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Abstract

Predictive inverse optimal control is a pow-
erful approach for estimating the control pol-
icy of an agent from observed control demon-
strations. Its usefulness has been established
in a number of large-scale sequential deci-
sion settings characterized by complete state
observability. However, many real decisions
are made in situations where the state is
not fully known to the agent making deci-
sions. Though extensions of predictive in-
verse optimal control to partially observable
Markov decision processes have been devel-
oped, their applicability has been limited by
the complexities of inference in those rep-
resentations. In this work, we extend pre-
dictive inverse optimal control to the linear-
quadratic-Gaussian control setting. We es-
tablish close connections between optimal
control laws for this setting and the proba-
bilistic predictions under our approach. We
demonstrate the effectiveness and benefit in
estimating control policies that are influenced
by partial observability on both synthetic and
real datasets.

1 Introduction

Predicting sequences of behavior is an important task
for many artificial intelligence applications. It is of key
importance for human-robot interaction and human-
computer interaction systems. For example, robots
that more efficiently and safely navigate around peo-
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ple and user interfaces that can autonomously adapt
to improve a user’s task efficiency [3] each requires ac-
curate behavior predictions. Perfect accuracy is an
unrealistic objective for this task given the large num-
ber of behavior sequences that are possible. Instead,
statistical methods are needed to characterize the in-
herent uncertainties of this prediction task and guide
appropriate decision making in artificial intelligence
applications.

Two main approaches for constructing predictive mod-
els for this behavior prediction task are: (1) direct
policy estimation [22] learns a mapping from contex-
tual situations to actions; and (2) inverse optimal
control (IOC) methods (also known as inverse rein-
forcement learning and inverse planning) view behav-
ior under a sequential decision process and estimate a
reward/cost function that rationalizes demonstrated
behavior [23, 19, 30, 2]. Often, a learned reward
function from the latter approach generalizes well to
other portions of the decision process’s state space and
even to other decision processes in which the same re-
ward function is applicable. Policy estimation is not
nearly as adaptive to contextual changes in the deci-
sion/control setting. However, inverse optimal control
requires planning, decision, and control problems to be
repeatedly solved1. This can be computationally ex-
pensive. As a result, inverse optimal control methods
that have been beneficially employed to estimate de-
cision policies for behavior prediction tasks have been
restricted to settings with low dimensional state-action
spaces and/or full state observability [31, 11, 29, 16]
to make the optimal control problem tractable.

Unfortunately, the assumptions of a low-dimensional
state-control space and full state observability often

1Inverse optimal control methods that purportedly ad-
dress the IOC problem by estimating value or cost-to-
go functions without solving optimal control problems [9]
more closely resemble (the dual optimization problem) of
direct policy estimation methods.
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do not match reality for many important prediction
tasks. Often a human actor has only a partial knowl-
edge of the “state of the world” and takes actions that
are delayed responses to noisy observations of the ac-
tual world state. For example, a person may walk
through an environment with occlusions and there-
fore have uncertainty about the locations of obsta-
cles. Similarly, user interfaces may change in ways that
users do not anticipate leading to observed behavior se-
quences affected by human response times. Extensions
of inverse optimal control techniques address either
high-dimensionality or partial observability, but not
both. IOC methods for high-dimensional data assume
a linear-quadratic control setting [29, 15], for which
optimal control is tractable even for very high dimen-
sional state-control spaces. IOC methods for partially-
observable decision process representations [28, 7] have
been limited to partially-observable Markov decision
processes with small state-action spaces.

In this paper, we extend IOC methods to settings with
both high-dimensional state-control spaces and partial
observability. We specifically investigate the discrete-
time linear-quadratic-Gaussian (LQG) control setting.
This is a special sub-class of partially-observable de-
cision processes for which optimal control is efficient
even for large state and control dimensions. We for-
mulate the inverse LQG problem from robust estima-
tion first principles to obtain a predictive distribution
over state-control sequences. Like the optimal control
solution, which combines a Kalman filter [12] with a
linear quadratic regulator [14], our approach finds a
similar separation between state estimation and con-
trol policy estimation to provide probabilistic predic-
tive distributions. We demonstrate the benefits of in-
corporating partial observability for predictive inverse
optimal control in a synthetic control prediction task
and for modeling mouse cursor pointing motions.

2 Background & Related Work

2.1 Linear quadratic Gaussian control

Linear-quadratic-Gaussian (LQG) control prob-
lems seek the optimal control policy of partially ob-
served linear systems. Apart from its initial value,
which is Gaussian distributed (1), the unobserved state
of the system, denoted as value �xt (or random vari-

able �Xt) at time t, evolves as a noisy linear function
of the previous state �xt−1 and control �ut−1 (2). The
state itself is not directly observed by the controller;
instead, observation variables �zt (or as random vari-

ables, �Zt) that are noisy linear functions of the state
are observed (3). The state dynamic and observation
noise are each conditional Gaussian distributions with
a mean defined by linear relationships of the A, B,

and C matrices and covariance matrices Σd1
, Σd and

Σo characterizing the noise:

�X1 ∼ N(�µ,Σd1
); (1)

�Xt+1|�xt, �ut ∼ N(A�xt +B�ut,Σd); (2)

�Zt|�xt ∼ N(C�xt,Σo). (3)

The independence properties of the LQG control set-
ting are illustrated by the Bayesian network in Figure
1.

Figure 1: A probabilistic graphical model for the
partially-observable control setting.

Given the state and observation dynamics, the LQG
optimal control problem is to obtain the control policy
π : �U1:t−1 × �Z1:t → �Ut, that minimizes an expected
cost that is quadratically defined in terms of a cost
matrix M:

Ef(�Z1:T+1,�X1:T+1,�U1:T )

�
T+1�

t=1

�XT
t M �Xt

�
. (4)

The optimal control law is obtained by separating the
problem into a state estimation task and a linear-
quadratic-regulation optimal control problem for the
estimated state. State estimation is accomplished us-
ing a Kalman filter [12]. Due to the linear character-
istics of the problem, only the mean of the state esti-
mate is needed. For the estimate of the state’s mean
conditioned on previous and current observations and
previous controls, x̂t(+), the optimal control policy is
recursively defined [25] as:

�ut = −Ltx̂t(+),

x̂t+1 = Ax̂t +But +Kt(zt −C(Ax̂t +But)), x̂1 = E[x1],

where Kt is the Kalman gain:

Kt = HtC
T (CHtC

T +Σo)
−1,

and Ht is determined by the following matrix Riccati dif-
ference equation that runs forward in time,

Ht+1 = A(Ht −HtC
T (CHtC

T +Σo)
−1CHt)A

T +Σx,

H1 = E[X1X
T
1 ] = Σx + µµT
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The feedback gain matrix:

Lt = (B
TFt+1B)

−1BTFt+1A,

where Ft is determined by the following matrix Riccati
difference equation that runs backward in time,

Ft =





M+ATFt+1A t ≤ T

−ATFt+1B(B
TFt+1B)

−1BTFt+1A

M t = T + 1.

(5)

Linear-quadratic regulator (LQR) can be viewed
as the full-observability special case of LQG with C =
I and Σo = 0 where I is the identity matrix so that the
observation variable �zt is equivalent to the unobserved
state �xt.

2.2 Inverse optimal control

In contrast with the optimal control problem of ob-
taining a policy that minimizes some cumulative ex-
pected cost, inverse optimal control [20, 1] takes (sam-
ples from) a policy and tries to obtain a cost func-
tion for which observed behavior is optimal, ideally.
Early approaches often assumed a linear functional
form [5, 24, 1] for the cost function in terms of fea-
tures f , cost(xt) = θT f(xt), and optimality for some
choice of weights θ. In practice, observed behavior is
not consistently optimal for any linear cost function [1]
for this family of functions, and the optimality assump-
tion breaks down. Even though the linear weights of
the function are unknown and behavior can be arbi-
trarily sub-optimal, any policy that has the same ex-
pected feature statistics, E[

�
t f(xt)], as the demon-

strated feature statistic expectation is guaranteed to
have the same expected cost [1]. Mixtures of optimal
policies can instead be employed to guarantee the same
expected costs as (sub-optimal) demonstrated behav-
ior [1].

We distinguish IOC approaches that match the ex-
pected cost of demonstrated behavior with those that
attempt to provide predictions for behavior. The prin-
ciple of maximum entropy has previously been em-
ployed for this purpose. Maximum entropy IOC [30]
provides a stochastic control policy that robustly min-
imizes the predictive logloss for policies that, in ex-
pectation, generate certain expected features. In con-
trast, mixtures of optimal policies [1] can produce infi-
nite logloss when they provide no support for demon-
strated policies. We build upon the maximum entropy
IOC approach in this work.

2.3 Directed information theory

We view the LQG setting using concepts and measures
from directed information theory [17, 18, 13, 26, 21].

The joint distribution of states, observations, and con-
trols is factored into two causally conditioned proba-
bility distributions [13],

f(�x1:T ,�z1:T , �u1:T ) =

f(�u1:T ||�x1:T ,�z1:T ) f(�x1:T ,�z1:T ||�u1:T−1), (6)

where: f(�u1:T ||�x1:T ,�z1:T ) � (7)

T�

t=1

f(�ut|�u1:t−1, �x1:t,�z1:t)

and f(�x1:T ,�z1:T ||�u1:T−1) � (8)

T�

t=1

f(�xt, �zt|�x1:t−1, �u1:t−1,�z1:t−1).

The causal entropy [13] of the control policy,

H(�U1:T ||�X1:T , �Z1:T ) � E
�
− log2 f(�U1:T ||�X1:T , �Z1:T )

�

= E

�
T�

t=1

H(�Ut|�X1:t, �Z1:t, �U1:t−1)

�
, (9)

is a measure of the uncertainty of the causally con-
ditioned probability distribution (8). It can be inter-
preted as the amount of information or “surprise” (in
bits when using base-2) present in expectation for a
control sequence �u1:T sampled from the joint state,
observation, control distribution (6), given only previ-
ous observation and control variables.

Due to the specific independence properties of partial
observability in the LQG setting (shown in Figure 1),
the control policy reduces to:

f(�u1:T ||�z1:T ) �
T�

t=1

f(�ut|�u1:t−1,�z1:t), (10)

and the causal entropy of the control policy reduces to
H(�U1:T ||�Z1:T ). However, as we shall see, representing
the control distribution in its more general form and
constraining it to possess the required independence
properties is crucial for our approach.

3 Inverse Linear Quadratic Gaussian
Control

We employ a robust estimation approach for learning
the control policy in a way that generalizes to differ-
ent settings (§3.1). We show that this approach can
be posed as a convex optimization problem (§3.2) lead-
ing to a maximum causal entropy problem (§3.3). The
dual solution decomposes into a state estimation com-
ponent and a (softened) optimal control component,
enabling efficient inference (§3.4).
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3.1 Robust policy estimation

We consider a set of policies denoted by Ξ that are
similar to observed sequences of states, observations,
and controls (defined precisely in §3.3). We follow the
robust estimation formulation [27, 10] of maximum en-
tropy inverse optimal control [28] to select the single
policy with the best worst-case predictive guarantees
from this set. This can be viewed as a two-player game
in which the policy estimate, f̂ , that minimizes loss is
first chosen, and then an evaluation policy, f ∈ Ξ, is
adversarially chosen that maximizes the loss subject
to matching known/observed properties of the actual
policy:

min
{f̂(�u1:T ||�z1:T ,�x1:T )}

max
{f(�u1:T ||�z1:T , �x1:T )}

∈ Ξ

Loss(f̂ , f) (11)

≥ max
{f(�u1:T ||�z1:T , �x1:T )}

∈ Ξ

min
{f̂(�u1:T ||�z1:T ,�x1:T )}

Loss(f̂ , f) (12)

= max
{f(�u1:T ||�z1:T ,�x1:T )}∈Ξ

Loss(f, f). (13)

In general, weak Lagrangian duality holds and the dual
optimization problem (12) provides a lower-bound on
the primal optimization problem (11). The causal
log-loss,

Loss(f̂ , f) = Ef [− log f̂(�U1:T ||�Z1:T
�X1:T )], (14)

measures the amount of “surprise” (in bits when log2
is used) when control sequences sampled from f are

observed while control sequences from f̂ are expected.

When it is employed as the loss function, the dual op-
timization problem reduces to maximizing the causal
entropy (13): Loss(f, f) = H(�U1:T ||�Z1:T , �X1:T ).

3.2 A convex definition of the LQG policy set

We seek to strengthen our analysis of the dual solution
so that primal-dual equality holds (12). This strong
duality requires the set of policies (10) to be convex
[6], which is not obviously the case. We introduce the
partial observability causal simplex (Definition
1), which extends the causal simplex [28] to the partial-
observability setting. It is defined by affine constraints
that ensure that members of the set factor according to
(10). This is accomplished by preventing unobserved
variables (�x1:T ) and not-yet-revealed variables (�zt+1:T )
from influencing a control variable’s distribution (yt).

Definition 1. The partial observability causal
simplex for f(�u1:T ||�z1:T , �x1:T ) denoted by Δ, is de-

fined by the following set of constraints:

∀�u1:T ∈ �U1:T , �x1:T ,x
�
1:T ∈ �X1:T ,�z1:T , z

�
1:T ∈ �Z1:T ,

f(�u1:T ||�z1:T , �x1:T ) ≥ 0, (15)�

�u�
1:T∈�U1:T

f(�u�
1:T ||�z1:T , �x1:T ) d�u�

1:T = 1, (16)

f(�u1:T ||�z1:T , �x1:T ) = f(�u1:T ||�z1:T , �x�
1:T ). (17)

∀τ ∈ {0, . . . , T} such that �z1:τ = �z�1:τ , �x1:τ = �x�
1:τ ,�

�uτ+1:T∈�Uτ+1:T

f(�u1:T ||�z1:T , �x1:T ) d�uτ+1:T (18)

=

�

�uτ+1:T∈�Uτ+1:T

f(�u1:T ||�z�1:T , �x�
1:T ) d�uτ+1:T .

The non-negativity constraints (15) and normalization
constraints (16) ensure a valid probability distribu-
tion. The next set of constraints (17) enforces par-
tial observability—the controls do not depend on the
hidden state. The final set of constraints (Equation
18) ensures that only previous �x and �z variables in-
fluence controls �u (causal conditioning). Because all
of the equalities and inequalities are affine, the partial
observability causal simplex is a convex set.

3.3 Maximum causal entropy estimation

Redefining the domain of the estimated policy
f̂(u1:T ||z1:T ) using the partial observability causal
simplex (Definition 1) enables strong duality. The dual
of the robust policy estimation formulation (Section
3.1), reduces to maximizing the causal entropy (9) as
a selection measure from the set of policies (Δ) match-
ing quadratic state expectation constraints (Definition
2).

Definition 2. The maximum causal entropy in-
verse LQG policy is obtained from:

argmax
{f(�u1:T ||�z1:T ,�x1:T )}∈Δ

H(�U1:T ||�Z1:T , �X1:T ) (19)

such that: E

�
T+1�

t=1

�Xt
�XT

t

�
= Ẽ

�
T+1�

t=1

�Xt
�XT

t

�
, (20)

where Δ is the partial observability causal simplex of
Definition 1, E[·] is the expectation under the estimated
policy, and Ẽ[·] is the empirical expectation from ob-
served behavior sequence data.

This choice of constraints is motivated by inverse op-
timal control (Section 2.2). They ensure that the
stochastic control policy matches the performance of
observed behavior on unknown state-based quadratic
cost functions2 (Corollary 1).

2We employ state-based functions for notational sim-
plicity. Control-based functions could also be explicitly
added with an additional constraint or implicitly by incor-
porating an “action memory” into the state vector.
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Corollary 1 ([1]). For any unknown quadratic cost
function, parameterized by matrix M, matching ex-
pected feature counts guarantees equivalent perfor-
mance on the unknown cost function:

∀M ∈ R|S|×|S|,

E

�
T+1�

t=1

�Xt
�XT

t

�
= Ẽ

�
T+1�

t=1

�Xt
�XT

t

�

=⇒ E

�
T+1�

t=1

�XT
t M

�Xt

�
= Ẽ

�
T+1�

t=1

�XT
t M

�Xt

�
,

Many different mixture distributions over determinis-
tic policies can satisfy this constraint [1]. Thus, the
causal entropy (19) can be viewed as a tie-breaking
criterion that resolves the ill-posedness of inverse opti-
mal and provides strong robust prediction guarantees.

3.4 Predictive inverse LQG distribution

The Lagrangian dual provides a value-equivalent so-
lution to the primal constrained optimization problem
(19)3, while leading to a more compact representations
of the policy.

Theorem 1. The solution to the partially-observable
maximum causal entropy problem (Definition 2) takes
the following recursive form where M is the La-
grangian multiplier matrix:

f(�ut|�u1:t−1,�z1:t) = eQ(�u1:t,�z1:t)−V (�u1:t−1,�z1:t) (21)

where:

Q(�u1:t,�z1:t) =





E[�XT
T+1M

�XT+1|�u1:T ,�z1:T ] t = T ;

E[�XT
t+1M

�Xt+1

+V (�U1:t, �Z1:t+1)|�u1:t,�z1:t] t < T

(22)

V (�u1:t−1,�z1:t) = softmax
�ut

Q(�u1:t,�z1:t)

� log

�

�ut

eQ(�u1:t,�z1:t)d�ut. (23)

The probability distribution can be interpreted as a
softened relaxation of the Bellman optimal policy cri-
terion [4] where the softmax function replaces the max
function: softmaxx f(x) � log

�
x
ef(x). It serves as a

smooth interpolator of the maximum function.

Unfortunately, in the LQG setting, the value functions
of Theorem 1 are still unwieldy since they depend on
the entire history of actions and observations. As in
optimal LQG control [14], a more practical algorithm
is obtained by separating state estimation from the

3Strong duality is subject to mild feasibility require-
ments on feature matching.

policy distribution. Assuming a Gaussian belief of the
current state �Xt|bt(�u1:t−1,�z1:t) ∼ N(�µbt ,Σbt) that is
based on the entire history, the policy can be recur-
sively obtained according to Theorem 2.

Theorem 2. Given a belief state which summa-
rizes the history �u1:t−1,�z1:t up to time step t (i.e.,
�Xt|bt ∼ N(�µbt ,Σbt), the recurrence values (22),(23)
are Markovian quadratic functions of the form:

Q(�ut, �µbt) =

�
�ut
�µbt

�T
Wt

�
�ut
�µbt

�
(24)

V (�zt, �ut−1, �µbt−1
) =



�zt
�ut−1

�µbt−1



T

Dt



�zt
�ut−1

�µbt−1


 (25)

Wt =





�
B A

�T
M

�
B A

�
t = T

�
B A

�T
M

�
B A

�
t < T

+Dt+1(Uµ,Z)

�
CB CA

�

+
�
CB CA

�T
Dt+1(Z,Uµ),

+
�
CB CA

�T
Dt+1(Z,Z)

�
CB CA

�

+Dt+1(Uµ,Uµ)

(26)

Dt = P
T
t (Wt(µ,µ) − W

T
t(U,µ)W

−1
t(U,U)Wt(U,µ))Pt (27)

where

Pt =
�
Et+1 B−Et+1CB A−Et+1CA

�

Et+1 = (Σd+AΣ
T
btA

T )TCT (Σo+C(Σd+AΣ
T
btA

T )TCT )−1

The probabilistic control policy for a belief state with
mean �µbt is then:

�Ut|�µbt ∼ N
�
−W−1

t(U,U)Wt(U,µ)�µbt ,−
1

2
W−1

t(U,U)

�

(28)

Theorem 3 establishes the connection to optimal con-
trol: the mean/mode of the control distribution is the
optimal control and, in fact, the (stochastic) maximum
causal entropy probabilistic control policy can be di-
rectly obtained from the optimal control solution.

Theorem 3. The terms of the stochastic control policy
(28) are related to the LQG optimal control laws as:

Wt(U,U) = BTFt+1B; Wt(U,µ) = BTFt+1, (29)

where Ft+1 is defined by the optimal control law(5),
and the Lagrangian multiplier matrix M in(26) is
given as the cost matrix in(5).

Thus, existing methods for solving LQG optimal con-
trol problems can be used to recover the stochastic
control policy given the cost matrix M.
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3.5 Model Fitting

According to the previously developed theory of max-
imum causal entropy [28] the gradient of the La-
grangian dual form with respect to the Lagrangian
multipliers matrix M is:

Ef

�
T+1�

t=1

�Xt
�XT

t

�
− Ẽf

�
T+1�

t=1

�Xt
�XT

t

�
(30)

This comes from the constraint of the convex optimiza-
tion problem (20).

We can compute the expectation of quadratic
state moments over the distribution of state-control-
observation trajectories provided by our estimated pol-
icy also via conditioning on the mean and variance of
the belief state:

Ef

�
�Xt
�XT

t

�

= Ef(�u1:t−1,�z1:t)

�
Ef(�xt|�u1:t−1,�z1:t)

�
�Xt
�Xt|�U1:t−1, �Z1:t

��

= E
�
Σbt + �µbt�µ

T
bt

�

= Σbt +Var [�µbt ] + E [�µbt ]E [�µbt ]
T
.

The mean and variance of the belief state �µbt ,Σbt is
recursively computed according to a Kalman filter [12].

4 Experimental Validation

We evaluate the performance of our inverse LQG ap-
proach on controlled data (Sec. 4.1) and real mouse
cursor movement data (Sec. 4.2) to investigate its
benefits in comparison to full observability models
of behavior by average empirical causal log-loss over
test data. We call empirical casual log-loss as tra-
jectory log-loss. Assume we have N trajectories
{�x1:Tn+1 ,�z1:Tn , �u1:Tn}Nn=1 for test, and f is our proba-
bilistic control policy learned from training data, then
the average trajectory log-loss is:

− 1

N

N�

n=1

log f(�u1:Tn
||�z1:Tn

) =

= − 1

N

N�

n=1

Tn�

t=1

log f(�ut|�u1:t−1,�z1:t)

= − 1

N

N�

n=1

Tn�

t=1

log f(�ut|�µbt).

4.1 Controlled demonstrations of the
benefits of partial observability

In our first set of experiments, we investigate the ben-
efits of incorporating partial-observability into predic-
tive inverse optimal control. This provides some in-
sights into whether it is sufficient to simply ignore

partial observability and use inverse optimal control
(IOC) models that assume full observability. We vary
the state and observation noise of a LQG control
problem and measure the average empirical trajectory
log-loss compared to treating the problem as a fully-
observed linear-quadratic regulator (LQR)control pro-
cess.

We collect data via an optimal LQG controller [14]
applied to a spring-mass system:

�Xt+1 = A�Xt +B�Ut + εs �Zt = C�Xt + εo

�X1 ∼ N(�0,Σd1) εx ∼ N(�0,Σd) εo ∼ N(�0,Σo).

A =

�
0 1
−1 0

�
B =

�
0
1

�
C =

�
1 0

�

The controller minimizes the following expected
quadratic cost function:

J = E

�
T+1�

t=1

�XT
t Q

�Xt

�
,

where we set (using I as the identity matrix):

Q = I2×2 Σd1 = Σd = σd ∗ I2×2 Σo = σo ∗ I1×1.

From the setting of the observation dynamic C, only
the first row of the two row state �Xt is observed which
provides partial-observability scnario.

For each experiment where we vary the noise of the sys-
tem, we generate 2000 state-observation-control tra-
jectories with length T = 30 by applying the optimal
LQG controller. We use the first 1000 trajectories as
the training data and remaining 1000 trajectories as
testing data. To simulate the LQR model via LQG
setting, we set C = I2×2 and let �Zt = �Xt. We note
that the average trajectory log-loss can be negative, as
in these experiments, because it is taken over a con-
tinuous distribution.

Figure 2, above, shows that LQG has significantly bet-
ter performance than LQR when the observation noise
σo increases. This is because the controller is basing its
controls on noisy observations that are increasingly dif-
ferent from the true state. Also, it shows that the log
loss decreases as the observation noise increases. This
is because as the observation noise increases, the con-
trollers system state estimates are less certain. Paying
large costs for controls becomes less worthwhile, and
controls from a smaller range (closer to 0) are instead
produced. These lower variance controls are easier to
predict and have small log loss. As shown in Figure 2,
below, when the state noise σd increases, it dominates
the test performance of both LQG and LQR. This is
because as the state noise increases, state estimation
becomes increasingly error-prone for both LQG and
LQR.
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Figure 2: Above: Withheld average trajectory log-loss
as the observation noise, σo, increases (with fixed state
transition dynamic noise σd = 0.01). Below: With-
held average trajectory log-loss as the state transition
dynamics noise, σd, increases (with fixed observation
noise σo = 1.0).

4.2 Estimating mouse cursor pointing
trajectories

Modeling mouse cursor pointing motions is an impor-
tant machine learning problem for human-computer
interaction tasks. A number of interventional tech-
niques have been developed to facilitate pointing tar-
get acquisition (e.g., adjusting the control-display ratio

dynamics, enlarging targets, etc.) [3]. However, better
predictions of intended target are required for these
intervention techniques to be successfully employed in
the wild [29].

We use data captured from 20 non-motor-impaired
computer users performing computer cursor pointing
tasks to assess the benefits of the LQG approach ver-
sus previous LQR models that have been employed
for this task [29]. Users are presented with a sequence
of circular clicking targets to select and their mouse
cursor data is collected at 100Hz. We specifically in-
vestigate whether incorporating a response delay using
our LQG framework provides better predictions than

Figure 3: Example mouse cursor trajectories terminat-
ing at small circle positions exhibiting characteristics
of delayed feedback.

the LQR approach, which assumes an instantaneous
response to the changes in mouse cursor position. Our
assumption is instead that due to the imprecise human
abilities for fine-grained control, cursor navigation is
essentially an open loop control problem and that in-
corporating feedback delay will produce better policy
estimates. Some evidence of this is demonstrated by
the cursor pointing trajectories in Figure 3.

We follow the previous work’s control formulation [29].
The instantaneous state

�xt � [xt yt ẋt ẏt ẍt ÿt ]
�

is represented by the relative position, velocity, and
acceleration vectors towards the target and orthogo-
nal to the target at discrete points in time. These dy-
namics (e.g., velocities and accelerations) are defined
according to difference equations,

�
ẋt
ẏt

�
=

�
xt − xt−1

yt − yt−1

�
(31)

�
ẍt
ÿt

�
=

�
ẋt − ẋt−1

ẏt − ẏt−1

�
, (32)

and can easily be expressed as a linear dynamics model
with the control vector �ut representing the change in
position. Under this dynamics model, mouse pointing
motion data follows a linear relationship (with optional
zero-meaned Gaussian noise, �):

�xt+1 = A�xt +B�ut + �.

where

A =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0




B =




1 0
0 1
1 0
0 1
1 0
0 1




Though the cursor positions are located at discrete
pixels and the controls are the discrete differences of
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these pixel locations, using a discrete model for esti-
mating the control policy is not feasible. Specifically,
since the dimensionality of the state space is six, any
reasonably fine-grained discretization of each dimen-
sion (position, velocity, acceleration) will lead to an in-
tractably large discrete decision process that is farther
exacerbated by partial observability (as a partially-
observed Markov decision process).

We consider a control system with a delayed observa-
tion of t0 time steps. This is formally represented in
the LQG model by augmenting the LQG state with
the previous t0 states and having the observation dy-
namics only reveal the state from t0 time steps ago.
For example, a delay one model has the following dy-
namics matrices:

A� =

�
A 0
I 0

�
B� =

�
B
0

�
C� =

�
0 I

�
.

We additionally compare our prediction approach
against a direct policy estimation method: kth-order
Markov models of different orders k = {1, 2, 3, 4}.
For this continuous state-action setting, estimating the
Markov model reduces to a linear regression problem
of the form:

�̂st = [�st−1 �st−2 . . . �st−k]�α+ �, (33)

with zero-mean Gaussian noise � ∼ N(0, σ2). The
state at each time is the x and y position of the mouse
cursor. Regression parameters �α are estimated by min-
imizing the sum of squared errors, as is standard in
ordinary linear regression. Control estimates �̂ut are
simply the difference between the next state estimate,
�̂st and the previous state, �st−1, with the distribution
determined by the Gaussian model.

Of the 4, 949 mouse cursor trajectories, we randomly
select 3, 000 as training data and use the remaining
1, 949 for evaluation. In Figure 4, we evaluate dif-
ferent choices of delayed feedback, t0. We have no
observation noise. Note that the model is equivalent
to the LQR setting when t0 = 0. As shown in this
figure, the LQG setting with t0 = 3 delay has the
best performance. The Markov models of 3rd and 4th

order outperform the LQR model, but are not more
predictive than the LQG model with delay of 1, 2, 3,
or 4. (Note that 1st order Markov model is signifi-
cantly worse and does not appear in the figure.) The
advantage of the LQG model over the noise-less LQR
inverse optimal control model and the direct policy
estimation of the Markov model shows that modeling
mouse pointing motions as an LQG problem is advan-
tageous compared to the previous LQR model, which
assumes instantaneous responses.

Other partial-observability mechanisms are likely to
also influence the cursor pointing motions and improve

Figure 4: Average trajectory log-loss of: the LQG
model with various amounts of delay, t0; the LQR
model; Markov models of order 2,3,4.

the prediction of common overshooting and correcting
motions. For example, a noisy observation model is
more appropriate than the delayed perfect observation
model we employ. However, our experiments provide
a solid first step in predicting pointing motion control
sequences using the LQG framework.

5 Discussion and Future Work

In this paper, we extended maximum entropy inverse
optimal control to the LQG control setting. We es-
tablished a separation property that allows inference
in the resulting model to be performed efficiently. De-
spite the formulation of our approach being distinct
from optimal LQG control, we found close connections
between the two methods, including the ability to use
an LQG solver as an integral part of the inverse LQG
inference procedure. We demonstrated the advantages
of the LQG representation for predictive inverse opti-
mal control both on a synthetic dataset and on real
mouse cursor data.

Of significant future interest are general methods
for approximating non-linear control problems with
observed state-observation-action trajectories placed
within the LQG framework and using inverse optimal
control to construct predictive models. These lineariz-
ing approximations have been well-studied in the con-
trol literature [14], but it remains to be seen whether
reasonable learning can occur when an entire trajec-
tory distribution must be approximated rather than
the deterministic optimal controller.
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