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Supplementary Material

A Derivation of G and H

In this section, we derive the gradient and second order
gradient given in Eq (5). The result is the same as standard
CRF, we include the derivation here for completeness of
the paper. We can write the negative log-likelihood

l(y,x, φ) = −
m∑
i=1

φi(x)µi(y) + lnZ(x) (19)

Here Z(x) =
∑

y′∈Y exp(
∑m
i=1 φi(x)µi(y

′)). The following

equality holds for Z(x)

∂φkZ(x) =
∑
y′∈Y

exp(

m∑
i=1

φi(x)µi(y
′))

= Z(x)
∑
y′∈Y

exp(
∑m
i=1 φi(x)µi(y

′))µk(y′)

Z(x)

= Z(x)E[µk]

(20)

In the calculation, φ is viewed as a vector, and partial
derivative is defined by the derivative at φ(y,x). Using this
property, we can calculate the gradient as

Gi(x) , ∂φi l(y,x, φ)

= −µi(y) +
∂φiZ(x)

Z(x)

= −µi(y) + E[µi] = pi − µi(y)

(21)

Here the last equality holds because µi(y) ∈ {0, 1}. We can
further calculate the second order gradient as

Hij(x) , ∂φiφj l(y,x, φ)

= ∂φjGi(x)

=
∑
y′∈Y

exp(
∑m
i=1 φi(x)µi(y

′))µi(y
′)µj(y

′)

Z(x)

−
∑
y′∈Y

exp(
∑m
i=1 φi(x)µi(y

′))µi(y
′)

Z2(x)
∂φjZ(x)

= E[µiµj ]− E[µi]E[µj ] = pij − pipj
(22)

The hessian H is also known as Fisher information matrix.

B Proof for Lemma 2.1

Proof. The following inequality holds for γ that satisfies
the condition∑

i∈U

γiHiiδ
2
i ≥

∑
i∈U

∑
j∈U |Hij |δ2i

= 1
2

∑
i∈U

∑
j∈U |Hij |(δ2i + δ2j )

≥
∑
i∈U

∑
j∈U |Hij |δiδj

Applying it to Talyor expansion in Eq (4), we have

l(y,x, φ+ δ) = l(y,x, φ) +
∑
i∈U

δiGi(y,x)

+
1

2

∑
i∈U

∑
j∈U

|Hij |δiδj + o(δ2)

≤ l(y,x, φ) +
∑
i∈U

δiGi(y,x)

+
1

2

∑
i∈U

γiHiiδ
2
i + o(δ2).

C Proofs for Lemma 3.1 and 3.2

Proof. The proof is exactly the same for both node and
potential case, we present the proof for U to be all node
potentials here. Recall the definition of H: Hij = pij . Note

that pi and pij are short hand notations for pi , P (µi =

1|x), pij , P (µiµj = 1|x), we have

1

2pi

∑
j∈U

|Hij | =
∑
j

|pij/pi − pj |

=
∑
j∈U

|P (µj = 1|µi = 1,x)− P (µj = 1|x)|

=
∑
s,k′

|P (ys = k′|yt = k,x)− P (ys = k′|x)|

=
∑
s

‖P (ys|x, yt = k)− P (ys|x)‖tv

D Proof for Lemma 3.3

Proof. Taking the fact that µi and µj are mutually exclusive
for j 6= i, we have∑

j∈M

|P (µj = 1|µi = 1,x)− P (µj = 1|x)|

=|P (µi = 1|µi = 1,x)− P (µi = 1|x)|

+
∑
j 6=i

|P (µj = 1|µi = 1,x)− P (µj = 1|x)|

=|1− P (µi = 1|x)|+
∑
j 6=i

|0− P (µj = 1|x)|

=(1− P (µi = 1|x)) +
∑
j 6=i

P (µj = 1|x)

=2(1− P (µi = 1|x))

E Proof for Theorem 4.2

Proof. In this proof, we will reduce the total variation dis-
tance between joint distribution of edge states into total
variation distance of marginal distribution over nodes, as
in Theorem 4.1. Assume the edge pairs are (yt, yt+1),
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(ys, ys+1), and ys is closer to yt+1 (without loss of generali-
ty), then

P (ys, ys+1|yt, yt+1,x) = P (ys+1|ys,x)P (ys|yt+1,x)

We can convert total variation by

‖P (ys, ys+1|yt, yt+1,x)− P (ys, ys+1|x)‖tv

=
∑

ys,ys+1

|P (ys, ys+1|yt, yt+1,x)− P (ys, ys+1|x)|

=
∑

ys,ys+1

P (ys+1|ys,x)|P (ys|yt+1,x)− P (ys|x)|

=
∑
ys

|P (ys|yt+1,x)− P (ys|x)|

=‖P (ys|yt+1,x)− P (ys|x)‖tv

Now the case become same as node potential, we can make
use of Corollary 3.1 bound the total variation.

‖P (ys, ys+1|yt = kt, yt+1 = kt+1,x)− P (ys, ys+1|x)‖tv
=‖P (ys|yt+1 = kt+1,x)− P (ys|x)‖tv

≤‖P (yt+1|yt+1 = kt+1,x)− P (yt+1|x)‖tv
∏

(a,b)∈Q(s,t+1)

αb,a

=[1− P (yt+1 = kt+1|x)]
∏

(a,b)∈Q(s,t+1)

αb,a

≤[1− P (yt = kt, yt+1 = kt+1|x)]
∏

(a,b)∈Q(s,t+1)

αb,a

Here the first inequality is due to Corollary 3.1. Intuitively,
this means that the total variational distance of between
two edge states, can be bounded by recursively applying
the mixing rate bound along the path between two edges.
Summing the results of (s, s+ 1) over all edges will give us
Eq. (15).


