
Online Ranking with Top-1 Feedback

We provide missing proofs of theorems and extensions
that were excluded from the main body of the paper
due to space constraints.

12 Regret for SumLoss

12.1 Proof of Lemma 2

Proof. For any p ∈ ∆, we have ℓi · p =
∑2m

j=1 pj (σi ·
rj) = σi · (

∑2m

j=1 pjrj) = σi ·Er[r], where the expecta-
tion is taken w.r.t. p (pj is the jth component of p).
By dot product rule between 2 vectors, li · p is min-
imized when ranking of objects according to σi and
expected relevance of objects are in opposite order.
That is, the object with highest expected relevance is
ranked 1 and so on. Formally, li · p is minimized when
Er[r(σ

−1
i (1)] ≥ Er[r(σ

−1
i (2)] ≥ . . . ≥ Er[r(σ

−1
i (m)].

Thus, for action i, probability cell is defined as Ci =
{p ∈ ∆ :

∑2m

j=1 pj = 1, Er[r(σ
−1
i (1)] ≥ Er[r(σ

−1
i (2)] ≥

. . . ≥ Er[r(σ
−1
i (m)]}. Note that, p ∈ Ci iff action i is

optimal w.r.t. p. Since Ci is obviously non-empty
and it has only 1 equality constraint (hence 2m − 1
dimensional), action i is Pareto optimal.

The above holds true for all learner’s actions i.

12.2 Proof of Lemma 3

Proof. From Lemma 2, we know that every one of
learner’s actions is Pareto-optimal and Ci, associ-
ated with action σi, has structure Ci = {p ∈ ∆ :∑2m

j=1 pj = 1, Er[r(σ
−1
i (1)] ≥ Er[r(σ

−1
i (2)] ≥ . . . >

Er[r(σ
−1
i (m)]}.

Let σ−1
i (k) = a, σ−1

i (k + 1) = b. Let it also be
true that σ−1

j (k) = b, σ−1
j (k + 1) = a and σ−1

i (n) =

σ−1
j (n), ∀n ̸= {k, k + 1}. Thus, objects in {σi,σj}

are same in all places except in a pair of consecutive
places where the objects are interchanged.

Then, Ci ∩ Cj = {p ∈ ∆ :
∑2m

j=1 pj =

1, Er[r(σ
−1
i (1)] ≥ . . . ≥ Er[r(σ

−1
i (k)] = Er[r(σ

−1
i (k+

1)] ≥ . . . ≥ Er[r(σ
−1
i (m)]}. Hence, there are two

equalities in the non-empty set Ci ∩ Cj and it is an
(2m − 2) dimensional polytope. Hence condition of
Definition 4 holds true and {σi,σj} are neighboring
actions pair.

12.3 Proof of Theorem 4

Proof. We will explicitly show that local observability
condition fails by considering the case when number of
objects is m = 3. Specifically, action pair {σ1, σ2}, in
Table 1 are neighboring actions, using Lemma 3 . Now

every other action {σ3,σ4,σ5,σ6} either places object
2 at top or object 3 at top. It is obvious that the set of
probabilities for which Er[r(1)] ≥ Er[r(2)] = Er[r(3)]
cannot be a subset of any C3, C4, C5, C6. From Def.
4, the neighborhood action set of actions {σ1,σ2} is
precisely σ1 and σ2 and contains no other actions. By
definition of signal matrices Sσ1 , Sσ2 and entries ℓ1, ℓ2
in Table 1 and 2, we have,

Sσ1 = Sσ2 =

[
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

]

ℓ1 − ℓ2 =
[
0 1 −1 0 0 1 −1 0

]
.

(8)

It is clear that ℓ1 − ℓ2 /∈ Col(S⊤
σ1
). Hence, Definition

5 fails to hold.

13 Efficient Algorithm for Obtaining
Regret

13.1 Proof of Lemma 8

Proof. We can write r̂t =
∑m

j=1 rij (j)ej , where
ej is the standard basis vector along coordinate
j. Then Ei1,...,im(r̂t) =

∑m
j=1 Eij (rij (j)ej) =

∑m
j=1

∑t
k=1

rk(j)ej
t

= ravg1:t .

13.2 Proof of Theorem 7

Proof. The proof for the top-1 feedback needs a careful
look at the analysis of FTPL when we divide time into
phases/blocks.

FTPL with blocking. Instead of top-1 feedback,
assume that at each round, after learner reveals his ac-
tion, the full relevance vector is revealed to the learner.
Then an O(

√
T ) expected regret for SumLoss can

be obtained by applying FTPL (Follow the perturbed
leader), in the following manner.

At end of every round t, the full relevance vector gen-
erated by the adversary is revealed. The relevance
vectors are accumulated as r1:t = r1:t−1 + rt, where
r1:s =

∑s
i=1 ri. A learner’s action (permutation) for

round t+1 is generated by solving M(r1:t+pt), where
pt ∈ [0, 1

ϵ ]
m (uniform distribution) and ϵ is algorith-

mic (randomization) parameter. It should be noted
that M(y) = argmin

σ
σ · y is simply sorting of y since

f(σ) = σ is a monotone function as defined in Sec. 3 .

The key idea is that FTPL implicitly maintains a dis-
tribution over m! actions (permutations) at beginning
of each round, by randomly perturbing the scores of
only m objects: score of each object is sum of (deter-
ministic) accumulated relevance so far and (random)
uniform value from [0, 1

ϵ ]. Thus, it bypasses having to
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maintain explicit weight on each of m! arms, which is
computationally prohibitive. This key property which
introduces efficiency in our algorithm is in contrast to
the general algorithms based on exponential weights,
which have to maintain explicit weights, based on ac-
cumulated history, on each action and randomly select
an action based on weights.

Now let us look at a variant of the full information
problem. The (known) time horizon T is divided into
K blocks, i.e., {B1, . . . , BK}, of equal size ⌊T/K⌋.
Here, Bi = {(i − 1)(T/K) + 1, (i − 1)(T/K) + 2, (i −
1)T/K + 3, . . . , i(T/K)}. While operating in a block,
the relevance vectors within the block are accumu-
lated, but not used to generate learner’s actions like
in the full information version. Assume at the start
of block Bi, there was some relevance vector ri. Then
at each time point in the block, a fresh p ∈ [0, η]m is
sampled and M(ri + p) is solved to generate permu-
tation for next time point. At the end of a block, the
average of the accumulated relevance vectors (ravg) for
the block is used for updation, as ri+ravg, to get ri+1

for the next block. The process is repeated for each
block. At the beginning of the first block, r1 = {0}m.

Formally, let the FTPL have an implicit distribution
ρi (over the permutations) at the beginning of block
Bi. That is ρi ∈ ∆, where ∆ is the probability sim-
plex over m! actions. Sampling a permutation using
ρi at each time point of the block Bi means sampling
a fresh p ∈ [0, η]m at every time point t and solving
M(s1:(i−1)+p), where s1:(i−1) =

∑i−1
j=1 sj and sj is the

average of relevance vectors of block Bj . Note that the
distribution ρi is a fixed, deterministic function of the
vectors s1, . . . , si−1.

Since action σt, for t ∈ Bk, is generated according to
distribution ρk (we will denote this as σt ∼ ρk), and
in block k, distribution ρk is fixed, we have

Eσt∼ρk [
∑

t∈[Bk]

SumLoss(σt, rt)] =

∑

t∈Bk

ρk · [SumLoss(σ1, rt), . . . , SumLoss(σm!, rt)].

(dot product between 2 vectors of length m!).

Thus, the total expected loss of this variant of the full
information problem is:

T∑

t=1

Eσt∼ρk [SumLoss(σt, rt)] =

K∑

k=1

Eσt∼ρk [
∑

t∈Bk

SumLoss(σt, rt)] (9)

=
K∑

k=1

∑

t∈Bk

ρk · [SumLoss(σ1, rt), . . . , SumLoss(σm!, rt)]

=
K∑

k=1

∑

t∈Bk

ρk · [σ1 · rt, . . . ,σm! · rt)] By defn. of SumLoss

=
T

K

K∑

k=1

ρk · [σ1 · sk, . . . ,σm! · sk]

=
T

K

K∑

k=1

Eσk∼ρk [SumLoss(σk, sk)]

=
T

K
Eσ1∼ρ1,...,σK∼ρK

K∑

k=1

SumLoss(σk, sk) (10)

where sk =
∑

t∈Bk

rt
T/K

. Note that, at end of every

round k ∈ [K], ρk is updated to ρk+1 by feeding s1:k
to FTPL. By the regret bound of FTPL, for K rounds
of full information problem, with ϵ =

√
D/RAK, we

have:

Eσ1∼ρ1,...,σK∼ρK

K∑

k=1

SumLoss(σk, sk)

≤ min
σ

K∑

k=1

SumLoss(σ, sk) + 2
√
DRAK

= min
σ

K∑

k=1

σ · sk + 2
√
DRAK

= min
σ

T∑

t=1

σ · rt
T/K

+ 2
√
DRAK

(11)

where D,R,A are parameters dependent on the loss
under consideration, that we will discuss and set later.

Now, since

min
σ

T∑

t=1

σ · rt
T/K

= min
σ

1

T/K

T∑

t=1

SumLoss(σ, rt),

combining Eq. 9 and Eq. 11, we get:

T∑

t=1

Eσt∈ρk [SumLoss(σt, rt)]

≤ min
σ

T∑

t=1

SumLoss(σ, rt) + 2
T

K

√
DRAK.

(12)

FTPL with blocking and top-1 feedback. How-
ever, in our top-1 feedback model, the learner does
not get to see the full relevance vector at each round.
Thus, we form the unbiased estimator ŝk of sk, using
Lemma 8. That is, at start of each block, we choose
m time points uniformly at random, and at those time
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points, we output a random permutation which places
each object, in turn, at top. At the end of the block,
we form the relevance vector ŝk which is the unbiased
estimator of sk. Note that using ŝk instead of true sk
makes the distributions ρk themselves random. But
significantly, ρk is dependent only on information re-
ceived upto the beginning of block k and is indepen-
dent of the information collected in the block. Thus,
for block k, we have:

Eσt∼ρk(ŝ1,ŝ2,..,ŝk−1)

∑

t∈[Bk]

SumLoss(σt, rt)

=
T

K
Eσk∼ρk(ŝ1,ŝ2,..,ŝk−1)SumLoss(σk, sk)

(From Eq. 9)

=
T

K
Eσk∼ρk(ŝ1,ŝ2,..,ŝk−1)EŝkSumLoss(σk, ŝk)

(∵ SumLoss is linear in s and ŝk is unbiased)

=
T

K
EŝkEσk∼ρk(ŝ1,ŝ2,..,ŝk−1)SumLoss(σk, ŝk).

In the last step above, we crucially used the fact that,
since random distribution ρk is independent of ŝk, the
order of expectations is interchangeable. Taking ex-
pectation w.r.t. ŝ1, ŝ2, .., ŝk−1, we get,

Eŝ1,...,ŝk−1Eσt∼ρk(ŝ1,ŝ2,..,ŝk−1)

∑

t∈[Bk]

SumLoss(σt, rt) =

T

K
Eŝ1,...,ŝk−1,ŝkEσt∼ρk(ŝ1,ŝ2,..,ŝk−1)SumLoss(σk, ŝk).

Thus,

E
T∑

t=1

SumLoss(σt, rt) = E
K∑

k=1

∑

t∈[Bk]

SumLoss(σt, rt)

K∑

k=1

Eŝ1,...,ŝk−1Eσt∼ρk(ŝ1,ŝ2,..,ŝk−1)

∑

t∈[Bk]

SumLoss(σt, rt)

T

K

K∑

k=1

Eŝ1,...,ŝk−1,ŝkEσt∼ρk(ŝ1,ŝ2,..,ŝk−1)SumLoss(σk, ŝk)

=
T

K
Eŝ1,...,ŝK

K∑

k=1

Eσt∼ρk(ŝ1,ŝ2,..,ŝk−1)SumLoss(σk, ŝk)

Now using Eq. 11, we can upper bound the last term
above as

≤ T

K
{Eŝ1,...,ŝK [min

σ

K∑

k=1

σ · ŝk] + 2
√
DRAK}

≤ T

K
{min

σ

K∑

k=1

σ · sk + 2
√
DRAK}

(Jensen’s Inequality)

≤ min
σ

T∑

t=1

σ · rt + 2
T

K

√
DRAK

= min
σ

T∑

t=1

SumLoss(σ, rt) + 2
T

K

√
DRAK.

However, since in each block Bk, m rounds are re-
served for exploration, where we do not draw σt from
distribution ρk, the total expected loss is higher. Ex-
ploration leads to an extra regret of RmK, where R,
as has been stated before, is an implicit parameter de-
pending on the loss under consideration. The extra
regret is because loss in each of the exploration rounds
is at most R and there are a total of mK exploration
rounds over all K blocks. Thus, overall regret is larger
by RmK giving us:

E

[
T∑

t=1

SumLoss(σt, rt)

]
−min

σ

T∑

t=1

SumLoss(σ, rt)

≤ RmK + 2
T

K

√
DRAK.

Now we optimize over K and set K =
(DA/R)1/3(T/m)2/3, to get:

E

[
T∑

t=1

SumLoss(σt, rt)

]
≤ min

σ

T∑

t=1

SumLoss(σ, rt)

+O(m1/3R2/3(DA)1/3T 2/3)
(13)

Now, we recall the definitions of D, R and A from
Kalai and Vempala [2005]: D is an upper bound on
the ℓ1 norm of vectors in learner’s action space, R is an
upper bound on the dot product of vectors in learner’s
and adversary’s action space, and A is an upper bound
on the ℓ1 norm on vectors in adversary’s action space.
Thus, for SumLoss, we have

D =
m∑

i=1

σ(i) = O(m2),

R =
m∑

i=1

σ(i)r(i) = O(m2),

A =
m∑

i=1

r(i) = O(m).

Plugging in these values gives us Theorem 7.

14 Regret Bounds for DCG and
Prec@k

We deal with DCG first followed by Prec@k.
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14.1 Extension of Results of SumLoss to
DCG

We give pointers in the direction of proving the fol-
lowing results: a) Local observability condition fails
to hold for DCG, b)The efficient algorithm of Sec.7
applies to DCG, with regret of O(T 2/3). Thus, the
minimax regret of DCG is Θ(T 2/3). All results are
applicable to non-binary relevance vectors. The ap-
plication of Algorithm 1 allows us to skip the proof
of global observability, which is complicated for non-
binary relevance vectors.

Let adversary be able to choose r ∈ {0, 1, . . . , n}m.
Then, from definition of DCG in Sec.3 , it is clear
DCG=f(σ) · g(r). f(σ) and g(r) has already been
defined for DCG. Both are composed of m copies of
univariate, monotonic, scalar valued function, where
for f(·), it is monotonically decreasing whereas for g(·),
it is increasing.

With slight abuse of notations, the loss matrix L im-
plicitly means gain matrix, where entry in cell {i, j}
of L is f(σi) · g(rj). The feedback matrix H remains
the same. In Definition 1, learner action i is optimal
if ℓi · p ≥ ℓj · p, ∀j ̸= i.

In Definition 2, the maximum number of distinct el-
ements that can be in a row of H is n + 1. The sig-
nal matrix now becomes Si ∈ {0, 1}(n+1)×2m , where
(Si)k,ℓ = (Hi,ℓ = k − 1).

14.1.1 Local Observability Fails

Since we are trying to establish a lower bound, it is
sufficient to show it for binary relevance vectors.

In Lemma 2, proved for SumLoss, ℓi · p equates to
f(σ) · Er[r]. From definition of DCG, and from
the structure and properties of f(·), it is clear that
ℓi · p is maximized under the same condition, i.e,
Er[r(σ

−1
i (1)] ≥ Er[r(σ

−1
i (2)] ≥ . . . ≥ Er[r(σ

−1
i (m)].

Thus, all actions are Pareto-optimal.

Careful observation of Lemma 3 shows that it is di-
rectly applicable to DCG, in light of extension of
Lemma 2 to DCG.

Finally, just like in SumLoss, simple calculations with
m = 3 and n = 1, in light of Lemma 2 and 3, show
that local observability condition fails to hold.

We show the calculations:

Sσ1 = Sσ2 =

[
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

]

ℓσ1 =[0, 1/2, 1/ log2 3, 1/2 + 1/ log2 3, 1, 3/2,

1 + 1/ log2 3, 3/2 + 1/ log2 3]

ℓσ2 =[0, 1/ log2 3, 1/2, 1/2 + 1/ log2 3, 1, 1 + 1/ log2 3,

3/2, 3/2 + 1/ log2 3]

It is clear that ℓ1 − ℓ2 /∈ Col(S⊤
σ1
). Hence, Definition

5 fails to hold.

14.1.2 Implementation of the Efficient
Algorithm

The only change in Algorithm 1 that allows extension
to DCG with non-binary relevance is that relevance
values will enter into the algorithm via the transfor-
mation gs(·). That is, every component of relevance
vector r, i.e., r(i), will become 2r(i) − 1. Every op-
eration of Algorithm 1 will occur on the transformed
relevance vectors. It is very easy to see that every step
in analysis of the algorithm will be valid by just con-
sidering the transformed relevance vectors to be some
new relevance vectors with magnified relevance values.
The fact that r was binary valued in SumLoss played
no role in the analysis of the algorithm or Lemma 8.
The properties which allowed the extension was that
g(·) is composed of univariate, monotonic, scalar val-
ued functions and DCG(σ, r) is a linear function of
f(σ) and g(r).

It is also interesting to note thatM(y) = argmax
σ

f(σ)·
y = argmin

σ
σ · y. Thus, no changes in the algorithm

is required, other than simple transformation of rele-
vance values.

14.1.3 Proof of Theorem 9

Following the proof of Theorem 7, modified for DCG,
Eq.13 gives (for DCG):

E[
T∑

t=1

DCG(σt, rt)] ≥ max
σ

T∑

t=1

DCG(σ, rt)

−O(m1/3R2/3(DA)1/3T 2/3).

For DCG, D =
∑m

i=1 f
s(σ(i)) = O(m), R =∑m

i=1 f
s(σ(i))gs(r(i)) = O(m(2n − 1)), A =∑m

i=1 g
s(r(i)) = O(m(2n − 1)) and hence the regret

is O((2n − 1)m5/3T 2/3).

14.2 Extension of Results of SumLoss to
Prec@k

Since Prec@k = f(σ)·r, with f(·) having properties en-
listed in Sec. 3, all results of SumLoss trivially extend
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to Prec@k, except results on local observability. The
reason is that while f(·) of SumLoss is strictly mono-
tonic, f(·) of Prec@k is monotonic but not strict. The
gain function depends only on the objects in the top-k
position of the ranked list, irrespective of the order. A
careful analysis shows that Lemma 3 fails to extend to
the case of Prec@k. Thus, we cannot define the neigh-
boring action set of the Pareto optimal action pairs,
and hence cannot prove or disprove local observability.
The structure of neighbors in Prec@k remains an open
question.

However, the non-strict monotonicity of Prec@k is re-
quired for solving M(y) = argmax

σ
f(σ) · y efficiently.

14.2.1 Proof of Theorem 10

Following the proof of Theorem 7, modified for
Prec@k, Eq.13 gives (for Prec@k):

E[
T∑

t=1

Prec@k(σt, rt)] ≥ max
σ

T∑

t=1

Prec@k(σ, rt)

−O(m1/3R2/3(DA)1/3T 2/3).

For Prec@k, D =
∑k

i=1 f
s(σ(i)) = O(k), R =∑m

i=1 f
s(σ(i))gs(r(i)) = O(k), A =

∑m
i=1 r(i) = O(m)

and hence the regret is O(km2/3T 2/3).

15 Non-existence of Sublinear Regret
Bounds for NDCG, MAP and
AUC

We show via simple calculations that for the case
m = 3, global observability condition fails to hold
for NDCG, when relevance vectors are restricted to
take binary values. The intuition behind failure
to satisfy global observability condition is that the
NDCG(σ, r) = f(σ) ·g(r), where where g(r) = r/Z(r)
(See Sec.3 ). Thus, g(·) cannot be by univariate, scalar
valued functions. This makes it impossible to write the
difference between two rows as linear combination of
columns of (transposed) signal matrices.

15.1 Proof of Lemma 11

Proof. We will first consider NDCG and then, MAP
and AUC.

NDCG:

The first and last row of Table 1, when calculated for

NDCG, are:

ℓσ1 =[1, 1/2, 1/ log2 3, (1 + log2 3/2))/(1 + log2 3), 1,

3/(2(1 + 1/ log2 3)), 1, 1]

ℓσ6 =[1, 1, log2 2/ log2 3, 1, 1/2, 3/(2(1 + 1/ log2 3)),

(1 + (log2 3)/2))/(1 + log2 3), 1]

We remind once again that NDCG is a gain function,
as opposed to SumLoss.

The difference between the two vectors is:

ℓσ1 − ℓσ6 =[0,−1/2, 0,− log2 3/(2(1 + log2 3)),

1/2, 0, log2 3/(2(1 + log2 3)), 0].

The signal matrices are same as SumLoss:

Sσ1 = Sσ2 =

[
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

]

Sσ3 = Sσ5 =

[
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1

]

Sσ4 = Sσ6 =

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

]

It can now be easily checked that ℓσ1 − ℓσ6 does not
lie in the (combined) column span of the (transposed)
signal matrices.

We show similar calculations for MAP and AUC.

MAP:

We once again take m = 3. The first and last row of
Table 1, when calculated for MAP, is:

ℓσ1 = [1, 1/3, 1/2, 7/12, 1, 5/6, 1, 1]

ℓσ6 = [1, 1, 1/2, 1, 1/3, 5/6, 7/12, 1]

Like NDCG, MAP is also a gain function.

The difference between the two vectors is:

ℓσ1 − ℓσ6 = [0,−2/3, 0,−5/12, 2/3, 0, 5/12, 0].

The signal matrices are same as in the SumLoss case:

Sσ1 = Sσ2 =

[
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

]

Sσ3 = Sσ5 =

[
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1

]

Sσ4 = Sσ6 =

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

]
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It can now be easily checked that ℓσ1 − ℓσ6 does not
lie in the (combined) column span of the (transposed)
signal matrices.

AUC:

For AUC, we will show the calculations for m = 4.
This is because global observability does hold with
m = 3, as the normalizing factors for all relevance
vectors with non-trivial mixture of 0 and 1 are same
(i.e, when relevance vector has 1 irrelevant and 2 rel-
evant objects, and 1 relevant and 2 irrelevant objects,
the normalizing factors are same). The normalizing
factor changes from m = 4 onwards; hence global ob-
servability fails.

Table 1 will be extended since m = 4. Instead of
illustrating the full table, we point out the important
facts about the loss matrix table with m = 4 for AUC.

The 24 relevance vectors heading the columns are:

r1 = 0000, r2 = 0001, r3 = 0010, r4 = 0100, r5 =
1000, r6 = 0011, r7 = 0101, r8 = 1001, r9 =
0110, r10 = 1010, r11 = 1100, r12 = 0111, r13 =
1011, r14 = 1101, r15 = 1110, r16 = 1111.

We will calculate the losses of 1st and last (24th) ac-
tion, where σ1 = 1234 and σ24 = 4321.

ℓσ1 = [0, 1, 2/3, 1/3, 0, 1, 3/4, 1/2, 1/2, 1/4, 0, 1, 2/3, 1/3, 0, 0]

ℓσ24 = [0, 0, 1/3, 2/3, 1, 0, 1/4, 1/2, 1/2, 3/4, 1, 0, 1/3, 2/3, 1, 0]

AUC, like SumLoss, is a loss function.

The difference between the two vectors is:

ℓσ1 − ℓσ24 =

[0, 1, 1/3,−1/3,−1, 1, 1/2, 0, 0,−1/2,−1, 1, 1/3,−1/3,−1, 0].

The signal matrices for AUC with m = 4 will be
slightly different. This is because there are 24 sig-
nal matrices, corresponding to 24 actions. However,
groups of 6 actions will share the same signal matrix.
For example, all 6 permutations that place object 1
first will have same signal matrix, all 6 permutations
that place object 2 first will have same signal matrix,
and so on. For simplicity, we denote the signal ma-
trices as S1, S2, S3, S4, where Si corresponds to signal
matrix where object i is placed at top. We have:

S1 =

[
1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

]

S2 =

[
1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1

]

S3 =

[
1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1

]

S4 =

[
1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0
0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

]

It can now be easily checked that ℓσ1 − ℓσ24 does not
lie in the (combined) column span of transposes of
S1, S2, S3, S4.


