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We give hereafter the proofs for the different results in the main paper. Unless oth-
erwise specified, references are to the present Appendix. We first give a more thorough
definition of the space in which our operators live. We then proceed to a proof of
Lemma 1. Finally we detail the computation that allowed us to derive both theorems
in the main paper.

1 Linear algebra prerequisites

Throughout our results we will use the following notations and results. These are necessary to
provide explicit expressions for the constants in the asymptotic expansions.

For any real vector space V of finite dimension d, let M(V ) be the space of linear operators
over V which is isomorphic to the space of d-by-d matrices, with the usual results that composition
becomes matrix multiplication. As a consequence we will use the same notation for the space of
matrices and the space of endomorphisms.

We denote by I = M(M(Rd)) the space of endomorphisms on the space of matrices over R
d.

One can index the rows and columns of a matrix M ∈ I by a pair (i, j) where 1 ≤ i ≤ d and
1 ≤ j ≤ d. We will often denote by M(i,j),(k,l) an element of this matrix on matrices. In the
following we will drop the domain of i, j, k, l, i′, j′ which is implicitly {1, 2, . . . , d}. Explicitly, if
A ∈ M(Rd) and M ∈ I, then MA is defined through:

∀(i, j)(MA)i,j =
d
∑

i′=1,j′=1

M(i,j),(i′,j′)Ai′,j′

We will mostly make no distinction between A as a vector in M(Rd) on which elements in I
can operate and A as a matrix in M(Rd). Then MA can be either usual matrix multiplication
if M, A ∈ M(Rd) or M, A ∈ I or application of M to A if M ∈ I and A ∈ M(Rd). However, if
M ∈ I and A ∈ M(Rd), then AM does not make sense. For P ∈ I, and any (i, j), we will define
Pi,j the matrix in M(Rd) with coefficient (i′, j′) given by P(i,j),(i′,j′).

For any V ∈ S(Rd) (the set of symmetric matrices of size d), we will denote ‖V ‖op the operator
norm of V or equivalently its eigenvalue with the largest absolute value. For any M ∈ I so that
S(Rd) is stable under M , we will take ‖M‖op the operator norm of M restricted to S(Rd), defined

with respect to the Frobenius norm on S(Rd), that is

‖M‖op = sup
V ∈S(Rd),‖V ‖

F
=1

‖MV ‖F .
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Equivalentely, it is given by the largest absolute value of the eigenvalues of M .
Finally, we will look more precisely at three elements of I. For any given A ∈ M(Rd), one can

define AL (resp. AR) so that AL is the matrix in I representing left multiplication (resp. right
multiplication) by A. The coefficient of AL and AR are given by

∀(i, j), (k, l), (AL)(i,j),(k,l) = δj,lAi,k

∀(i, j), (k, l), (AR)(i,j),(k,l) = δi,kAj,l.

If A is symmetric, then AL and AH are both symmetric operators, and AL + AH is stable on
the subspace of symmetric matrices, that we have denoted S(Rd).

Let X be a random variable in R
d, we consider the linear operator M on M(Rd) defined by,

∀A ∈ M(Rd), MA = E
[

(XT AX)XXT
]

,

then, the coefficients of the associated matrix are given by

∀(i, j, k, l), M(i,j),(k,l) = E

[

X(i)X(j)X(k)X(l)
]

,

where X(i) denote the i-th component of the vector X . The matrix M is clearly symmetric. One
can also prove that it is stable on S(Rd).

We then define T = HL + HR − γM with HL, HR and M as defined above for the random
variable X defined in our setup. It is immediately stable over S(Rd). We will denote µT the
smallest eigenvalue of T .

2 Proof of Lemma 1

Here is a more complete version of Lemma 1 in the paper.

Lemma 1. Using the notations and assumptions of Section (1.1) of the original paper, define γmax

as the supremum of γ > 0 such that

∀A ∈ S(Rd), 2Tr
(

AT HA
)

− γE
[

(XT AX)2
]

> 0. (2.1)

If 0 < γ < γmax then T is positive definite and ρ < 1. More precisely, in dimension d > 2, we have







ρ ≤ 1 − 2γ

(

1 −
γ

γmax

)

µ if 1 > γ

γmax

≥ 1
2

ρ ≤ 1 − γµ otherwise.

(2.2)

In dimension d = 1, we have

ρ ≤ max

(

|1 − γµ| , 1 − 2γ

(

1 −
γ

γmax

)

µ

)

.

Otherwise, if γ > γmax, then ρ > 1.

In order to prove it, we will first need some preliminary results.

2.1 Some Lemmas

Lemma 2. Let A ∈ S(Rd) be any symmetric matrix, then

∀x ∈ R
d, (xT Ax)2 ≤ Tr

(

(xT x)AxxT A
)

.

Proof. Using Cauchy-Schwarz inequality, one has

(xT Ax)2 = [xT (Ax)]2 ≤ (Ax)T (Ax)(xT x)

= xT AAx(xT x) = Tr
(

(xT x)AxxT A
)

.

The following lemma is the proof of equation (2.4) in the original paper.
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Lemma 3. Let H ∈ S(Rd) be a positive semi-definite matrix. If γ > 0 is so that

∀A ∈ S(Rd), 2Tr
(

AT HA
)

− γE
[

(XT AX)2
]

> 0

then

γ <
2

Tr (H)
.

Proof. Let A ∈ S(Rd), 2Tr
(

AT HA
)

− γE
[

(XT AX)2
]

> 0 implies that with Jensen’s inequality,

2Tr
(

AT HA
)

− γTr (AH)
2

= 2Tr
(

AT HA
)

− γTr
(

AE
[

XXT
])2

= 2Tr
(

AT HA
)

− γE
[

XT AX
]2

> 0.

Then, let (ui)i ∈ R
d×d an orthogonal basis that diagonalizes H and λi the eigenvalues associated

with each eigenvector. Then, taking A =
∑

i uiu
T
i , we get

2Tr
(

AT HA
)

− γTr (AH)
2

= 2Tr





∑

i,j

uiu
T
i HujuT

j



− γ

(

∑

i

uT
i Hui

)2

= 2

(

∑

i

λi

)

− γ

(

∑

i

λi

)2

≥ 0,

so that

γ <
2

∑

i λi

=
2

Tr (H)
.

Lemma 4. Let γ > 0, we can define T = HL + HR − γM as in Section 1. If γ < 2
Tr(H) , then

I − γT ≻ −I.

and if we are in dimension 1,
I − γT � 0

Proof. The Lemma is equivalent to ∀A ∈ S(Rd), A 6= 0 ⇒ 〈A, (2I − γT )A〉 > 0.
If we are in dimension d = 1, then we have I − γT = 1 − 2γh + γm2 where h = E

[

X2
]

and

m = E
[

X4
]

≥ h2 so that I − γT ≥ (1 − γh)2 ≥ 0.
Let now assume we are in dimension two or more. Let A ∈ S(Rd) with A 6= 0. Let P ∈ R

d×d

be an orthogonal matrix such that P HP −1 = D where D is diagonal with eigenvalues ordered in
decreasing order, with λi = Di,i and λ1 = L. We will denote U = P AP −1 = P AP T .

〈A, (2I − γT )A〉 = Tr
(

AT (2I − γT )A
)

= 2Tr
(

AT A
)

− 2γTr
(

AT HA
)

+ γ2
E

[

(

XT AX
)2
]

≥ 2Tr
(

AT A
)

− 2γTr
(

AT HA
)

+ γ2
E
[(

XT AX
)]2

= 2Tr
(

AT A
)

− 2γTr
(

AT HA
)

+ γ2Tr (AH)
2

= 2Tr
(

UT U
)

− 2γTr
(

UT DU
)

+ γ2Tr (UD)
2

=

d
∑

i,j=1

2U2
i,j − 2γU2

i,jλi + γ2Ui,iUj,jλiλj

=





∑

i6=j

2U2
i,j(2 − γ(λi + λj))



+

d
∑

i=1

2U2
i,i − 2γU2

i,iλi + γ2

(

d
∑

i=1

Ui,iλi

)2

.

The first sum immediately defines a definite positive form over the subspace generated by
(Ui,j)i6=j as γ < 2

λi+λj
for all i 6= j. The second part also defines a bilinear form over the or-

thogonal subspace generated by (Ui,i)1≤i≤d. 2I − γT is definite positive if and only if those two
forms are definite positive. We will introduce xi = Ui,i so that the second form is given by xT Gx
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where G = 2I − 2γDiag(Λ) + γ2ΛΛT , with Λ = (λi)1≤i≤d and Diag(Λ) the diagonal matrix with
values from Λ on the diagonal.

We can decompose G as

G =

(

B γ2λ1CT

γ2λ1C D

)

,

with B = 2 − 2γλ1 + γ2λ1, C = (λi)2≤i≤d and D = 2I − 2γDiag(C) + γ2CCT . Using the Schur
completement condition for positive definiteness, we have that G ≻ 0 if and only if D ≻ 0 and
B − γ4λ2

1CT D−1C > 0. We immediately have that D ≻ 0 as I − γDiag(C) ≻ 0, indeed, for all
d ≥ i ≥ 2, we have that γλi < 1.

Let us introduce E = 2I − 2γDiag(C), then we have

D−1 = E−1 −
γ2

1 + γ2CT E−1C
E−1CCT E−1.

We will assume that
∑d

i=2 λi < λ1, otherwise one trivially has that γλ1 < 1 and G ≻ 0. Let us
denote

q = CT E−1C

=

d
∑

i=2

λ2
i

2(1 − λiγ)

≤
(
∑d

i=2 λi)
2

2(1 − γ
∑d

i=2 λi)

=
l2

2(1 − γl)
,

where l =
∑d

i=2 λi. We will take l = λ1α so that 0 < α < 1. We have

B − γ4λ2
1CT D−1C = γ2λ2

1 + 2 − 2λ1γ − γ4λ2
1

(

q −
γ2q2

1 + γ2q

)

=
γ2λ2

1

1 + γ2q
− 2λ1γ + 2

≥
γ2λ2

1

1 + γ2 l2

2(1−γl)

− 2λ1γ + 2.

Denoting y = γλ1, we get

B − γ4λ2
1CT D−1C =

2y2(1 − yα)

2 − 2yα + α2y2
− 2y + 2.

Using standard analysis tools, one can show that the last quantity is positive for 0 < y < 2
1+α

and
0 < α < 1. As a conclusion, G is definite positive and so is 2I − γT .

Lemma 5. Let γ > 0, we can define T = HL + HR − γM which is symmetric and is stable over
S(Rd).

If

∀A ∈ S(Rd), 2Tr
(

AT HA
)

− γE
[

(XT AX)2
]

> 0,

or (this second assumption implies the first one)

E
[

XXT
]

− γE
[

XT XXXT
]

≻ 0,

then

• ‖I − γH‖
op

< 1 ,

• T ≻ 0 ,

• ‖I − γT ‖
op

< 1.
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Proof. We should first notice that using Lemma 3, we necessarely have

γ <
2

Tr (H)
. (2.3)

We first need, I − γH ≺ I which is always true as long as H is invertible (i.e. H is positive).
Then we need I − γH ≻ −I, or γH ≺ 2I, which means γ < 2

L
where L is H largest eigenvalue.

However this is implied by (2.3).
Now, we need I − γT ≺ I, i.e., T ≻ 0 (this will also prove T invertible). This is equivalent to

∀A ∈ S(Rd), A 6= 0 ⇒ 〈A, T A〉 > 0

Let us compute this term for A ∈ S(Rd) with A 6= 0

〈A, T A〉 = Tr
(

AT (T A)
)

= Tr
(

AT AH + AT HA − γAT
E
[

XXT AXXT
])

= 2Tr
(

AT HA
)

− E
[

(XT AX)2
]

and we can stop here if we have first assumption

≥ Tr
(

AT
(

2H − γE
[

XT XXXT
])

A
)

using Lemma 2

A sufficient condition here is that K = 2H − γE
[

XT XXXT
]

≻ 0. Indeed, let I = Ker(A)⊥

be the orthogonal space of the kernel of A, which is stable under A as A is symmetric, so we can
define A′ the restriction of A to I which is invertible. It is of dimension greater than 1 as A is
not 0. K defines on I a bilinear symmetric definite positive application K ′. Then, Tr

(

AT KA
)

=

Tr
(

A′T K ′A′
)

> 0 because A′T K ′A′ is also symmetric definite positive.
Finally, we want I − γT ≻ −I. Using Lemma 4, this is a direct consequence of (2.3).

2.2 Proof of Lemma 1

Let assume 0 < γ < γmax. Lemma 5 already tells us that our operators have good properties as
we have ρ < 1 and T ≻ 0. We will now get a finer result in order to have an explicit bound on ρ

depending on γ.
As we will be using different values for γ we will explicitely mark the dependency in γ for T by

writing T (γ). We will only consider 0 < γ < γmax so that T (γ) is positive. We will denote by
LT (γ) the largest eigenvalue of T (γ) and by µT (γ) its smallest. We then have

ρT (γ) = max(1 − γµT (γ), γLT (γ) − 1).

One should also notice that the smallest eigenvalue of HL + HR is 2µ and the largest 2L.
We have T (γmax) � 0 using Lemma 5. For any 0 < γ < γmax we can define α = γ

γmax

. Then we
have

T (γ) = (1 − α)(HL + HR) + α(HL + HR) − αγmaxM

= (1 − α)(HL + HR) + αT (γmax)

� (1 − α)(HL + HR)

� 2(1 − α)µ,

so that µT (γ) ≥ 2(1 − α)µ.

Using Lemma 4 we have that T (γmax) � 2I
γmax

so that we obtain

T (γ) = (1 − α)(HL + HR) + αT (γmax)

� 2(1 − α)L +
2α

γmax
.

As a consequence if we take

a(γ) = 1 − 2αγmax(1 − α)µ

b(γ) = 2(1 − α)αγmaxL + 2α2 − 1

we have ρT (γ) = max(a(γ), b(γ)). Besides, if we are in dimension d = 2 or more,

a(γ) − b(γ) = 2 − 2αγmax(L + µ)(1 − α) − 2α2

≥ 2 − 4α(1 − α) − 2α2 as γmax(L + µ) ≤ 2

= 2 + 2α2 − 4α

≥ 0,
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so that,

ρT (γ) ≤ 1 − 2γµ(1 −
γ

γmax
).

In dimension d = 1, the same result holds as we have 1 − γT ≥ 1 − 2γH + γ2H2 ≥ 0 so that
γLT (γ) − 1 ≤ 0.

We can now look as ρH which is given by ρH = max(1 − γµ, γL − 1).
Let assume we are in dimension 2 or more, then we have 1−γµ ≥ γL−1 so that ρH = 1−γµ. In

dimension 1, we have ρH = |1 − γµ|. Comparing ρH and ρT we obtain the result of this Lemma.
Finally, if γ > γmax, then T has a negative eigenvalue and so ρT > 1 and ρ > 1.

3 Proof of the theorems

We will first give a more complete version of both theorems.

Theorem 1 (Asymptotic covariance of the bias). Let E0 = E
[

η0ηT
0

]

(or just η0ηT
0 if the starting

point is not randomized). If 0 < γ < γmax and ∀i ≥ 1, εi = 0, then

E
[

η̄nη̄T
n

]

=
1

n2γ2

(

H−1
L + H−1

R − γI
) (

T −1E0

)

+ O

(

ρn

n

)

.

Theorem 2 (Asymptotic covariance of the variance). Let Σ0 = E
[

ε2XXT
]

and let assume that
η0 = 0. If 0 < γ < γmax

E
[

η̄nη̄T
n

]

=
1

n
(H−1

L + H−1
R − γI)T −1Σ0 −

1

γn2

(

H−1
L + H−1

R − γI
)

(I − γT )T −2Σ0 + O

(

ρn

n

)

.

3.1 Complete expression of the covariance matrix

Let us recall that we have the update rule

ηi = (I − γXiX
T
i )ηi + γεiXi. (3.1)

We can then introduce the following matrices

Mk,j =

(

j
∏

i=k+1

(

I − γXiX
T
i

)

)T

∈ R
d×d,

and by iterating over (3.1) we obtain,

ηn = γ

n
∑

k=1

Mk,nXkεk + M0,nη0.

We have

η̄n =
γ

n

n−1
∑

j=0

j
∑

k=1

Mk,jXkεk +
1

n

n−1
∑

j=0

M0,jη0

=
γ

n

n−1
∑

k=1





n−1
∑

j=k

Mk,j



Xkεk +
1

n

n−1
∑

j=0

M0,jη0.

One can already see the decomposition between the variance and bias term, one depending only
on η0 and the other on ε.

If we assume that εk is independent of Xk, then we can immediately see that when computing
E
[

η̄nη̄T
n

]

, cross-terms between bias and variance will be zero as they will contain only one εk. If
that is not true, then extra cross-terms will appear and there is no longer a simple bias/variance
decomposition. Let us look at one of the cross terms,

γ

n2
E
[

Mk,jXkεkηT
0 M0,p

]

.

If p < k, then one can immediately notice that Xkεk will be independant from the rest so that
the term will be 0, as it is always true that E [εX ] = 0. If not, Xk will also appear in M0,p as a
factor I − γXkXT

k so that the term can be expressed as G(E
[

XkεkηT
0 XkXT

k

]

) where G is a linear
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operator obtained using the independance of the other Xi and εi for i 6= k. As a consequence, we
can recover a simple decomposition as soon as

∀ 1 ≤ i, j, k ≤ d,E
[

X(i)X(j)X(k)ε
]

= 0,

where X(i) is the i-th component of X .
In any case, because of Minkowski’s inequality as noted in Bach and Moulines (2013), we always

have that

f total
n − f∗ ≤ 2(fbias

n − f∗) + 2(fvariance
n − f∗),

so that we are never too far from the true error when assuming X and ε independant.

3.2 Proof for the bias term

First, let us assume that εk = 0 a.s. Then we have

η̄n =
1

n

n−1
∑

j=0

M0,jη0,

and

E
[

η̄nη̄T
n

]

=
1

n2

n−1
∑

i=0

n−1
∑

j=0

E
[

M0,iη0ηT
0 MT

0,j

]

=
1

n2

n−1
∑

i=0



E



M0,iη0ηT
0 MT

0,i +

n−1
∑

j=i+1

M0,iη0ηT
0 MT

0,iM
T
i,j +

i−1
∑

j=0

Mj,iM0,jη0ηT
0 MT

0,j









=
1

n2

n−1
∑

i=0

(

E
[

M0,iη0ηT
0 MT

0,i

]

+

n−1
∑

j=i+1

E
[

M0,iη0ηT
0 MT

0,i

]

(I − γH)j−i

+
i−1
∑

j=0

(I − γH)i−j
E
[

MT
0,jη0ηT

0 M0,j

]

)

because of independence assumptions,

=
1

n2

n−1
∑

i=0



E
[

M0,iη0ηT
0 MT

0,i

]

+
n−1
∑

j=i+1

E
[

M0,iη0ηT
0 MT

0,i

]

(I − γH)j−i





+
1

n2

n−1
∑

j=0





n−1
∑

i=j+1

(I − γH)i−j
E
[

MT
0,jη0ηT

0 M0,j

]





=
1

n2

n−1
∑

i=0

(

E
[

M0,iη0ηT
0 MT

0,i

]

+

n−1
∑

j=i+1

(

E
[

M0,iη0ηT
0 MT

0,i

]

(I − γH)j−i + (I − γH)j−i
E
[

M0,iη0ηT
0 MT

0,i

])

)

by exchanging the role of i and j in the last equation,

=
1

n2

n−1
∑

i=0

(

E
[

M0,iη0ηT
0 MT

0,i

]

+ E
[

M0,iη0ηT
0 MT

0,i

] (

(I − γH) − (I − γH)n−i
)

(γH)−1

+ (γH)−1
(

(I − γH) − (I − γH)n−i
)

E
[

M0,iη0ηT
0 MT

0,i

]

)

.

We only used the fact that Xi and Xj are independent as soon as i 6= j, so that we can condition
on X1, . . . Xi to obtain M1,i(I − γH)j−i. Now we need to express E

[

(I − γXiX
T
i )A(I − γXiX

T
i )
]

for A some matrix that is independent of Xi. Using the notation we introduced, we have immedi-
ately that

E
[

(I − γXiX
T
i )A(I − γXiX

T
i )
]

= A − γAH − γHA + γ2
E
[

XT AXXXT
]

= (I − γHR − γHL + γ2M)A

= (I − γT )A.
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Then we have, with Fi−1 the σ field generated by X1, . . . , Xi−1,

E
[

M0,iη0ηT
0 MT

0,i

]

= E
[

E
[

M0,iη0ηT
0 MT

0,i|Fi−1

]]

= E
[

E
[

(I − γXiX
T
i )M0,i−1η0ηT

0 MT
0,i−1(I − γXiX

T
i )|Fi−1

]]

= E
[

(I − γT )M0,i−1η0ηT
0 M0,i−1

]

= (I − γT )E
[

M0,i−1η0ηT
0 M0,i−1

]

.

and by iterating this process, we obtain

E
[

η̄nη̄T
n

]

=
1

n2

n−1
∑

i=0

(I − γT )iE0

+
(

(I − γT )iE0

) (

(I − γH) − (I − γH)n−i
)

(γH)−1

+ (γH)−1
(

(I − γH) − (I − γH)n−i
) (

(I − γT )iE0

)

=
1

n2

n−1
∑

i=0

(

I +
[

(I − γH)L − (I − γH)n−i
L

]

(γHL)−1

+
[

(I − γH)R − (I − γH)n−i
R

]

(γHR)−1

)

(I − γT )iE0.

Let us define

An = −
1

n2

n−1
∑

i=0

(

(γHR)−1(I − γH)n−i
R + (γHL)−1(I − γH)n−i

L

) (

(I − γT )iE0

)

‖An‖F ≤
2d

nγµ
ρn ‖E0‖F ,

which is decaying exponentially. We now have

E
[

η̄nη̄T
n

]

=
1

n2

n−1
∑

i=0

(

I + (I − γHL)(γHL)−1 + (I − γHR)(γHR)−1
)

(I − γT )iE0 + An

=
1

γ2n2

(

H−1
L + H−1

R − γI
)

T −1 (I − (I − γT )n) E0 + An.

Again, we have some exponential terms, that we will regroup in Bn with

Bn = −
1

γ2n2

(

H−1
L + H−1

R − γI
)

T −1(I − γT )nE0

‖Bn‖F ≤
d

n2γ2µT

ρn
T

(

2

µ
− γ

)

‖E0‖F ,

and we have

E
[

η̄nη̄T
n

]

=
1

n2γ2

(

H−1
L + H−1

R − γI
)

T −1E0 + An + Bn.

We can bound An + Bn by

‖An + Bn‖F ≤
dρn ‖E0‖F

γn

(

2

µ
+

1

µT nγ

(

2

µ
− γ

))

,

which completes the first assertion of Theorem 1.

3.3 Proof for the variance term

Let assume now that η0 = 0, then we have

η̄n =
γ

n

n−1
∑

k=1





n−1
∑

j=k

Mk,j



Xkεk,

8



and

E
[

η̄nη̄T
n

]

=
γ2

n2
E





n−1
∑

k,l=1





n−1
∑

j=k

Mk,j



XkεkεlX
T
l





n−1
∑

p=l

MT
l,p









=
γ2

n2
E





n−1
∑

k=1





n−1
∑

j=k

Mk,j



XkεkεkXT
k





n−1
∑

p=k

MT
k,p







 .

Indeed, we can remove terms where k 6= l: if we have for instance l < k, then Xlεl will be
independent from the rest of the terms and as E [Xlεl] = 0, the term will be 0.

By using mostly the same method as for the bias term, we obtain that

E
[

η̄nη̄T
n

]

=
γ2

n2

n−1
∑

k=1

n−1
∑

j=k

(I − γT )
j−k

Σ0

+
(

(I − γH) − (I − γH)n−j
)

(γH)−1
(

(I − γT )
j−k

Σ0

)

+
(

(I − γT )
j−k

Σ0

)

(

(I − γH) − (I − γH)n−j
)

(γH)−1

=
γ2

n2

n−1
∑

j=1

j
∑

k=1

(I − γT )j−k Σ0

+
(

(I − γH) − (I − γH)n−j
)

(γH)−1
(

(I − γT )
j−k

Σ0

)

+
(

(I − γT )
j−k

Σ0

)

(

(I − γH) − (I − γH)n−j
)

(γH)−1

=
γ2

n2

n−1
∑

j=1

(

I − (I − γT )j
)

(γT )−1Σ0

+
(

(I − γH) − (I − γH)n−j
)

(γH)−1
(

I − (I − γT )j
)

(γT )−1Σ0

+
(

I − (I − γT )j
)

(γT )−1Σ0

(

(I − γH) − (I − γH)n−j
)

(γH)−1.

As for the bias, we can bound some terms:

Cn =
γ2

n2

n−1
∑

j=1

(

(I − γH)n−j
L (γHL)−1 + (I − γH)n−j

R (γHR)−1
)

(I − γT )j(γT )−1Σ0

‖Cn‖F ≤
2d

nµµT

ρn ‖Σ0‖F .

Now we have,

E
[

η̄nη̄T
n

]

=
1

n2

n−1
∑

j=1

(

H−1
L + H−1

R − γI
) (

I − (I − γT )j
)

T −1Σ0 + Cn

=
1

n

(

H−1
L + H−1

R − γI
)

T −1Σ0 + Dn + Cn,

where Dn is defined by

Dn = −
1

n2

n−1
∑

j=1

(

H−1
L + H−1

R − γI
)

(I − γT )jT −1Σ0

= −
1

γn2

(

H−1
L + H−1

R − γI
)

(I − γT )T −2Σ0 + D′
n.

D′
n are again exponentially decreasing terms:

D′
n =

1

γn2

(

H−1
L + H−1

R − γI
)

(I − γT )nT −2Σ0

‖D′
n‖F ≤

d

γ2µ2
T n

(

2

µ
− γ

)

ρn
T ‖Σ0‖F ,

9



so that we have

E
[

η̄nη̄T
n

]

=
1

n

(

H−1
L + H−1

R − γI
)

T −1Σ0 −
1

γn2

(

H−1
L + H−1

R − γI
)

(I − γT )T −2Σ0 + Cn + D′
n.

(3.2)

We can bound Cn + D′
n by

‖Cn + D′
n‖F ≤

dρn ‖Σ0‖F

n

(

1

nγµ2
T

(

2

µ
− γ

)

+
2

µµT

)

.

This concludes the proof of Theorem 2.
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