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Abstract

This technical report provides supplementary material for the paper “Exact Bayesian
Learning of Ancestor Relations in Bayesian Networks”. Here we extend our algorithm
to compute the exact posterior of any s p t relation, i.e., a directed path from s to t
via p, in O(n7n−2) time and O(4n−2) space.

1. Computing Posteriors of s p t Relations

1.1 Algorithm

The problem is to evaluate whether there is a directed path from s to t via p. Similarly, we
would like to compute the joint probability P (s p t,D) by

(1)P (s p t,D) =
∑

G:s p t∈G

∏
i∈V

Bi(PaGi ).

For any T,R, S such that p ∈ T ⊂ R ⊆ S ⊆ V , s ∈ R − T , let Gs,p(S,R, T ) denote the
set of all possible DAGs over S such that R are the set of all descendants of s (including s)
and T are the set of all descendants of p (including p) in GS . That is, GS ∈ Gs,p(S,R, T ) if
and only if deGS

(s) = R and deGS
(p) = T . We then define

(2)Hs,p(S,R, T ) ≡
∑

GS∈Gs,p(S,R,T )

∏
i∈S

Bi(PaGS
i ).

Then we have

Lemma 1
(3 )P (s p t,D) =

∑
T,R:{p,t}⊆T⊂R⊆V,s∈R−T

Hs,p(V,R, T ).

Proof . Let Gs p t = {G : s  p  t ∈ G}, namely the set of all possible DAGs over V
that contains a s  p  t. Then we have Gs p t = ∪T,R:{p,t}⊆T⊂R⊆V,s∈R−TGs,p(V,R, T ).
Further, for any T1 6= T2 or R1 6= R2, we have Gs,p(V,R1, T1) ∩ Gs,p(V,R2, T2) = ∅. This
means Gs,p(V,R, T ) for all T , R such that p ∈ T ⊂ R ⊆ V , s ∈ R − T form a partition of
the set Gs p t. Thus,
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(4)

P (s p t,D) =
∑

G∈Gs p t

∏
i∈V

Bi(PaGi ) =
∑

T,R:{p,t}⊆T⊂R⊆V
s∈R−T

∑
G∈Gs,p(V,R,T )

∏
i∈V

Bi(PaGi )

=
∑

T,R:{p,t}⊆T⊂R⊆V,s∈R−T

Hs,p(V,R, T ).

If we have all Hs,p(S,R, T ) computed, we can compute Eq. (4) in
∑n
|R|=1

[(
n−3
|R|−3

)∑|R|−1
|T |=2

(|R|−3
|T |−2

)]
=

O(3n−3) time.
Now we can show that Hs,p(S,R, T ) for all T , R, S such that p ∈ T ⊂ R ⊆ S ⊆ V

and s ∈ R− T can be computed recursively. These Hs,p(S,R, T )’s can be divided into two
cases: T = {p} and T 6= {p}.

Figure 1: Case 1: T = {p}.

Case 1: T = {p}.
In this case, p is a sink in GS (see Figure 1) and its parent set must include a least one

node in R − {p} to make it a descendant of s. For nodes in S − {p}, we have summation
over Gs(S − {p}, R − {p}), i.e., the set of DAGs over S − {p} s.t. R − {p} are the set of
descendants of s in GS−{p}. Then we have

(5)

Hs,p(S,R, {p}) = [
∑

Pap⊆S−{p}
Pap∩R−{p}6=∅

Bp(Pap)][
∑

GS−{p}∈Gs(S−{p},R−{p})

∏
i∈S−{p}

Bi(Pa
GS−{p}
i )]

= [
∑

Pap⊆S−{p}

Bp(Pap)−
∑

Pap⊆S−R
Bp(Pap)]Hs(S − {p}, R− {p})

= [Ap(S − {p})−Ap(S −R)]Hs(S − {p}, R− {p})
= [AA(S − {p}, {p})−AA(S −R, {p})]Hs(S − {p}, R− {p}).

Case 2: T 6= {p}.
For any W ⊆ S − {s, p}, let Gs,p(S,R, T,W ) denote the set of DAGs in Gs,p(S,R, T )

such that all nodes in W are (must be) sinks. 1 Then we define

1. Again, W may not include all the sinks in GS . Some nodes in S −W could be sinks.
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(6)Fs,p(S,R, T,W ) ≡
∑

GS∈Gs,p(S,R,T,W )

∏
i∈S

Bi(PaGS
i ).

Similarly, by weighted inclusion-exclusion principle,

(7)

Hs,p(S,R, T ) =

|S|−2∑
k=1

(−1)k+1
∑

W⊆S−{s,p},|W |=k

∑
GS∈Gs,p(S,R,T,W )

∏
i∈S

Bi(Pai)

=

|S|−2∑
k=1

(−1)k+1
∑

W⊆S−{s,p},|W |=k

Fs,p(S,R, T,W ).

Fs,p(S,R, T,W ) and Hs,p(S,R, T ) can be computed recursively. There are three sub-cases
(see Figure 2).

(a) W ∩R = ∅ (b) W ∩R 6= ∅ and W ∩ T = ∅ (c) W ∩ T 6= ∅

Figure 2: Three different cases when computing Fs,p(S,R, T,W ).

Sub-case 1: W ∩R = ∅.
We can compute the summation for W and S −W separately (see Figure 2(a)). We

have

(8)Fs,p(S,R, T,W )

= [
∏
j∈W

∑
Paj⊆(S−R−W )

Bj(Paj)][
∑

GS−W∈Gs,p(S−W,R,T )

∏
i∈S−W

Bi(Pa
GS−W

i )]

=
∏
j∈W

Aj(S −R−W )Hs,p(S −W,R, T ) = AA(S −R−W,W )Hs,p(S −W,R−W,T −W )

(because R−W = R and T −W = T in this case).

Sub-case 2: W ∩R 6= ∅ and W ∩ T = ∅.

In this case, nodes in W − R, W ∩ R, and S −W should be handled separately (see
Figure 2(b)). Nodes in W −R can only select parents from S−R−W . Any node in W ∩R
can select parents from S −W − T . In addition, at least one node from R − T −W must
be included in its parent set to guarantee that it is a descendant of s. For nodes in S −W ,
we have summation over Gs,p(S −W,R−W,T ). Then we have
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(9)Fs,p(S,R, T,W ) = [
∏

j∈W−R

∑
Paj⊆(S−R−W )

Bj(Paj)][
∏

j∈W∩R

∑
Paj⊆(S−W−T )

Paj∩(R−T−W )6=∅

Bj(Paj)]

[
∑

GS−W∈
Gs,p(S−W,R−W,T )

∏
i∈S−W

Bi(Pa
GS−W

i )]

=
∏

j∈W−R
Aj(S −R−W )

 ∏
j∈W∩R

[Aj(S −W − T )−Aj(S −W −R)]

Hs,p(S −W,R−W,T )

= AA(S −W −R,W −R)

 ∏
j∈W∩R

[Aj(S −W − T )−Aj(S −W −R)]


Hs,p(S −W,R−W,T −W ) (because T −W = ∅ in this case).

Sub-case 3: W ∩ T 6= ∅.

In this case, nodes in W − R, W ∩ (R − T ), W ∩ T , and S −W should be handled
separately (see Figure 2(c)). Nodes in W −R can only select parents from S−R−W . Any
node in W ∩ (R − T ) can select parents from S −W − T . In addition, at least one node
from R − T −W must be included in its parent set to guarantee that it is a descendant
of s. Nodes in W ∩ T can select parents from S −W and at least one node as its parent
from T −W to make it a descendant of p. For nodes in S −W , we have summation over
Gs,p(S −W,R−W,T −W ). Then we have

(10)

Fs,p(S,R, T,W )

= [
∏

j∈W−R

∑
Paj⊆(S−R−W )

Bj(Paj)][
∏

j∈W∩(R−T )

∑
Paj⊆(S−W−T )

Paj∩(R−T−W )6=∅

Bj(Paj)]

[
∏

j∈W∩T

∑
Paj⊆(S−W )

Paj∩(T−W ) 6=∅

Bj(Paj)][
∑

GS−W∈
Gs,p(S−W,R−W,T−W )

∏
i∈S−W

Bi(Pa
GS−W

i )]

=
∏

j∈W−R
Aj(S −R−W )

 ∏
j∈W∩(R−T )

[Aj(S −W − T )−Aj(S −W −R)]

 ∏
j∈W∩T

[Aj(S −W )−Aj(S −W − T )]

Hs,p(S −W,R−W,T −W )

= AA(S −W −R,W −R)

 ∏
j∈W∩(R−T )

[Aj(S −W − T )−Aj(S −W −R)]

 ∏
j∈W∩T

[Aj(S −W )−Aj(S −W − T )]

Hs,p(S −W,R−W,T −W ).
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For ease of exposition, for all S,R, T,W such that {p} ⊂ T ⊂ R ⊆ S ⊆ V , s ∈ R − T
and W ⊆ S − {s, p}, define function As,p(S,R, T,W ) as follows:

(11)If W ∩R = ∅,
As,p(S,R, T,W ) ≡ AA(S −R−W,W );

If W ∩R 6= ∅ and W ∩ T = ∅,

As,p(S,R, T,W ) ≡ AA(S −W −R,W −R)

 ∏
j∈W∩R

[Aj(S −W − T )−Aj(S −W −R)]

;

If W ∩ T 6= ∅,

As,p(S,R, T,W ) ≡ AA(S −W −R,W −R)

 ∏
j∈W∩(R−T )

[Aj(S −W − T )−Aj(S −W −R)]

 ∏
j∈W∩T

[Aj(S −W )−Aj(S −W − T )]

.

Now Fs,p(S,R, T,W ) can be neatly written as

(12)Fs,p(S,R, T,W ) = As,p(S,R, T,W )Hs,p(S −W,R−W,T −W ).

Then we have a recursive formula for computing Hs,p(S,R, T ),

Hs,p(S,R, T ) =

|S|−2∑
k=1

(−1)k+1
∑

W⊆S−{s,p},|W |=k

As,p(S,R, T,W )Hs,p(S −W,R−W,T −W ).

(13)

And finally, we arrive the following recursive scheme for computing Hs,p(S,R, T ) for all
T , R, S such that p ∈ T ⊂ R ⊆ S ⊆ V and s ∈ R− T .

Theorem 2

Hs,p(S,R, {p}) = [AA(S − {p}, {p})−AA(S −R, {p})]Hs(S − {p}, R− {p})
for all {s, p} ⊆ R ⊆ S ⊆ V ,

Hs,p(S,R, T ) =

|S|−2∑
k=1

(−1)k+1
∑

W⊆S−{s,p},|W |=k

As,p(S,R, T,W )Hs,p(S −W,R−W,T −W )

for all T,R, S s.t {p} ⊂ T ⊂ R ⊆ S ⊆ V and s ∈ R− T .

(14 )

Note that all Hs(S − {p}, R− {p})’s can be computed recursively using Theorem 2.
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1.2 Time and Space Complexity

Computing Hs,p(S,R, {p}) and Hs,p(S,R, T ) dominates the total computation time. Given
all Hs(S −{p}, R−{p})’s pre-computed, Hs,p(S,R, {p}) for all {s, p} ⊆ R ⊆ S ⊆ V can be

computed in
∑n
|S|=2

(
n−2
|S|−2

)∑|S|
|R|=2

(|S|−2
|R|−2

)
= O(3n−2) time. All other Hs,p(S,R, T )’s can be

computed in

(15)

n∑
|S|=3

(
n− 2

|S|−2

)
|S|∑
|R|=3

(
|S|−2

|R|−2

)|R|−1∑
|T |=2

(
|R|−2

|T |−1

)
|S|·2|S|−2


=

n∑
|S|=3

(
n− 2

|S|−2

)
|S|∑
|R|=3

(
|S|−2

|R|−2

)
|S|·2|S|+|R|−4

=

n∑
|S|=3

(
n− 2

|S|−2

)[
|S|·2|S|−2 · 3|S|−2

]
=

n∑
|S|=3

(
n− 2

|S|−2

)[
|S|·6|S|−2

]
< n7n−2.

Thus, the total computation time is O(n7n−2). The space complexity is dominated by
Hs,p(S,R, T ), which is

(16)

n∑
|S|=2

(
n− 2

|S|−2

)
|S|∑
|R|=2

(
|S|−2

|R|−2

)|R|−1∑
|T |=1

(
|R|−2

|T |−1

)
=

n∑
|S|=2

(
n− 2

|S|−2

)
|S|∑
|R|=2

(
|S|−2

|R|−2

)
2|R|−2

=
n∑
|S|=3

(
n− 2

|S|−2

)
3|S|−2 = 4n−2.

Thus, the total space requirement is O(4n−2 + 3n). Thus, we have the following theorem.

Theorem 3 The posterior probability of any s  p  t relation can be computed in
O(n7n−2) time and O(4n−2 + 3n) space.
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