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Abstract

Ancestor relations in Bayesian networks
(BNs) encode long-range causal relations
among random variables. In this paper, we
develop dynamic programming (DP) algo-
rithms to compute the exact posterior proba-
bilities of ancestor relations in Bayesian net-
works. Previous algorithm by Parviainen
and Koivisto (2011) evaluates all possible an-
cestor relations in time O(n3n) and space
O(3n). However, their algorithm assumes
an order-modular prior over DAGs that does
not respect Markov equivalence. The result-
ing posteriors would bias towards DAGs con-
sistent with more linear orders. To adhere
to the uniform prior, we develop a new DP
algorithm that computes the exact posteri-
ors of all possible ancestor relations in time
O(n25n−1) and space O(3n). We also discuss
the extension of our algorithm to computing
the posteriors of s  p  t relations, i.e.,
a directed path from s to t via p. We ap-
ply our algorithm to a biological data set for
discovering protein signaling pathways.

1 INTRODUCTION

Bayesian networks (BN), representing a set of random
variables and their conditional dependencies via di-
rected acyclic graph (DAG), have been widely used
for probabilistic inference and causal modeling (Pearl,
2000; Spirtes et al., 2000). In particular, the DAG
structure supports causal interpretations. For exam-
ple, a directed edge represents direct causal relation
between two variables; a directed path, composed
of consecutively directed edges, represents (indirect)
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causal relation among two variables. Learning these
structures from observational data has been a major
challenge.

Traditional model selection approach seeks out a
maximum-a-posteriori (MAP) BN G and infers the
structures based on this single model. This is problem-
atic because: (1) the assumed “data generating DAG”
is unidentifiable from the observational data due to
the so-called Markov equivalence of multiple different
DAGs (Verma and Pearl, 1990); and (2) other Markov
equivalence classes may fit the data almost equally well
due to the noises in the data (Friedman and Koller,
2003).

Bayesian approach circumvents the model uncertainty
problem by learning the posterior distribution of these
structural features (Friedman and Koller, 2003). How-
ever, exact computation of these posteriors is hard due
to the super-exponentially large DAG space. There-
fore, many researches resorted to approximate meth-
ods either based on statistical sampling techniques
(Madigan et al., 1995; Friedman and Koller, 2003;
Eaton and Murphy, 2007; Ellis and Wong, 2008; Grze-
gorczyk and Husmeier, 2008; Niinimäki et al., 2011;
Niinimäki and Koivisto, 2013) or by averaging over
top models (Tian et al., 2010; Chen and Tian, 2014).

Computing the exact posterior probabilities of struc-
tural features is hard, but still tractable in certain
cases. Assuming an order-modular prior over DAGs
and bounded indegree, a dynamic programming (DP)
algorithm can compute the posterior probabilities of
modular features, e.g., directed edges, in O(n2n) time
and O(2n) space (Koivisto and Sood, 2004; Koivisto,
2006). To deal with (harder) non-modular feature,
i.e., ancestor relations, an analogous DP algorithm
takes O(n3n) time and O(3n) space (Parviainen and
Koivisto, 2011). As mentioned, these algorithms re-
quire special form of structural prior P (G), thus per-
form summation over order space instead of DAG
space. As a result, the computed posteriors would
bias towards DAGs consistent with more linear orders
and the Markov equivalence is not respected either. To
adhere to the uniform prior, Tian and He (2009) devel-
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oped a novel DP algorithm directly summing over the
DAG space. Their algorithm is capable of evaluating
all directed edges (modular features) in O(n3n) time
and O(n2n) space.

In this paper we extend Tian and He (2009)’s work
and develop a novel algorithm to compute the exact
posterior probabilities of ancestor relations (directed
path) in Bayesian networks. Unlike the DP algorithm
by Parviainen and Koivisto (2011), our algorithm uses
the standard structure-modular prior, thus respects
uniform prior and Markov equivalence.

2 PRELIMINARIES

Formally, a Bayesian network is a DAG that encodes
a joint probability distribution over a vector of ran-
dom variables x = (x1, ..., xn) with each node of the
graph representing a variable in x. For convenience we
will typically work on the index set V = {1, ..., n} and
represent a variable xi by its index i. The DAG is rep-
resented by a vector G = (PaG1 , ..., PaGn ) where each
PaGi is a subset of the index set V − {i} and specifies
the parents of i in the graph G.

Given an observational data D, the joint distribution
P (G,D) is composed as

(1)P (G,D) = P (G)P (D|G),

where P (G) specifies the structure prior, and P (D|G)
is the data likelihood.

With standard assumptions on the parameter pri-
ors (Dirichlet prior for multinomial random vari-
ables, Wishart prior for Gaussian random variables)
including global and local parameter independence
and parameter modularity (Cooper and Herskovits,
1992; Friedman and Koller, 2003), the data likelihood
P (D|G) can be decomposed into

(2)P (D|G) =
∏
i∈V

scorei(PaGi : D),

where scorei(PaGi : D) is the so-called local scores and
has a closed-form solution.

Moreover, the structure modularity assumes

(3)P (G) =
∏
i∈V

Qi(PaGi ),

where Qi(PaGi ) is some function from the subsets of
V − {i} to the non-negative reals. For ease of expo-
sition, we define, for any i ∈ V and PaGi ⊆ V − {i}

(4)Bi(PaGi ) ≡ Qi(PaGi )scorei(PaGi : D).

Then
(5)P (G,D) =

∏
i∈V

Bi(PaGi ).

3 PREVIOUS APPROACHES

Let f be a structural feature represented by an indica-
tor function such that f(G) is 1 if the feature is present
in G and 0 otherwise. In Bayesian approach, we are
interested in computing the posterior P (f |D) of the
feature, which can be obtained by computing the joint
probability P (f,D) as

(6)P (f,D) =
∑
G

f(G)P (G,D).

The summation is intractable in practice since the
number of all possible DAGs is O(n! 2n(n−1)/2). Thus,
much research has proposed to work on the order space
(Friedman and Koller, 2003; Koivisto and Sood, 2004;
Koivisto, 2006; Parviainen and Koivisto, 2011). For-
mally, an order ≺ is a linear order (L1, ..., Ln) on the
index set V , where Li specifies the predecessors of i in
the order, i.e., Li = {j : j≺i}. We say that a struc-
ture G = (Pa1, ..., Pan) is consistent with an order ≺,
denoted by G ∈≺, if Pai⊆Li for all i. Then we can
compute

(7)P (f,D) =
∑
≺

P (≺)
∑
G∈≺

f(G)P (D|G)P (G|≺).

It turns out with such treatment, the computation can
be more efficient and convenient. Indeed, it has been
shown that the posteriors of all possible ancestor rela-
tions can be evaluated in time O(n3n) and space O(3n)
using this order-based summation scheme (Parviainen
and Koivisto, 2011).

(a) A chain DAG

(b) A tree DAG

Figure 1: Two Markov equivalent DAGs

This treatment is problematic because it treats differ-
ent variable orders as mutually exclusive events. How-
ever, the corresponding sets of consistent DAGs are
overlapping. If we introduce a uniform prior P (≺)
and a uniform P (G|≺), the resulting prior P (G) is not
uniform. It weights the DAGs by the number of linear
extensions. For example, an empty network without
any edge is consistent with n! linear orders, while a
chain network (see Figure 1(a)) is consistent with only
one linear order. The resulting posteriors will bias to-
wards DAGs consistent with more linear orders. For
the same reason, two Markov equivalent DAGs (Pearl,
2000) may receive unequal priors. For example, the
two DAGs shown in Figure 1 are Markov equivalent.
However, the tree DAG in Figure 1(b) will be weighted
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6 times as the chain DAG in Figure 1(c). Thus, the
Markov equivalence is not respected.

In this paper, we will develop a novel algorithm for
Bayesian learning of ancestor relations that directly
performs summation over the DAG space by exploiting
sinks. Our algorithm allows the uniform prior P (G)
and respects the Markov equivalence.

4 BAYESIAN LEARNING OF
ANCESTOR RELATIONS

4.1 Algorithm

We say s is an ancestor of t, or t is a descendant of
s, if G contains a directed path from s to t, denoted
as s  t. The posterior probability of an ancestor
relation s t is evaluated by

(8)P (s t|D) = P (s t,D)/P (D).

The joint probability P (s t,D) can be computed by

P (s t,D) =
∑

G∈Gs t

P (G,D) =
∑

G∈Gs t

∏
i∈V

Bi(PaGi ),

(9)
where Gs t ≡ {G : s  t ∈ G}, namely the set of all
possible DAGs over V that contain a s t.

For any S ⊆ V , let GS denote a DAG over S. For
any v ∈ S, let PaGS

v be the parent set of v in GS ,
and deGS

(v) ≡ {u|u ← · · · ← v in GS or u = v} be
the set of all descendants of v (including v) in GS .
For any T, S such that s ∈ T ⊆ S ⊆ V , let Gs(S, T )
denote the set of all possible DAGs over S such that
T are the set of all descendants of s in GS . That is,
GS ∈ Gs(S, T ) if and only if deGS

(s) = T . We define,
for any s ∈ T ⊆ S ⊆ V ,

(10)Hs(S, T ) ≡
∑

GS∈Gs(S,T )

∏
i∈S

Bi(PaGS
i ).

Then we have

Lemma 1

P (s t,D) =
∑

T :{s,t}⊆T⊆V

Hs(V, T ). (11)

Proof. We have Gs t = ∪T :{s,t}⊆T⊆V Gs(V, T ). Fur-
ther, for any T1 6= T2, we have Gs(V, T1)∩ Gs(V, T2) =
∅. This means Gs(V, T ) for all T such that s, t ∈ T ⊆ V
form a partition of the set Gs t. Thus,

(12)

P (s t,D) =
∑

G∈Gs t

∏
i∈V

Bi(PaGi )

=
∑

T :{s,t}⊆T⊆V

∑
G∈Gs(V,T )

∏
i∈V

Bi(PaGi )

=
∑

T :{s,t}⊆T⊆V

Hs(V, T ).

�

Now the problem is decomposed into computing
Hs(V, T ) for all T s.t. {s, t} ⊆ T ⊆ V . We show
that Hs(S, T ) for all T , S such that {s} ⊆ T ⊆ S ⊆ V
can be computed recursively. We immediately noticed
that these Hs(S, T )’s can be divided into two cases:
T = {s} and T 6= {s} (or T − {s} 6= ∅).

Case 1: T = {s}.

In this case, s is sink in GS (see Figure 2). For any
S ⊆ V , let G(S) denote the set of all possible DAGs
over S. Then we have

(13)
Hs(S, {s}) = [

∑
Pas⊆S−{s}

Bs(Pas)]

[
∑

GS−{s}∈G(S−{s})

∏
i∈S−{s}

Bi(Pa
GS−{s}
i )].

For any S ⊆ V , define function

(14)H(S) ≡
∑

GS∈G(S)

∏
i∈S

Bi(Pai),

and for each i ∈ V and all U ⊆ V − {i}, define

(15)Ai(U) ≡
∑

Pai⊆U

Bi(Pai).

The function Ai is known as the zeta transform of Bi

which can be computed by the so-called fast zeta trans-
form algorithm in time O(n2n) (Koivisto and Sood,
2004). Now we can write Eq. (13) as

(16)Hs(S, {s}) = As(S − {s})H(S − {s}).

Tian and He (2009) proposed a DP algorithm to sum
over G(S) by exploiting possible sinks of DAGs and
inclusion-exclusion principle. Due to Proposition 2 in
(Tian and He, 2009), we have that H(S) can be com-
puted recursively by the following

H(S) =

|S|∑
k=1

(−1)k+1
∑

W⊆S,|W |=k

H(S −W )
∏
j∈W

Aj(S −W ),

(17)
with the base case H(∅) = 1. H(S) for all S ⊆ V can
be computed with time O(n3n−1) and space O(n2n)
(Tian and He, 2009).

Case 2: T 6= {s} (or T − {s} 6= ∅).

For any W ⊆ S, let Gs(S, T,W ) denote the set of
DAGs in Gs(S, T ) such that all nodes in W are (must
be) sinks.1 We first note that for any W such that

1W may not include all the sinks in GS . Some nodes in
S −W could be sinks.
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Figure 2: Case 1: T = {s}.

s ∈ W , Gs(S, T,W ) = ∅. This trivially holds because
T − {s} 6= ∅ implies that s must have other descen-
dants besides itself thus s cannot be a sink in GS . Note
that Gs(S, T, ∅) = Gs(S, T ). For any W ⊆ S − {s}, we
define

(18)Fs(S, T,W ) ≡
∑

GS∈Gs(S,T,W )

∏
i∈S

Bi(PaGS
i ).

Since every DAG has at least one sink, we have
Gs(S, T ) = ∪j∈S−{s}Gs(S, T, {j}). Further, it is clear
that ∩j∈WGs(S, T, {j}) = Gs(S, T,W ). Then the sum-
mation over Gs(S, T ) in Eq. (10) can be computed
by summing over the DAGs in Gs(S, T, {j}) separately
and correcting the overlaps. By weighted inclusion-
exclusion principle,

(19)Hs(S, T ) =

|S|−1∑
k =1

(−1)k+1
∑

W⊆S−{s},|W |=k

∑
GS∈Gs(S,T,W )

∏
i∈S

Bi(PaGS
i )

=

|S|−1∑
k=1

(−1)k+1
∑

W⊆S−{s},|W |=k

Fs(S, T,W ).

Next we show that Fs(S, T,W ) and Hs(S, T ) can be
computed recursively. The central idea is to convert
the sum of products in Eq. (18) to product of sums.
That is, we will consider the summation over W and
the summation over S−W separately. Since any node
in W must be a sink in GS , it can only select parents
from S −W . There are two sub-cases.

Sub-case 1: T ∩W = ∅.

If T ∩W = ∅, the sum of products in Eq. (18) can
be freely decomposed to product of sums for nodes
in W and sum over remaining nodes in S − W . As
showed in Figure 3(a), any node in W can only select
parents from S−W −T . For nodes in S−W , we have

(a) T ∩W = ∅ (b) T ∩W 6= ∅

Figure 3: Two sub-cases when computing Fs(S, T,W ).

summation over Gs(S −W,T ). Then we have

(20)

Fs(S, T,W ) = [
∏
j∈W

∑
Paj⊆(S−T−W )

Bj(Paj)]

[
∑

GS−W∈Gs(S−W,T )

∏
i∈S−W

Bi(Pa
GS−W

i )]

=
∏
j∈W

Aj(S − T −W )Hs(S −W,T )

=
∏
j∈W

Aj(S − T −W )Hs(S −W,T −W )

(because T −W = T in this case).

Sub-case 2: T ∩W 6= ∅.

In this case, nodes in W−T , T ∩W , and S−W should
be handled separately (see Figure 3(b)). Nodes in W−
T can only select parents from S −W − T . Any node
in T ∩W can select parents from S −W . In addition,
at least one node from T −W must be included in its
parent set to guarantee that it is a descendant of s.
For nodes in S −W , we have summation over Gs(S −
W,T −W ). Then we have

(21)Fs(S, T,W ) = [
∏

j∈T∩W

∑
Paj⊆(S−W )

Paj∩(T−W )6=∅

Bj(Paj)]

[
∏

j∈W−T

∑
Paj⊆

(S−T−W )

Bj(Paj)][
∑

GS−W∈
Gs(S−W,T−W )

∏
i∈S−W

Bi(Pai)]

= {
∏

j∈T∩W
[

∑
Paj⊆(S−W )

Bj(Paj)−
∑
Paj⊆

(S−W−T )

Bj(Paj)]}

∏
j ∈W−T

Aj(S − T −W )Hs(S −W,T −W )

= {
∏

j∈T∩W
[Aj(S −W )−Aj(S −W − T )]}∏

j ∈W−T
Aj(S − T −W )Hs(S −W,T −W ).

For ease of exposition, define function As as follows:
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(22)As(S, T,W )

≡


∏

j∈W Aj(S − T −W ) if T ∩W = ∅
{
∏

j∈T∩W [Aj(S −W )−Aj(S −W − T )]}∏
j∈W−T Aj(S − T −W ) if T ∩W 6= ∅

Now combining Sub-case 1 and 2, Fs(S, T,W ) can be
neatly written as

(23)Fs(S, T,W ) = As(S, T,W )Hs(S −W,T −W )

Plugging Eq. (23) into Eq. (19), we obtain

Hs(S, T ) =
|S|−1∑
k =1

(−1)k+1
∑

W⊆S−{s}
|W |=k

As(S, T,W )Hs(S −W,T −W )

(24)

In summary, we arrive at the following recursive
scheme for computing Hs(S, T ) for any {s} ⊆ T ⊆
S ⊆ V .

Theorem 1

(1) For all S such that s ∈ S ⊆ V ,

Hs(S, {s}) = As(S − {s})H(S − {s}),

where for all S ⊆ V − {s},

H(S) =
|S|∑
k =1

(−1)k+1
∑

W⊆S,|W |=k

H(S −W )
∏
j∈W

Aj(S −W ),

with the base case H(∅) = 1.

(2) For all T, S such that {s} ⊂ T ⊆ S ⊆ V ,

Hs(S, T ) =
|S|−1∑
k =1

(−1)k+1
∑

W⊆S−{s}
|W |=k

As(S, T,W )Hs(S −W,T −W ).

4.2 Efficient Computation of As(S, T,W )

We note that there are repeated computation of∏
j∈W Aj(U) in the phase of computing H(S) and in

the phase of computing Hs(S, T ). To facilitate the
computation of

∏
j∈W Aj(U) and As(S, T,W ), we de-

fine for any W ⊆ V , U ⊆ V −W ,

(25)AA(U,W ) ≡
∏
j∈W

Aj(U).

Then for a fixed U , we have

AA(U,W ) = Aj(U)AA(U,W − {j}) for any j ∈W.

(26)

Thus, for a fixed U , AA(U,W ) for all W ⊆ V − U
can be computed in the manner of dynamic pro-
gramming in O(2n−|U |) time. Then AA(U,W ) for
all U ⊆ V and all W ⊆ V − U can be computed
in
∑n
|U |=0

(
n
|U |
)
2n−|U | = O(3n) time. With the pre-

computation of AA(U,W ), As(S, T,W ) for any T , S
such that {s} ⊂ T ⊆ S ⊆ V can be computed more
efficiently:

If T ∩W = ∅,

(27)
As(S, T,W )

=
∏
j∈W

Aj(S − T −W ) = AA(S − T −W,W ),

else if T ∩W 6= ∅,

As(S, T,W )

= {
∏

j∈T∩W
[Aj(S −W )−Aj(S −W − T )]}∏

j ∈W−T
Aj(S − T −W )

= {
∏

j∈T∩W
[AA(S −W, {j})−AA(S −W − T, {j})]}

AA(S − T −W,W − T ).

(28)

In summary, we have

(29)As(S, T,W ) ≡
AA(S − T −W,W ) if T ∩W = ∅
{
∏

j∈T∩W
[AA(S −W, {j})−AA(S −W − T, {j})]}

AA(S − T −W,W − T ) if T ∩W 6= ∅
.

4.3 Overall Algorithm

Finally we summarize the results in Section 4.1 and
4.2 and outline the algorithm for computing posterior
probability of any ancestor relation s t.

Algorithm 1 Computing the posterior probability of
an ancestor relation s t.

(a) For all i ∈ V , Pai ⊆ V − {i}, compute Bi(Pai).
Time complexity O(n2n−1).

(b) For all i ∈ V , U ⊆ V −{i}, compute Ai(U). Time
complexity O(n2n−1).

(c) For all U ⊆ V , W ⊆ V − U , compute AA(U,W ).
Time complexity O(3n).
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(d) For all S ⊆ V , compute H(S) in the lexicographic
order of S. Time complexity O(3n−1).

(e) For all S ⊆ V s.t. s ∈ S, compute Hs(S, {s}).
Time complexity O(2n−1).

(f) For all T, S such that {s} ⊂ T ⊆ S ⊆ V , com-
pute Hs(S, T ) in the lexicographic order of S and
T , with T as the outer loop and S as the inner
loop. For example, we start the computation of
Hs(S, {s, i}) for each i ∈ V − {s} and all S such
that {s, i} ⊆ S ⊆ V in the lexicographic order
of S. Then we compute Hs(S, {s, i, j}) for each
{i, j} ⊆ V − {s} and all S such that {s, i, j} ⊆
S ⊆ V in the lexicographic order of S, so on and
so forth and finally we compute Hs(V, V ).

(g) Compute P (s  t,D) by P (s  t,D) =∑
T :{s,t}⊆T⊆V Hs(V, T ) and output P (s t|D) =

P (s t,D)/H(V ). 2 Time complexity O(2n−2).

It is worth mentioning that the posterior probability
of any ancestor relation can only be interpreted with
regard to its prior probability. This prior probability
can also be computed by Algorithm 1 with all local
scores scorei(PaGi : D) set to 1.

4.4 Time and Space Complexity

The computing times for steps (a) to (e) and step (g)
have been given already. The overall computing time
is actually dominated by step (f).

For any T , S s.t. {s} ⊂ T ⊆ S ⊆ V , we compute
Hs(S, T ) in O(|S|·2|S|−1) time (any As(S, T,W ) can
be computed on the fly in time O(|S|)). Thus, all
Hs(S, T ) can be computed in time

n∑
|S|=2


(
n− 1

|S|−1

) |S|∑
|T |=2

(
|S|−1

|T |−1

)
|S|·2|S|−1


=

n∑
|S|=2


(
n− 1

|S|−1

)|S|·2|S|−1 |S|∑
|T |=2

(
|S|−1

|T |−1

)
=

n∑
|S|=2

[(
n− 1

|S|−1

)
|S|·2|S|−1 · 2|S|−1

]

=
n∑
|S|=2

[(
n− 1

|S|−1

)
|S|·4|S|−1

]
= n5n−1.

Thus, the total computation time is O(n5n−1 + 3n +
n2n−1) = O(n5n−1).

To compute the posterior probabilities for all node
pairs s, t, it suffices to repeat the computation step (e)

2It has been shown by Tian and He (2009) that P (D) =
H(V ).

and step (f) for each s ∈ V , and for a given s to repeat
step (g) for each t. Thus, the total time for computing
all possible ancestor relations s t is O(n25n−1).

Bi(Pai) for all i ∈ V , Pai ⊆ V − {i} take O(n2n−1)
space. Aj(U) for all j ∈ V , U ⊆ V −{j} take O(n2n−1)
space. AA(U,W ) for all U ⊆ V , W ⊆ V −U consume∑n
|U |=0

(
n
|U |
)
2n−|U | = O(3n) space. H(S) for all S ⊆ V

take O(2n) space. Hs(S, T ) for all {s} ⊆ T ⊆ S ⊆ V
consume

∑n
|S|=1

(
n−1
|S|−1

)
2|S|−1 = O(3n−1) space. Since

each step in Algorithm 1 relies only on the previous
step. We need only store relevant scores in the mem-
ory. That is, after we compute all Ai(U) scores, we can
immediately delete all Bi(Pai) scores; after computing
all AA(U,W ) scores, we delete Ai(U) scores. When
computing step (f), we need only keep AA(U,W ) and
Hs(S, T ) scores in memory. In such way, we can use
the memory more efficiently. The space requirement
is therefore O(3n + n2n).

In summary, we have the following theorem.

Theorem 2 The posterior probability for any ancestor
relation s t can be computed in O(n5n−1) time and
O(3n + n2n) space. The posterior probabilities for all
n(n−1) possible ancestor relations can be computed in
O(n25n−1) time and O(3n + n2n) space.

4.5 Exact Learning of s p t Relations

It turns out that the techniques for computing s  t
relations can be extended to compute the posteriors
of s  p  t relations, i.e., a directed path from
s to t via p. For example, biologists are interested
in whether the influence of a gene on a downstream
gene is regulated by some intermediate gene or factor.
Learning this type of structural features is therefore of
great interests. Due to the space limit, we only present
our conclusion here in Theorem 3. The algorithm
and proofs are included in the supplemental material.

Theorem 3 The posterior probability of any s  
p t relation can be computed in O(n7n−2) time and
O(4n−2 + 3n) space.

5 EXPERIMENTS

We have implemented Algorithm 1 in C++. We used
BDe score for scorei(Pai : D) with equivalent sample
size being 1 (Heckerman et al., 1995). We applied uni-
form structure prior P (G) by setting all Qi(Pai)’s to
be 1.3 All experiments were done on a Linux desktop
PC with 3.33 GHz Intel Core2 Duo CPU and 4 GB
memory.

3Note that a constant P (G) could be canceled out in
computing P (f |D) = P (f,D)/P (D) (see Eq. (6)).
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5.1 Running Times

We first examine the running times of our algorithm
on several data sets from the UCI Machine Learn-
ing Repository. The results are presented in Table 1,
where n is the number of variables, m is the sample
size of each data set, T (B) records the time for com-
puting all Bi(Pai)’s, i.e., the local scores, and T (total)
is the total time for evaluating all n(n − 1) ancestor
relations. We clearly see that the running times are
reflective of the exponential dependence on n with a
base around 5. This is consistent with Theorem 2.

Table 1: Running Times (in seconds)

Data Sets n m T (B) T (total)
Weather 5 14 3e-4 7e-4
Iris 5 150 6e-4 6e-4
Asia 8 500 0.02 0.2
Tic-Tac-Toe 10 958 0.6 6.5
CYTO 11 5400 8.4 32
Wine-11 11 178 0.8 76
Wine-12 12 178 1.8 411
Wine-13 13 178 4.6 2331
Wine 14 178 11.6 12856

5.2 Comparison of Posteriors

The order-based approach by Parviainen and Koivisto
(2011) and our approach differ in the structure prior
P (G) assigned to DAGs. The order-based approach
places a non-uniform prior over DAGs, favoring DAGs
that are consistent with more linear orders, while our
approach adheres to the uniform prior. Here we com-
pare the posteriors computed by the two approaches
on four different data sets in Figure 4.

We can see that the posteriors computed by the two
approaches differ in most of the cases, demonstrating
the non-negligible effect of priors on the computation
results. Further, we observed that the order-based ap-
proach often underestimates the posteriors (see Fig-
ure 4(a)(c)). This can be understood by noticing that
DAGs consistent with more linear orders usually have
simpler structures, for example, fewer edges or fewer
directed paths than those DAGs consistent with fewer
linear orders. Since DAGs consistent with fewer lin-
ear orders receive less weights in the order-based ap-
proach, the ancestor relations implied by these DAGs
are undercounted.

5.3 Knowledge Discovery

Finally, we applied our algorithm to a biological data
set (CYTO) which consists of flow cytometry measure-
ments of n = 11 phosphorylated proteins and phos-
pholipids under 7 different interventions and 2 unper-
turbed conditions. 600 measurements are taken in
each condition yielding a total dataset of m = 5400
samples. The data have been discretized into 3 states,
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Figure 4: Scatter plots that compare posteriors of ancestor
relations computed by our algorithm and by order-based
algorithm.

180



Exact Bayesian Learning of Ancestor Relations in Bayesian Networks

Figure 5: Classical model of the CYTO data set. Modi-
fied from Sachs et al (2005). The proteins of interest are in
highlighted red rectangles, i.e., PKC, PLCγ, PIP2, PIP3,
Akt, PKA, JNK, p38, Raf, Mek, Erk. Ovals with serrated
edges represent various interventions (green=activators,
red=inhibitors).

Table 2: Ancestor relations learned for CYTO data set

Source Sinks
Raf Mek, PLCγ, PIP2, PIP3, Erk, Akt, PKA,

p38, JNK
Mek PLCγ, PIP2, PIP3, Erk, Akt, PKA, p38,

JNK
PLCγ PIP2, PIP3
PIP2 PIP3
Erk Akt
PKA PLCγ, PIP2, PIP3, Erk, Akt, p38, JNK
PKC Raf, Mek, PLCγ, PIP2, PIP3, Erk, Akt,

PKA, p38, JNK
JNK PLCγ, PIP2, PIP3, p38

representing low, medium and high activity according
to Sachs et al (2005). Figure 5 shows a currently ac-
cepted consensus network.

We then used our algorithm to compute the posteri-
ors of all 110 possible ancestor relations. We modified
the local likelihood scores Bi(Pai) to take into account
the interventional nature of the data as in (Tian and
Pearl, 2001). Our results shows that among all 110
possible ancestor relations, 42 ancestor relations have
posteriors greater than 0.95, while all other ancestor
relations have posteriors less than 0.03.4 Table 2 tabu-
lates the 42 most probable ancestor relations. Proteins
are made bold if the corresponding ancestor relations
also exist in the classical model. The learning results
exhibit a high false positive rate if the classical model
is really the true model. This may be because that
the ancestor relation learning is very sensitive to the
local errors. For example, one flipped edge can lead to
a large number of ancestor relation errors. However,
the classical model is not necessarily the true model.
As our results showed, we had high certainty on the

4Note that the prior of an ancestor relation is 0.45 for
n = 11 with the uniform structure prior.

presence or absence of each of the ancestor relations.
Thus, it is possible that these ancestor relations sug-
gest potential protein signaling pathways that have yet
to be discovered.

We also compared our direct learning of ancestor rela-
tion to the deduction of (important) ancestor relations
from the edge posteriors. We used the algorithm by
Tian and He (2009), which requires O(n3n) time and
O(n2n) space, to compute the posteriors of all 110 pos-
sible edges. We then constructed a network that con-
sisted of edges whose posteriors were greater than 0.5
and inferred the ancestor relations from this network.
We observed that the set of (important) ancestor rela-
tions deduced from the most likely edges were exactly
the same as those predicted by the direct learning.
This suggests that the two approaches do not differ
significantly in predicting the most significant ances-
tor relations, at least on this CYTO data set. More
systematic evaluation will be needed to confirm this
observation. Moreover, we observed that computing
all edge posteriors took about 9 seconds, much faster
than computing the posteriors of ancestor relations (32
seconds, see Table 1). However, direct learning of an-
cestor relation outputs the ancestor posterior proba-
bilities while the network constructed from most likely
edges does not provide such information.

6 SUMMARY

In this paper, we have developed a new DP algorithm
to compute the exact posteriors of all possible ancestor
relations in Bayesian networks. Compared to previ-
ous order-based algorithm, our algorithm respects the
uniform structure prior and the Markov equivalence.
Experimental comparison showed the order-based ap-
proach tends to underestimate the posteriors. We have
also applied our algorithm to a biological data set to
discover signaling pathways. This demonstrated our
algorithm in the task of knowledge discovery. Further,
we have developed an algorithm to compute the exact
posterior of any s  p  t relation, i.e., a directed
path from s to t via p.

One major limitation of the exact algorithms proposed
here (and in previous work) is their exponential com-
plexities, which prevent their practical use for large
networks. To circumvent the limitation, approximate
methods such as MCMC sampling are commonly used.
One potential application of the exact algorithms given
in this paper is to assess the approximate quality of
approaches such as MCMC sampling.
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