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Abstract

Most existing submodular maximization al-
gorithms provide theoretical guarantees with
approximation bounds. However, in many
cases, users may be interested in an any-
time algorithm that can offer a flexible trade-
off between computation time and optimality
guarantees. In this paper, we propose a fil-
tered search (FS) framework that allows the
user to set an arbitrary approximation bound
guarantee with a “tunable knob”, from 0
(arbitrarily bad) to 1 (globally optimal).
FS naturally handles monotone and non-
monotone functions as well as unconstrained
problems and problems with cardinality, ma-
troid, and knapsack constraints. Further, it
can also be applied to (non-negative) non-
submodular functions and still gives control-
lable approximation bounds based on their
submodularity ratio. Finally, FS encom-
passes the greedy algorithm as a special
case. Our framework is based on theory
in A* search, but is substantially more effi-
cient because it only requires heuristics that
are critically admissible (CA) rather than
admissible—a condition that gives more ef-
fective pruning and is substantially easier to
implement.

1 Introduction

Submodular optimization has wide applications and
its uses in machine learning are increasing. For ex-
ample, it has been utilized for image segmentation
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(Jegelka and Bilmes, 2011; Kim et al., 2011; Jegelka
et al., 2013), information retrieval (Yue and Guestrin,
2011; Lin and Bilmes, 2010), sensor placement (Krause
and Guestrin, 2005; Krause et al., 2008), clustering
(Narasimhan et al., 2005), speech recognition (Lin and
Bilmes, 2009) and sparse methods (Bach, 2010; Das
and Kempe, 2011).

A set function g:2Y — R defined on a finite set U is
submodular if for all S, T C U it satisfies g(S)+¢(T) >
g(SNT)+¢(SUT). In this paper, we focus on the
following general problem:

maximize g(9), "

subject to S € F,

where g(S) is non-negative and submodular, and F C
2V denotes the set of feasible solutions. We assume
throughout that B € F implies A€ F forany ACBCU
and consequently the empty set is always feasible, i.e.
) € F. We do not restrict g(S) to be monotone. (A
function is monotone if ¢g(S5) < g(7T") whenever SCT'.)
Let S* be the optimal solution to (1) and g* = g(5*) L.

There has been extensive research on solving different
cases of (1). For example, a greedy algorithm achieves
a (1 — 1/e)-approximation bound for monotone func-
tions with a cardinality constraint, i.e. F={5:|S|<
K}, where K is a positive integer (Nemhauser et al.,
1978). The greedy algorithm also gives a 3(1 — 1/e)
bound for monotone submodular maximization un-
der a knapsack constraint (Khuller et al., 1999), and
a 1/2-approximation bound for monotone submodu-
lar maximization under a matroid constraint (Fisher
et al., 1978). A multilinear extension method can
give a (1 — 1/e) bound for monotone submodular
maximization under a matroid constraint (Calinescu
et al., 2011). Various approximation bounds have also
been studied for maximizing non-monotone submodu-
lar functions under different settings (Feige et al., 2011;

We assume there is a unique S* for simplicity. All
results generalize to the case of non-unique solutions.
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Lee et al., 2009; Vondrék et al., 2011).

Although the above algorithms are often efficient and
provide approximation bounds, they have some limi-
tations. For many important decision problems, it is
vital to obtain high-quality solutions. People are will-
ing to pay more computing time for better solution
quality. At least, it is important to provide users with
the flexibility to choose the trade-off between comput-
ing time and solution quality. Existing algorithms such
as the greedy algorithm or deterministic local search
are rigid and can only offer one fixed solution quality.

In this paper, we propose a filtered search (FS) frame-
work that can support arbitrary a-approximation
bounds for any « € [0, 1], providing a user with the
flexibility to set his/her desired trade-off between so-
lution quality and efficiency. Omne can consider the
hyper-parameter « as a tuning knob. When =0, the
search becomes the greedy algorithm; when =1, the
search with a CA heuristic will find the global optimal
solution.

Our framework utilizes a state-space graph for sub-
modular optimization, in which each node is a subset
and edges connect neighboring subsets. FS leverages
classic theory for graph search, following the general
structure of A* search algorithms, but features a key
innovation that exploits the special structure of sub-
modular functions: For A* search, the heuristic needs
to be admissible. For submodular maximization this
means that we need to compute an upper bound of
g*—g(S) for every S C U. This admissibility con-
dition is very strong, and may be hard to compute
and typically requires long search time. We show
that admissibility is not needed for optimal submod-
ular maximization. Instead, we show that a sufficient
condition to achieve optimality is critical admissibility
(CA) of the heuristic function. The CA condition is
much more effective than the admissibility condition
and significantly reduces the search cost. It entails
a novel “optimal search with inadmaissible heuristics”
approach which was just recently discovered for some
planning problems (Karpas and Domshiak, 2012).

In many scenarios polynomial-time algorithms are in-
herently limited. For example, the (1-1/e) bound is
optimal for monotone submodular maximization un-
der a cardinality constraint in the value oracle model
(Nemhauser and Wolsey, 1978). In contrast, our
proposed FS approach can achieve arbitrary approx-
imation bound, which means it will have exponen-
tial worst-case complexity in order to achieve higher
bounds. However, in practice, F'S is still useful since
its exponential complexity is only for the worst case,
and it may be more efficient than the theoretically effi-
cient algorithms with high-order polynomial time com-
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plexity. This is akin to admissible search for Al, which
optimally solves NP-hard graph search problems. Al-
though its worst-case time complexity is exponential,
it is efficient in many domains and remains the most
widely used and most successful algorithm for many
applications, such as game-playing, planning, and path
finding. For example, heuristic search has been a lead-
ing method for automated planning, as manifested by
the results of the recent International Planning Com-
petitions (IPC).

In addition to its elegant efficiency/approximation
tradeoff, FS also provides a general framework to
solve various submodular maximization problems: it
can handle both monotone and non-monotone func-
tions; it naturally handles unconstrained problems and
problems with cardinality, matroid, and knapsack con-
straints. Different constraints can be incorporated in
a unified fashion — the user simply needs to provide an
appropriate heuristic. In this paper, we derive efficient
and tight CA heuristics for several important settings.
Finally, the theoretical properties and advantages of
the FS approach are backed by promising empirical
results. We believe that FS will be a foundational and
versatile framework for submodular optimization.

2 The Filtered Search (FS)
Framework

We describe the general FS framework for solving
Define the discrete derivative for any j€U and S
as

1).
cU

g(ilS) £ g(SUj) — g(S). (2)

The discrete derivative gives rise to an alternative
definition of submodularity: ¢ is submodular if and
only if it satisfies the diminishing return property,
9(718)>g(4|T) for all SC T and j ¢ T.

Definition 1 State-space graph. For the submod-
ular mazimization problem in (1) the state-space graph
is a directed graph G = (F, E), where the vertex set F
is the set of all feasible subsets in U and the (directed)
edge set E is such that for any two states S, T € F
there exists an edge (S,T) € E if and only if S C T
and |T| =S|+ 1.

Although the state-space graph G may contain up to
2Vl states, it is important to note that FS expands
states in F on-demand and typically only examines a
tiny fraction of F. Similar to A* search, instead of
maximizing g(S) directly, we define and maximize an
auxiliary evaluation function f(S).

Definition 2 Evaluation function. For the sub-
modular mazimization problem in (1), with state-space
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Algorithm 1 Filtered search (FS) for submodular
maximization

1: Input: a,G = (F,E), g, h

2: compute f(0) = g(0) + ah(0)

3: MaxHeap.push(< 0, f(0) >)

4: ClosedList={}

5: while MaxHeap is not empty do

6: S=MaxHeap.pop() //S hasthe maximum f(S)
7. if h(S) =0 then

8: return S //solution found

9: end if
10:  if S ¢ ClosedList then
11: ClosedList=ClosedList U{S}
12: for each (5,5’) € E do
13: compute f(S") = g(S’) + ah(S")
14: MaxHeap.push(< S’, f(S’) >)
15: end for
16:  end if

17: end while

graph G = (F,E), the evaluation function f(S) on
SeF is defined as:

f(8) = g(S) + ah(s), (3)
where 0 < a < 1 is an approximation factor and
h(S) : F — [0,+00) is a heuristic function.

The FS framework is shown in Algorithm 1. It main-
tains two data structures, a max heap (which takes
<value, key> pairs) and a closed list, and performs
the following main steps:

0. Add the pair < @, f(#) > to the max heap, where
() denotes the empty set.

. Pop the state S from the heap with largest f(S5).
If h(S)=0, return S as the solution.

. For each edge (S,S5") e E add < S, f(S") > to the
max heap if S’ is not in the closed list.

Add S to the closed list and repeat from Step 1.

The closed list is implemented as a set with highly
efficient hashing-based duplicate detection. As in most
heuristic search procedures, the heuristic function is
critical to the optimality and efficiency of the search
algorithm.

2.1 Admissibility and Critical Admissibility

For graph search, the A* search algorithm is optimal as
long as the heuristic is admissible and consistent (Rus-
sell and Norvig, 2003). In our case we can define a cor-
responding definition of admissibility (which implies
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consistency, as in our setting the function g(.S) is in-
dependent on the path leading to S.)

Definition 3 Admissibility. For the filtered search
in Algorithm 1, a heuristic function h(S) : F —
[0,400) is admissible if and only if for every state
S € F, it satisfies that h(S*) =0 and

hS) = g* = g(5). (4)

In other words, admissibility guarantees that the
heuristic h(S) always overestimates the payoff to tra-
verse from S to $*.2 A similar optimality result as
in the case of A* can be shown for our setup. The
following theorem states that the solution for Algo-
rithm 1 will be arbitrarily close to the optimal solu-
tion, depending on « and provided that the heuristic
is admissible.

Theorem 1 Algorithm 1 has an «-approximation
bound whenever the heuristic function h is admissible,
i.e., it returns a solution T that satisfies g(T) > ag*.

The above result can be proved following similar rea-
soning for the optimality of A* algorithm with admis-
sible heuristics (Russell and Norvig, 2003). However,
when the heuristic is admissible, even if it is almost
perfect, it may take exponential search time® (Helmert
and Roger). Moreover, in general it is difficult to
ensure admissibility because ¢g* is hard to estimate.
Thus, it is desirable to relax the strong admissibility
conditions.

Fortunately, we can exploit the special structure of
submodular maximization. We show that FS only re-
quires a much weaker condition that is also much eas-
ier to enforce, which we refer to as critical admissibility
(CA). The CA condition only overestimates states on
the optimal solution path and is defined as follows:
1. h(S) = 0 if there is no element x € U that can
be added to S in order to increase the objective value
without violating feasibility; 2. otherwise, we consider
all the subsets X C U that can be feasibly added to S
and require h(S) to be an upper bound on the func-
tion )~y g(x]S) (the cumulative increase in g if each
element in X were to be added to S in isolation.)

Definition 4 Critical admissibility (CA). For the
filtered search in Algorithm 1, a heuristic function

2In case of minimization problems admissibility is de-
fined as a guarantee of underestimation.

3In the case of submodular maximization, an admissi-
ble heuristic with o« = 1 is useless because it simply over-
estimates every states and thus would become brute-force
search. This is part of the reason why the CA heuristic
is less strict as it is designed to overestimate states in the
solution path (See Corollary 1).
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h(S) : F — [0,400) is critically admissible if and only
if for every state S € F, it satisfies
1. h(S) =0,

2. h(S) > max
XCU:SUXeF

if g(x|S) <0 or SU{z} ¢ F, Vx € U,

> g(]S),

zeX

otherwise.
(5)

Remarks. CA has a couple of key advantages over
admissibility. First, CA poses a less strict require-
ment as it does not require the heuristic to be ad-
missible at every state. Consider a simple example
where U = {1,2,3} and g(S) = > ,.g2 and F en-
codes a cardinality constraint |S| < 2. The optimal
set is S* = {2,3} with ¢* = 5. Consider S = {1, 2},
which satisfies the first condition of CA and therefore
has h(S) = 0. As g* — g(S) = 2, we have that h is
not admissible at S. It is however important to point
out that for any S C S* a CA heuristic is admissible,
in other words it does overestimate the payoff along
possible solution paths. Second, CA is much easier to
implement. It is hard to estimate ¢* and thus hard to
design an admissible heuristic function. In contrast, in
the CA condition ).y g(#|S) is a modular function
over X and its maximum can typically be computed
very cheaply, depending on the constraint set . We
will show concrete examples of CA heuristic functions
for various scenarios in the following.

2.2 Optimality with CA Heuristics

We re-state the well-established result that a submod-
ular function is bounded above by its modular approx-
imation (Nemhauser et al., 1978) and then we present
our main theorem and its proof for the approximation
guarantee of Algorithm 1.

Lemma 1 For any submodular function g : 2V — R,
we have g(B) < g(A)+> ,cp_49(s|A), VAC BCU.

Theorem 2 Algorithm 1 has an «-approrimation
bound whenever the heuristic function h is critically
admissible, i.e., it returns a solution T that satisfies
9(T) = ag”.

Proof: Let S* be the optimal solution to (1). Suppose
T # S*, otherwise the theorem trivially holds. First
note that at the beginning of the inner loop of Algo-
rithm 1 (before line 6) there must be at least one set P
on the max heap such that P CS*. This holds trivially
at the beginning with P=(). Whenever the set PC S*
with maximum cardinality is popped from the max
heap the algorithm either terminates (if P = S*) or
all its feasible successors that are not in the closed list
are added to the max heap. By the assumption made
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on F earlier any subset of S* is feasible, and there is at
least one successor P’ C S* with |P’| = |P| + 1, which
is not yet on the closed list.

It therefore must be the case that right before T is
popped from the max heap, there is a state P C S* in
the max heap. As his CA and PU (S* — P) € F, we
must have

h(P) > max
XCU: PUXEF

Y g@P)= Y gla|P).

T€ reS*—P
(6)

Thus, we have that
f(P)=g(P)+ ah(P)
> g(P)+a Y galP)

xeS*—P
(7
>algP)+ Y g<m|P>>
zeS*—P
> ag(S™)

The first inequality follows from (6), the second in-
equality holds because ¢g(P) is non-negative and the
third one follows from Lemma 1.

When T is popped it must have the largest f value in
the max heap, thus f(P) < f(T). On the other hand,
since T is the solution, we have that h(T) = 0 (Line 7
of Algorithm 1). Therefore, we have:

f(P) < f(T) =g(T) +ah(T) = g(T).  (8)
Combining (8) with (7), we obtain the result, g(T") >
f(P) > ag(S™). u

Corollary 1 The Fvaluation function f with the CA
heuristic and o = 1 s guaranteed to overestimate sub-
sets of the optimal solution, i.e. states in the optimal
solution path.

Proof: By setting « = 1 in Eq. (7), we have that
f(P) > g(S*) where P € S*. By Definition 4, we have
h(S*) =0. Thus, f(P) > g(S*)+ h(S*) = f(S*). N

Note that Theorem 2 is quite general as our FS
framework can achieve a-approximation bound with
any submodular function (e.g. monotone or non-
monotone) and any down-monotone constraint (e.g.
matroid, knapsack and etc).

Special cases. There are some special cases under
the FS framework. When a = 1, the solution returned
by FS is optimal. This provides us a systematic ap-
proach to optimally maximize submodular functions.
The search can be sped up by successively tightening
the heuristic function. Some other Al areas, such as
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planning and robotics, greatly benefit from this ap-
proach.

When a = 0, FS becomes the greedy algorithm, since
at each state S the element s with the largest ob-
jective value, g(s U S), is selected. If ¢g(S) is mono-
tone, we get extra optimality guarantees: an (1—1/e)-
approximation bound for the cardinality constraint,
and a 1/(p+1) bound for p matroid constraints (Fisher
et al., 1978).

When 0<a <1, a gives direct control over the trade-
off between solution quality and speed. A small «
favors speed over quality while a large a offers a high
approximation bound at the cost of a more expensive
search. F'S can be turned into an anytime algorithm by
starting with o = 0 and repeatedly resolving the prob-
lem with slightly increased a. When interrupted, the
solution with the highest objective value is returned.

2.3 Non-submodular Function Maximization

FS can also be applied to non-submodular functions
and we can still provide approximation guarantees, us-
ing the notion of submodularity ratio (Das and Kempe,
2011; Grubb and Bagnell, 2012).

Definition 5 Submodularity Ratio. Given a
ground set U and feasible set F, a non-negative set
function g has the submodularity ratio v if

> 9(lL) = y[g(L U X) - g(L)]
rzeX

9)

for all L, X CU such that XUL € F and XNL =1

The submodularity ratio, v, characterizes how close to
submodular a set function is (v = 1 means submodular
and 0 <~ < 1 means non—submodular)4.

Theorem 3 For a set function g with a submodularity
ratio of v, Algorithm 1 returns a solution T with an
ay-approzimation bound.

Proof: The proof of Theorem 2 can be directly applied
to this theorem except that the last inequality in (7)
does not hold anymore since g is not submodular. But
with the definition of submodularity ratio in (9), we
can modify the proof of Theorem 2 and start off right

4Strictly speaking, the original definition of submodu-
larity ratio requires |X| < K where K is the cardinality
constraint. We generalize it to X U L € F which is stricter
and shares all the properties of the original definition, as
proposed in (Das and Kempe, 2011).
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before the last inequality in (7):

a<g<P> S g<x|P>) (10)
rES*—P

> a(g(P> (57 - vg(P)> (1)

> ayg(S™) +a(l —v)g(P) (12)

> ayg(S") (13)

(11) holds by the definition of submodularity ra-
tio with L P and X S* — P. Following
the same reasoning as before, we obtain ¢(T) >

ayg(S™). u

3 Critically Admissible Heuristics

In this section, we develop CA heuristics for several im-
portant scenarios of submodular maximization, such
as matroid, cardinality (included as a special case of
matroid), and knapsack constraints. The proposed
heuristics are tight (except for knapsack constraints)
and general, since they assume a value oracle model
where the set function g is a blackbox and accessible
only via evaluation.

Matroid constraints. A matroid is denoted as a
pair (U,Z) where U is a finite ground set and Z C 2V
is a set of subsets of U satisfying the following two
properties: (1) If Y €Z and X CY, then X €Z. (2) If
X,Y €T and | X| <Y, then there exists some u € Y—X
such that XU{u}€eZ.

A special case of the matroid constraint is the car-
dinality constraint, where (U,Z) is a uniform ma-
troid: T {X CU:|X|<K}. Another exam-
ple is the partition matroid in which U is parti-
tioned into disjoint sets Uy,Us,--- ,U,,, and Z =
{XCU: | XNnU;| <K, fori=1,---,m}. Submodu-
lar maximization with a matroid constraint is formu-
lated as:

maximize g(S)  subject to Se€Z. (14)
We will now provide a CA heuristic for the case F =T
that is tight for every state S, i.e. every h(S) sat-
isfies the CA conditions (5) with equalities. The first
case in (5) can easily be satisfied by setting h(S)=0
whenever the condition is met. We therefore con-
sider the second case and show that we can compute
h(S) = maxxcu.suxer Y cx 9(x|S) with a simple,
efficient greedy algorithm. We iteratively construct a
solution set X7 starting from an empty set X% = ().
In each iteration we pick the element x! that satis-
fies X*~1 U {z'} € Z and maximizes g(z!|S) and add
it to our set, X' = X*"1u{z'}. We stop when no
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more element z¢ can be found or g(z!|S) < 0. Because
we are maximizing a modular function, the solution
X7 returned by this greedy approach is provably op-
timal (Calinescu et al., 2011; Nemhauser et al., 1978).
Using Theorem 2, we have the following corollary:

Corollary 2 The solution of Algorithm 1 with the
above heuristic function h(S) guarantees an «-
approximation bound for the submodular function max-
imization with a matroid constraint (14).

Knapsack constraints. We also consider submod-
ular maximization with a knapsack constraint, defined

as:
st. Y co <B,
zeS
where ¢, >0 is the cost of x and B >0 is the budget
limit. Here, the second CA condition in (5) is:

max g(95) (15)

SCU

W)= | max o) g(lS),
reX (16)
s.t. Z ¢ < By,
reX

where By = B — ) ¢, is the remaining budget for
state S. Different from the case of matroid constraints,
the equality case of (16) describes a 0-1 knapsack prob-
lem (Cormen et al., 2001) and is NP-hard. However,
we can upper bound it by the solution of the corre-
sponding fractional knapsack problem (Cormen et al.,
2001):

max
0<w,<1

h(s) S wag(al$)

zeU—-S

s.t. Z wyc, < By.
zeU—-S

(17)

This relaxed version can be solved efficiently with a
greedy algorithm (Cormen et al., 2001), leading to the
heuristic

J

(Bg — Z Ca;

i=1

W)= g(xilS) +

i=1

1

>g($j+1|5),

(18)
where z; € U are sorted in decreasing order of
g9(x;|S)/cs; and j is the lowest index such that

J_19(xi|S) < By. From Theorem 2, we have the
following corollary:

Tj+1

Corollary 3 The solution of Algorithm 1 with the
heuristic h(S) defined in (18) guarantees an «-
approximation bound for the submodular function maz-
imization problem with a knapsack constraint, (15).

The above CA heuristic can be extended to the case
of multiple knapsack constraints. We can still com-
pute the heuristic by relaxing the original combinato-
rial knapsack optimization into a continuous fractional
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knapsack optimization, which is a linear programming
(LP) problem and can be solved very efficiently with
LP solvers such as IBM CPLEX.

Relaxed critical admissibility. We have shown
that in the case of a single matroid or knapsack con-
straint, the CA conditions in (5) can be achieved in
a straight-forward manner because of its modularity.
However, for some problems, e.g. multiple matroid
constraints, solving (5) tightly induces high time com-
plexity. In these cases, we can relax the CA condition
and still obtain an optimality guarantee for FS.

Theorem 4 Suppose the heuristic h(S) has a S-
approzimation bound for (5), ie. h(S) > Bh*(S)
where h*(S) is a tight CA heuristic and 0 < 8 <1,
then the solution returned by Algorithm 1 achieves: a)
an a-approximation bound with the heuristic h(ﬁs) ; and

b) an afS-approzimation bound with the heuristic h(.S).

Proof: a) holds because @ > h*(S) satisfies CA
and thus Theorem 2 applies. For b), the proof is
the same as Theorem 2 except that (6) should be
replaced by h(P) > B3 .s._pg(z|P), and «a re-
placed by af after the last two inequalities in (7).

|

We can apply this theorem to submodular maximiza-
tion with p matroid constraints where the feasible so-
lution set F is defined by p matroids Z; N --- N Z,.
Suppose h(S) is the objective value returned by the
greedy algorithm described in Section 3. It is shown
that h(S) has an %—approximation bound for (5) (Ca-
linescu et al., 2011; Fisher et al., 1978), which leads to
our final corollary:

Corollary 4 For (1) with p matroid constraints, Al-

gorithm 1 guarantees an %—appro:rimation bound with

heuristic h(S) and an a-approximation bound with
heuristic ph(S) .

4 Related Work

In the introduction we have already reviewed some al-
gorithms to solve Eq. (1) with constraints, and approx-
imation bounds for non-monotone submodular func-
tions. Here, we provide some more detail on the sec-
ond scenario. For unconstrained problems, Feige et al.
(2011) show that a deterministic local search algorithm
achieves a (3 — £)-approximation ratio with at most
O(in?logn) oracle calls. A similar local search pro-
cedure with additional exchange operations obtains
m—approximation over k matroids (Lee
et al., 2009). Vondrdk et al. (2011) propose mul-

tilinear relaxation and contention resolution schemes
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to achieve 0.325-approximation for a constant number
of knapsack constraints and 0.19/k-approximation for
additional £ matroid constraints.

There have been some works concerning the ex-
act maximization of submodular function leveraging
branch and bound (BB) approach. However, most of
them have strong assumptions on the problems to be
solved. The submodularity cut proposed in (Kawa-
hara et al., 2009) is limited to cardinality constraints
and their “epsilon-optimality” only holds for non-
decreasing functions. The BB approach presented
in (Goldengorin, 2009; Goldengorin et al., 1999) can
only handle unconstrained problems. Nemhauser and
Wolsey (1981) also propose a BB approach to maxi-
mizing non-decreasing submodular functions. For gen-
eral submodular functions, it is limited to linear con-
straints. In contrast, our framework is general enough
to handle any down-monotone constraints and non-
monotone functions, which is not found in any of these
prior works.

Recently, Iyer et al. (2013) proposed an elegant dis-
crete semidifferential-based framework for general sub-
modular maximization and minimization. The key
idea is to approximate the submodular function with a
tight modular lower (or upper) bound, which is easier
to optimize. The same authors also utilize a similar
idea to deal with submodular cover and knapsack con-
straints (Iyer and Bilmes, 2013). In contrast to our F'S
approach, these methods still feature specific approxi-
mation bounds.

Karpas and Domshiak (2012) propose the “optimal
search with inadmissible heuristics” paradigm, which
follows a similar theme as FS: in general A* search
needs admissible heuristics to guarantee optimality,
but for specific types of problems we might exploit
their structure to relax the admissibility condition
without compromising optimality. Their focus is on
automated planning problems, where they introduce a
weaker condition, globally admissibility (GA), which
can be used to replace admissibility. Although similar
in spirit, our framework is quite different and focuses
on submodular optimization problems, where we ex-
plicitly exploit the submodular properties of the ob-
jective.

5 Experimental Results

In this section we conduct experiments to empirically
evaluate the proposed FS framework.

Our experiments are based on a speech recognition
task which selects a subset from an un-transcribed
corpus of speech utterance for transcription (Lin and
Bilmes, 2009). The original optimization is maximiz-
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ing a cut function g(S) =37, > jcs Wij =D jes Wi
under a cardinality constraint where w;; is the similar-
ity between utterances. The same cut function with a
knapsack constraint is also widely used in documenta-
tion summarization tasks (Lin and Bilmes, 2010). The
cut function is submodular and non-monotone. In our
experiments, the similarity matrix is computed based
on the TIMIT corpus (Garofolo et al., 1993) using a
string kernel metric (Lin and Bilmes, 2009). For com-
pleteness, we evaluate the performance of maximiz-
ing a cut function subject to a cardinality constraint,
a partition matroid constraint and a knapsack con-
straint, respectively. Following the settings of (Iyer
et al., 2013), we test each setup with 100 sampled sim-
ilarity matrices, each of size 20 < |U| < 30 so that its
optimal solution can still be achieved with =1 in the
FS framework. For the cardinality constrained prob-
lem, we set the cardinality limit to 10. For the parti-
tion matroid constrained problem, there are 5 random
partitions of size 2. For knapsack constraints, the cost
for each item is randomly generated and the budget
limit is i of the total cost.

For comparison, we also implement several baseline
methods most of which have been tested on this par-
ticular cut function. We have the greedy algorithm
(Greedy) (Nemhauser et al., 1978; Fisher et al., 1978)
and Lee’s algorithm (Lee) (Lee et al., 2009) for ma-
troid constrained problems (including cardinality and
partition matroid constraints). For knapsack con-
strained problems, we test the cost-aware greedy algo-
rithm (CGreedy) (Khuller et al., 1999; Lin and Bilmes,
2010), and the improved greedy algorithm (N3Greedy)
(Khuller et al., 1999; Sviridenko, 2004) which finds all
greedy solutions starting from any set of size 3. Note
that all these methods except Lee’s are encompassed
by the MMax framework (Iyer et al., 2013). In Figure
1, we show the objective values (averaged over all ran-
domized runs) of the baseline algorithms and F'S, with
« ranging from 0 to 1.

We make several observations: 1. as predicted, the
performance of FS with o = 0 matches the greedy
algorithm exactly for problems with a cardinality or
partition matroid constraint; 2. the objective values
of the F'S solutions tend to increase with growing a—-
an encouraging observation, as the a-approximation is
for the worst case and in practice does not guarantee
monotonically increasing objective values for increas-
ing a. 3. FS tends to obtain reliably better solutions
than competing methods already with a=0.5; 4. the
graphs in the bottom row show that the improvement
of solution quality comes at a price of increased time
complexity, especially as a— 1.

For experiments shown in Figure 1(a) and (b), the
sudden increase of running time happens because FS
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Figure 1: The (averaged) objective value (upper plots) and running time in seconds (lower plots) as a function
of a. The dashed lines represent the various baselines and the black lines the global optimum.

induces exponentially increasing backtracking at that
point. The curve is generally smoother for the knap-
sack constraints as in Figure 1(c). The “smoothness”
of this curve depends on the problem structure in-
cluding the properties of the objective function and
the constraints, which requires further research and is
likely to inspire more variants of FS.

Worst case for greedy algorithm. Note that al-
though the greedy algorithm can perform well in prac-
tice (as shown in Figure 1), its theoretical approxima-
tion guarantee is pretty loose. For sanity check, we
conduct the experiment specified in (Pan et al., ap-
pendix) where the performance of greedy algorithm
can be arbitrarily bad depending on the cardinality of
the ground set N. In particular, the empirical approx-
imation bound for greedy algorithm is always % In
contrast, F'S can obtain the optimal solution even with
small a (e.g. @« =0.1).

6 Conclusion

In summary, Filtered Search (FS) provides a uni-
fied framework for solving submodular optimization
problems with various constraints, regardless of func-
tion monotonicity or the constraint type. For non-
submodular functions it also provides an approxima-
tion guarantee, based on their submodularity ratio.
In addition to the strong theoretical results, we also
demonstrated empirically that FS is a practical algo-
rithm that shows superior results in several real world
settings. Our experimental findings further suggest
that users can control the trade-off between solution
quality and efficiency, which parallels our theoretical
contribution of a variable approximation guarantee.

FS leverages existing theory in A* search, but is sub-
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stantially more efficient as it only requires heuris-
tics that are critically admissible (CA) rather than
admissible—a novel condition that is much more re-
laxed and substantially easier to implement. We de-
veloped several efficient CA heuristics for various con-
straint types under the value-oracle model and hope
that these heuristics can serve as templates for future
problem settings.

Our work bridges submodular optimization with graph
search for AI, and can potentially benefit from the
extensive existing research in both areas. For example,
we plan to integrate space-pruning techniques, such as
partial-order reduction and symmetry detection (Chen
and Yao, 2009), into F'S. We believe that FS will be a
foundational and unifying framework for submodular
optimization, and will foster cross-fertilization of the
two fields.
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