5.2 MNIST

The MNIST digit dataset contains 60,000 training and
10,000 test images of handwritten digits (0 to 9) of
size 28 × 28 pixels. Each image was vectorized and
binarized as in [Salakhutdinov and Murray, 2008].

5.2.1 RBM

The learning curves for different levels of J are first
examined. In Figure 2(left), the learning curves for
J = 25 are shown. Here, SSD gives dominant per-
formance and has a fairly smooth curve. ADAgrad
and RMSprop are surprisingly uncompetetive on this
problem size; further tuning parameters on these algo-
rtihms did not result in improved performance. After
30,000 iterations, SGD has yet to approach the per-

116



David Carlson1, Volkan Cevher2, Lawrence Carin1

100 200 300 400 500
−140

−130

−120

−110

−100

−90

−80

J

lo
g
p
(v
)

Performance after 10k Iterations

SSD
SGD
RMSprop
ADAgrad
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formance given by SSD, and SSD is able to appoach
this level of performance quickly. While the focus of
this paper is on RBM training, it is interesting to ex-
amine the testing performance as well. The mean test
log likelihoods were -129.76 for SSD, -131.73 for SGD,
-137.02 for RMSprop, and -135.97 for ADAgrad af-
ter 30,000 iterations. The MNIST dataset is unusual
in this case because the test set has a bigger likeli-
hood than the training dataset. This is consistent with
the literature on networks of this size [Salakhutdinov
and Murray, 2008]. The learning curves on these algo-
rithms are quite noisy, but this is consistent with ob-
servations of long runs of SGD in RBMs [Schulz et al.,
2010].

In Figure 2(middle), the learning curves for J = 100
are shown. SSD once again shows dominant perfor-
mance. After 30,000 iterations, the test performance is
-97.11 for SSD, -101.78 for SGD, -99.82 for RMSprop,

and -100.10 for ADAgrad.

In Figure 2(right), the learning curves for J = 500
are shown. Here, both ADAgrad and RMSprop show
significant improvement over SGD, but still lag be-
hind the performance of SSD. The test performance is
-86.77 for SSD, -89.61 for RMSprop, -90.29 for SGD
with parameter 0.1, and -90.36 for SGD with param-
eter 0.01. In fact, after 50,000 iterations, SGD is at
roughly the same level from SSD at 5,000. Note that
this is marginally below the value reported for the test
set in [Salakhutdinov and Murray, 2008], but there a
penalized likelihood scheme was used instead of max-
imum likelihood, giving less overfitting. Matching the
penalized likelihood scheme with SSD gives a test per-
formance of -85.65 with a training likelihood of -82.60
after 50,000 iterations.

To investigate the effect of using this algorithm on a
given number of iterations, the number of iterations
was set to 10,000 and run for J values varying from
25 to 500. The results of these simulations are shown
in Figure 3. Because the computational costs of run-
ning the algorithm are similar for all algorithms (in our
code, a single iteration took 3% longer per iteration in
SSD than SGD for J=100), this provides a metric of
how well each algorithm will do in a given amount of
time.

Figure 3 shows the training mean log probability af-
ter 10,000 iterations for all algorithms considered. Its
interesting to note that both RMSprop and ADAgrad
seem to be improving in comparative performance as
the problem size increases, but SSD is provides the
best performance over the experimental range. In fact,
after 10,000 iterations, SSD has already reached the
best reported training likelihood in the literature.

The usage of units is also considered. It was shown in
(Srivastava et al. [2014]) that using a Dropout-RBM
results in fewer “dead” units, which are units that are
nearly completely on or nearly completely off. Here,
the per-unit binary entropy of the empirical distribu-
tion of each unit is used to measure how much a unit
is effectively used. This result for a J = 500 RBM is
shown in Figure 4, which shows that SSD hidden units
have higher entropies than SGD hidden units. Thus,
each unit seems to be utilized to a higher extent by
training with SSD instead of SGD.

5.2.2 DBN

Here a 3-layer Deep Belief Net is considered. To ex-
amine how the different learning speeds of optimiza-
tion procedures propagate on the deep model, the
first layer was trained with the different algorithms for
1000, 5000, 10000, 20000, and 30000 gradient steps for
J = 100 hidden nodes. A DBN with 200 nodes in the
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L1 Iters SSD ADAgrad RMSprop SGD

1k, Train -118.3 -125.5 -124.9 -133.9
2k, Train -106.2 -111.7 -110.0 -116.8
10k, Train -104.7 -107.7 -106.2 -113.9
20k, Train -101.6 -103.2 -102.0 -109.3
30k, Train -101.0 -102.3 -101.6 -108.0

1k, Test -117.5 -124.4 -124.1 -132.4
5k, Test -105.6 -110.7 -109.8 -115.7
10k, Test -103.5 -106.4 -105.2 -113.2
20k, Test -102.3 -104.6 -103.0 -110.2
30k, Test -101.7 -103.4 -102.7 -108.7

Table 1: A DBN with 100 hidden nodes in the first
layer and 200 hidden nodes in the second layer. The
left column denotes the number of training samples
on the first layer, and then the corresponding lower
bounds on the log likelihood given for both the training
and the testing set.

second hidden layer was learn based on this output,
and the lower bound was evaluated. 10,000 iterations
were used in the second layer. Because the second
layer network was much smaller, this was an effective
number of samples to converge and was much quicker.
The lower bounds are shown in Table 1. SSD shows a
performance improvement at every number of gradient
steps, often by several nats. All algorithms that use
geometry outperform SGD here.

6 Discussion

We have introduced a novel descent method for RBMs,
Stochastic Spectral Descent, which utilizes the natural
geometry of the RBM cost function by operating in the
`∞ and S∞ norms. Empirical results suggest that this
is a good general purpose algorithm for RBMs. To the
best of our knowledge, the bounds presented in this
paper are novel, and the algorithm gives state-of-the-
art learning performance. Further improvements may
be obtained by using better gradient estimators, ei-
ther by using tempering schemes [Salakhutdinov, 2010,
Cho et al., 2010] or the Enhanced Gradient [Cho et al.,
2013]. Future work will including extending this anal-
ysis directly to deep models, as well as related models,
including the Sigmoid Belief Net.
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