
SUPPLEMENTARY MATERIAL

While our analysis of the proposed approach and algo-
rithm largely tracks the methodology in [Ding et al.,
2014], here we develop a set of new analysis tools that
can handle more general settings. Specifically, our new
analysis tools can handle any isotropically distributed
random projection directions. In contrast, the work in
[e.g., Ding et al., 2014] can only handle special types
of random projections, e.g., spherical Gaussian. Our
new refined analysis can not only handle more gen-
eral settings, it also gives an overall improved sample
complexity bound.

We also analyse the post-processing step in Algo-
rithm 4. This step accounts for the special constraints
that a valid ranking representations must satisfy and
guarantees a binary-valued estimate of σ. It should
also satisfy the property that either σk(i) > σk(j) or
σk(i) < σk(j) for all distinct i, j and all k.

We note that the analysis framework that we present
here for the solid angle can in fact be extended to han-
dle other types distributions for the random projection
directions. This is, however, beyond the scope this pa-
per.

A On the generative model

Proposition 1. B = Pσ is column stochastic.

Proof. Noting that σ(i,j),k + σ(j,i),k = 1 by definition,
and P(i,j),(i,j) = P(j,i),(j,i) = µi,j , therefore,

∑

(i,j)

B(i,j),k =
∑

(i,j) : i<j

(σ(i,j),k + σ(j,i),k)µi,j

=
∑

(i,j) : i<j

µi,j = 1

B Connection to the model in FJS

Here we discuss in detail the connection to the prob-
ability model as well as the algorithm proposed in
Jagabathula and Shah [2008]Farias et al. [2009] (de-
noted by FJS).

First, the generative model proposed in FJS can be
viewed as a special case of our generative model. If
we consider the prior distribution of θm to be a pmf
on the vertices of the K-dimensional probability sim-
plex (so that θm has only one nonzero component with
probability one), i.e.,

Pr(θm = ek) = bk (1)

where ek is the k-th standard basis vector and∑K
k=1 bk = 1, then each user m is associated with only

one of the K types with probability bk for the k-th
type. We note that under this prior, a , E(θm) = b

and R , E(θmθ
⊤
m) = diag(b) has full rank.

Second, the algorithm proposed in FJS can certainly
be applied to our more general setting. Since the al-
gorithm FJS only uses the first order statistic which
corresponds to pooling the comparisons from all the
users together, it suffices to consider only the proba-
bilities of p(w1 = (i, j)) by marginalizing over θ:

p(w1 = (i, j)) =

∫

θm

p(w1 = (i, j)|θm) Pr(θm)dθm

=

K∑

k=1

σ(i,j),k

∫

θm

θk,mdθm

=

K∑

k=1

σ(i,j),kak

=
∑

k :σk(i)<σk(j)

ak,

where the last step is due to the definition of the
ranking matrix σ. The above derivation shows that
if the expectation vector in our generative model
equals that in the model of FJS, then the probabil-
ity distribution of the first order statistic in both
models will be identical and the two models will be
indistinguishable in terms of the first order statistic.
This shows that the comparison with FJS in the
experiments conducted in Sections 6.1 and 6.2 of the
main paper is both sensible and fair.

Indexing convention: For convenience, for the rest
of this appendix we will index the W = Q(Q − 1)
rows of B and E by just a single index i instead of an
ordered pair (i, j) as in the main paper.

C Proof of Lemma 2 in the main

paper

Lemma 2 in the main paper is a result about the al-
most sure convergence of the estimate of the normal-
ized second order moments E. Our proof of this result
will also provide an attainable rate of convergence.

We first provide a generic method to establish the con-
vergence rate for a function ψ(X) of d random vari-
ables X1, . . . , Xd given their individual convergence
rates.

Proposition 2. Let X = [X1, . . . , Xd] be d random
variables and a = [a1, . . . , ad] be positive constants.
Let E :=

⋃
i∈I
{|Xi−ai| ≥ δi} for some constants δi > 0,



and ψ(X) be a continuously differentiable function in
C := Ec. If for i = 1, . . . , d, Pr(|Xi − ai| ≥ ǫ) ≤ fi(ǫ)
and max

X∈C
|∂iψ(X)| ≤ Ci, then,

Pr(|ψ(X)− ψ(a)| ≥ ǫ) ≤
∑

i

fi(γ) +
∑

i=1

fi(
ǫ

dCi
)

Proof. Since ψ(X) is continuously differentiable in C,
∀X ∈ C, ∃λ ∈ (0, 1) such that

ψ(X)− ψ(a) = ∇⊤ψ((1 − λ)a+ λX) · (X− a)

Therefore,

Pr(|ψ(X) − ψ(a)| ≥ ǫ)
≤Pr(X ∈ E)

+ Pr(
d∑

i=1

|∂iψ((1− λ)a + λX)||Xi − ai| ≥ ǫ|X ∈ C)

≤
∑

i∈I
Pr(|Xi − ai| ≥ δi)

+

d∑

i=1

Pr(max
x∈C
|∂iψ(x)||Xi − ai| ≥ ǫ/d)

=
∑

i∈I
fi(δi) +

∑

i=1

fi(
ǫ

dCi
)

Now we are ready to prove Lemma 2 of the main pa-
per. Recall that X̃ and X̃′ are obtained fromX by first
splitting each user’s comparisons into two independent
copies and then re-scaling the rows to make them row-
stochastic. Therefore, X̃ = diag−1(X1)X. Since B̄ =
diag−1(Ba)B diag(a), R̄ = diag−1(a)R diag−1(a),
and B̄ is row stochastic. From Lemma 2 of the main
paper, we have

Lemma 1. Let Ê = MX̃′X̃⊤ and E = B̄R̄B̄⊤. If
η = min1≤i≤W (Ba)i > 0, then,

Pr(‖Ê−E‖∞ ≥ ǫ) ≤ 8W 2 exp(−ǫ2η4MN/20) (2)

Proof. For any 1 ≤ i, j ≤W ,

Êi,j =M
1

M∑
m=1

X ′
i,m

(

M∑

m=1

X ′
i,mXj,m)

1
M∑

m=1
Xi,m

=

1/M
M∑

m=1
(X ′

i,mXj,m)

(1/M
M∑

m=1
X ′

i,m)(1/M
M∑

m=1
Xj,m)

=

1
MN2

M,N,N∑
m=1,n=1,n′=1

I(wm,n = i)I(w′
m,n′ = j)

1
MN

M,N∑
m=1,n=1

I(wm,n = i) 1
MN

M,N∑
m=1,n=1

I(w′
m,n = i)

:=
Fi,j(M,N)

Gi(M,N)Hj(M,N)

From the Strong Law of Large Numbers and equations
(1), (2) in the main paper, we have

Fi,j(M,N)
a.s.−−→ E(I(wm,n = i)I(w′

m,n′ = j))

= (BRB⊤)i,j := pi,j

Gi(M,N)
a.s.−−→ E(I(w′

m,n = i)) = (Ba)i := pi

Hi(M,N)
a.s.−−→ E(I(wm,n = j)) = (Ba)j := pj

and
(BRB

⊤)i,j
(Ba)i(Ba)j

= Ei,j by definition. Using McDi-

armid’s inequality, we obtain

Pr(|Fi,j − pi,j | ≥ ǫ) ≤ 2 exp(−ǫ2MN)

Pr(|Gi − pi| ≥ ǫ) ≤ 2 exp(−2ǫ2MN)

Pr(|Hj − pj | ≥ ǫ) ≤ 2 exp(−2ǫ2MN)

In order to calculate Pr{| Fi,j

GiHj
− pi,j

pipj
| ≥ ǫ}, we apply

the results from Proposition 2. Let ψ(x1, x2, x3) =
x1

x2x3
with x1, x2, x3 > 0, and a1 = pi,j , a2 = pi, a3 =

pj . Let I = {2, 3}, δ2 = γpi, and δ3 = γpj. Then
|∂1ψ| = 1

x2x3

, |∂2ψ| = x1

x2

2
x3

, and |∂3ψ| = x1

x2x2

3

.

If Fi,j = x1, Gi = x2, and Hj = x3, then Fi,j ≤ Gi,
Fi,j ≤ Hj . Then note that

C1 = max
C
|∂1ψ| = max

C

1

GiHj
≤ 1

(1− γ)2pipj
C2 = max

C
|∂2ψ| = max

C

Fi,j

G2
iHj

≤ max
C

1

GiHj
≤ 1

(1− γ)2pipj
C3 = max

C
|∂3ψ| = max

C

Fi,j

GiH2
j

≤ max
C

1

GiHj
≤ 1

(1− γ)2pipj



By applying Proposition 2, we get

Pr{| Fi,j

GiHj
− pi,j
pipj
| ≥ ǫ}

≤ exp(−2γ2p2iMN) + exp(−2γ2p2jMN)

+ 2 exp(−ǫ2(1− γ)4(pipj)2MN/9)

+ 4 exp(−2ǫ2(1 − γ)4(pipj)2MN/9)

≤2 exp(−2γ2η2MN) + 6 exp(−ǫ2(1 − γ)4η4MN/9)

where η = min1≤i≤W pi. There are many strategies for

optimizing the free parameter γ. We set 2γ2 = (1−γ)4

9
and solve for γ to obtain

Pr{| Fi,j

GiHj
− pi,j
pipj
| ≥ ǫ} ≤ 8 exp(−ǫ2η4MN/20)

Finally, by applying the union bound to theW 2 entries
in Ê, we obtain the claimed result.

D Proof of Theorem 2 in the main

paper

D.1 Outline

We focus on the case when the random projection di-
rections are sampled from any isotropic distribution.
Our proof is not tied to the special form of the distribu-
tion; just its isotropic nature. In contrast, the method
in [e.g., Ding et al., 2014] can only handle special types
of distributions such as the spherical Gaussian.

The proof of Theorem 2 in the main paper can be de-
coupled into two steps. First, we show that Algorithm
2 in the main paper can consistently identify all the
novel words of the K distinct rankings. Then, given
the success of the first step, we will show that Algo-
rithm 3 proposed in the main paper can consistently
estimate the ranking matrix σ.

D.2 Useful propositions

We denote by Ck the set of all novel pairs of the ranking
σk, for k = 1, . . . ,K, and denote by C0 the set of other
non-novel pairs. We first prove the following result.

Proposition 3. Let Ei be the i-th row of E. Suppose
σ is separable and R has full rank, then the following
is true:

‖Ei − Ej‖ Ei,i − 2Ei,j + Ej,j

i ∈ C1, j ∈ C1 0 0
i ∈ C1, j /∈ C1 ≥ (1 − b)λmin ≥ (1 − b)2λ2min/λmax

where b = maxj∈C0,k B̄j,k and λmin, λmax are the min-
imum /maximum eigenvalues of R̄

Proof. Let B̄i be the i-th row vector of matrix B̄. To
show the above results, recall that E = B̄R′B̄⊤. Then

‖Ei −Ej‖ = ‖(B̄i − B̄j)R
′B̄⊤‖

Ei,i − 2Ei,j + Ej,j = (B̄i − B̄j)R
′(B̄i − B̄j)

⊤.

It is clear that when i, j ∈ C1, i.e., they are both novel
pairs for the same ranking, B̄i = B̄j . Hence, ‖Ei −
Ej‖ = 0 and Ei,i − 2Ei,j + Ej,j = 0.

When i ∈ C1, j /∈ C1, we have B̄i = [1, 0, . . . , 0], B̄j =
[B̄j,i, B̄j,2, . . . , B̄j,K ] with B̄j,1 < 1. Then,

B̄i − B̄j = [1− B̄j,i,−B̄j,2, . . . ,−B̄j,K ]

= (1− B̄j,i)[1,−c2, . . . ,−cK ]

:= (1− B̄j,i)e
⊤

and
∑K

l=2 cl = 1. Therefore, defining Y := R′B̄⊤, we
get

‖Ei −Ej‖2 = (1− B̄j,i)‖Y1 −
K∑

l=2

clYl‖2

Using the Proposition 1 in [Ding et al., 2013], if R̄ is
full rank with minimum eigenvalue λmin > 0, then, R̄
is γ-(row)simplicial with γ = λmin, i.e., any row vector
is at least γ distant from any convex combination of
the remaining rows. Since B̄ is separable, Y is at
least γ-simplicial (see Ding et al. [2014] Lemma 1 ).
Therefore,

‖Ei −Ej‖2 ≥ (1− B̄j,1)γ ≥ (1− b)λmin

where b = maxj∈C0,k B̄j,k < 1.

Similarly, note that ‖e⊤R̄‖ ≥ γ and let R̄ = UΣU⊤

be its singular value decomposition. If λmax is the
maximum eigenvalue of R̄, then we have

Ei,i − 2Ei,j + Ej,j = (1− B̄j,1)
2e⊤R̄e

= (1− B̄j,1)
2(e⊤R̄)UΣ−1U⊤(e⊤R̄)⊤

≥ (1− b)2λ2min/λmax.

The inequality in the last step follows from the obser-
vation that e⊤R′ is within the column space spanned
by U.

The results in Proposition 3 provide two statistics for
identifying novel pairs of the same topic, ‖Ei−Ej‖ and
Ei,i − 2Ei,j + Ej,j . While the first is straightforward,
the latter is efficient to calculate in practice with better
computational complexity. Specifically, the set Ji in
Algorithm 2 of the main paper

Ji = {j : Êi,i − Êi,j − Êj,i + Êj,j ≥ d/2}

can be used to discover the set of novel pairs of the
same rankings asymptotically. Formally,



Proposition 4. If ‖Ê−E‖∞ ≤ d/8, then,

1. For a novel pair i ∈ Ck , Ji = Cc
k

2. For a non-novel pair j ∈ C0, Ji ⊃ Cc
k

D.3 Consistency of Algorithm 2 in the main

paper

Now we start to show that Algorithm 2 of the main
paper can detect all the novel pairs of the K dis-
tinct rankings consistently. As a starting point, it is
straightforward to show the following result.

Proposition 5. Suppose σ is separable and R is full
rank, then, qi > 0 if and only if i is a novel pair.

We denote the minimum solid angle of the K extreme
points by q∧. Proposition 5 shows that the novel pairs
can be identified by simply sorting qi.

The agenda is to show that the estimated solid angle
in Alg. 2,

p̂i =
1

P

P∑

r=1

I{∀j ∈ Ji, Êjdr ≤ Êidr} (3)

converges to the ideal solid angle

qi = Pr{∀j ∈ Si, (Ei −Ej)d ≥ 0} (4)

hence the error event in Alg. 2 has vanishing prob-
ability as M,P → ∞. d1, . . . ,dP are iid directions
drawn from a isotropic distribution. For a novel pair
i ∈ Ck, k = 1, . . . ,K, Si = Cck, and for a non-novel pair
i ∈ C0, let Si = Cc0.
To show the convergence of p̂i to pi, we consider an
intermediate quantity,

pi(Ê) = Pr{∀j ∈ Ji, (Êi − Êj)d ≥ 0}
First, by Hoeffding’s lemma, we have the following re-
sult.

Proposition 6. ∀t ≥ 0, ∀i,
Pr{|p̂i − pi(Ê)|t} ≥ 2 exp(−2Pt2) (5)

Next we show the convergence of pi(Ê) to solid angle
qi:

Proposition 7. Consider the case when ‖Ê−E‖∞ ≤
d
8 . If i is a novel pair, then,

qi − pi(Ê) ≤ W
√
W

πd2
‖Ê−E‖∞

Similarly, if j is a non-novel pair, we have,

pj(Ê)− qi ≤
W
√
W

πd2
‖Ê−E‖∞

where d2 , (1− b)λmin, d = (1 − b)2λ2min/λmax.

Proof. First note that, by the definition of Ji and
Proposition 3, if ‖Ê−E‖∞ ≤ d

8 , then, for a novel pair
i ∈ Ck, Ji = S(i). And for a non-novel pair i ∈ C0,
Ji ⊇ S(i). For convenience, let

Aj = {d : (Êi − Êj)d ≥ 0} A =
⋂

j∈Ji

Aj

Bj = {d : (Ei −Ej)d ≥ 0} B =
⋂

j∈S(i)

Bj

For i being a novel pair, we consider

qi − pi(Ê) = Pr{B} − Pr{A} ≤ Pr{B
⋂
Ac}

Note that Ji = S(i) when ‖Ê−E‖ ≤ d/8,

Pr{B
⋂
Ac} = Pr{B

⋂
(

⋃

j∈S(i)

Ac
j)}

≤
∑

j∈S(i)

Pr{(
⋂

l∈S(i)

Bl)
⋂
Ac

j} ≤
∑

j∈S(i)

Pr{Bj

⋂
Ac

j}

=
∑

j∈S(i)

Pr{(Êi − Êj)d < 0, and (Ei − Ej)d ≥ 0}

=
∑

j∈S(i)

φj
2π

where φj is the angle between ej = Ei −Ej and êj =

Êi − Êj for any isotropic distribution on d. Using the
trigonometric inequality φ ≤ tan(φ),

Pr{B
⋂
Ac} ≤

∑

j∈S(i)

tan(φj)

2π
≤

∑

j∈S(i)

1

2π

‖êj − ej‖2
‖ej‖2

≤ W
√
W

πd2
‖Ê−E‖∞

where the last inequality is obtained by the relation-
ship between the ℓ∞ norm and theℓ2 norm, and the
fact that for j ∈ S(i), ‖ej‖2 = ‖Ei − Ej‖2 ≥ d2 ,

(1− b)λmin. Therefore for a novel word i, we have,

qi − pi(Ê) ≤ W
√
W

πd2
‖Ê−E‖∞

Now for a non-novel word i, note the fact that i ∈ C0,
Ji ⊇ S(i),

pi(Ê)− qi =Pr{A} − Pr{B} = Pr{A
⋂
Bc}

≤
∑

j∈S(i)

Pr{(
⋂

l∈Ŝ(i)

Al)
⋂
Bc

j}

≤
∑

j∈S(i)

Pr{Aj

⋂
Bc

j}

≤W
√
W

πd2
‖Ê−E‖∞



A direct implication of Proposition 7 is,

Proposition 8. ∀ǫ > 0, let ρ = min{ d8 , πd2ǫ
W 1.5 }. If

‖Ê−E‖∞ ≤ ρ, then, qi − pi(Ê) ≤ ǫ for a novel pair i

and pj(Ê)− qj ≤ ǫ for a non-novel pair j.

We now prove the consistency of Algorithm 2 of the
main paper. Formally,

Lemma 2. Algorithm 2 of the main paper can identify
all the novel words from K distinct rankings with error
probability,

Pe ≤ 2W 2 exp(−Pq2∧/8) + 8W 2 exp(−ρ2η4MN/20)

where ρ = min{ d8 ,
πd2q∧
4W 1.5 }, d2 , (1 − b)λmin, d = (1 −

b)2λ2min/λmax, b = maxj∈C0,k B̄j,k and λmin, λmax are
the minimum /maximum eigenvalues of R̄. The result
holds true for any isotropically distributed d.

Proof. First of all, we decompose the error event to be
the union of the following two types,

1. Sorting error, i.e., ∃i ∈ ⋃K
k=1 Ck, ∃j ∈ C0 such

that p̂i < p̂j . This event is denoted as Ai,j and
let A =

⋃
Ai,j .

2. Clustering error, i.e., ∃k, ∃i, j ∈ Ck such that i /∈
Jj . This event is denoted as Bi,j and let B =⋃
Bi,j

According to Proposition 8, we also define ρ =
min{ d8 ,

πd2q∧
4W 1.5 } and C = {‖E− Ê‖∞ ≥ ρ}. Note that

B ( C,

Therefore,

Pe = Pr{A
⋃
B}

≤ Pr{A
⋂
Cc}+ Pr{C}

≤
∑

i novel,j non−novel

Pr{Ai,j

⋂
Bc}+ Pr{C}

≤
∑

i,j

Pr(p̂i − p̂j < 0
⋂
‖Ê−E‖∞ ≥ ρ)

+Pr(‖Ê−E‖∞ > ρ)

The second term can be bound by Proposition 2. Now
we focus on the first term. Note that

p̂i − p̂j = p̂i − p̂j − pi(Ê) + pi(Ê)

−qi + qi − pj(Ê) + pj(Ê)− qj + qj

= {p̂i − pi(Ê)}+ {pi(Ê)− qi}
+{pj(Ê)− p̂j}+ {qj − pj(Ê)}
+qi − qj

and the fact that qi − qj ≥ q∧, then,,

Pr(p̂i < p̂j
⋂
‖Ê−E‖∞ ≤ ρ)

≤ Pr(pi(Ê)− p̂i ≥ q∧/4) + Pr(p̂j − pj(Ê) ≥ q∧/4)
+Pr(qi − pi(Ê) ≥ q∧/4)

⋂
‖Ê−E‖∞ ≤ ρ)

+Pr(pj(Ê)− qj ≥ q∧/4)
⋂
‖Ê−E‖∞ ≤ ρ)

≤ 2 exp(−Pq2∧/8)
+Pr(qi − pi(Ê) ≥ q∧/4)

⋂
‖Ê−E‖∞ ≤ ρ)

+Pr(pj(Ê)− qj ≥ q∧/4)
⋂
‖Ê−E‖∞ ≤ ρ)

The last equality is by Proposition 6. For the last
two terms, by Proposition 8 is 0. Therefore, applying
Lemma 1 we obtain,

Pe ≤ 2W 2 exp(−Pq2∧/8) + 8W 2 exp(−ρ2η4MN/20)

D.4 Consistency of algorithm 3

Now we show that Algorithm 3 and 4 of the main pa-
per can consistently estimate the ranking matrix σ,
given the success of the Algorithm 2. Without loss
of generality, let 1, . . . ,K be the novel pairs of K dis-
tinct rankings. We first show that the solution of the
constrained linear regression is consistent:

Proposition 9. The solution to the following opti-
mization problem

b̂∗ = arg min
bj≥0,

∑
bj=1
‖Êi −

K∑

j=1

bjÊj‖

converges to the i-th row of B̄, B̄i, as M →∞. More-
over,

Pr(‖b̂∗ − B̄i‖∞ ≥ ǫ) ≤ 8W 2 exp(− ǫ
2MNλminη

4

80W 0.5
)

Proof. We note that B̄i is the optimal solution to the
following problem

b∗ = arg min
bj≥0,

∑
bj=1
‖Ei −

K∑

j=1

bjEj‖

Define f(E,b) = ‖Ei −
K∑
j=1

bjEj‖ and note the fact

that f(E,b∗) = 0. Let Y = [E⊤
1 , . . . ,E

⊤
K ]⊤. Then,

f(E,b)− f(E,b∗) = ‖Ei −
K∑

j=1

bjEj‖ − 0

=‖
K∑

j=1

(bj − b∗j )Ej‖ =
√
(b− b∗)YY⊤(b− b∗)⊤

≥‖b− b∗‖λmin



where λmin > 0 is the minimum eigenvalue of R̄. Next,
note that,

|f(E,b)− f(Ê,b)| ≤‖Ei − Êi +
∑

bj(Êj −Ej)‖

≤‖Ei − Êi‖+
∑

bj‖Êj −Ej‖
≤2max

w
‖Êw −Ew‖

Combining the above inequalities, we obtain,

‖b̂∗ − b∗‖ ≤ 1

λmin
{f(E, b̂∗)− f(E,b∗)}

=
1

λmin
{f(E, b̂∗)− f(Ê, b̂∗) + f(Ê, b̂∗)

− f(Ê,b∗) + f(Ê,b∗)− f(E,b∗)}

≤ 1

λmin
{f(E, b̂∗)− f(Ê, b̂∗)

+ f(Ê,b∗)− f(E,b∗)}

≤4W 0.5

λmin
‖Ê−E‖∞

where the last term converges to 0 almost surely. The
convergence rate follows directly from Lemma 1.

Now for the row-scaling step in algorithm 3,

B̂i := b̂∗(i)⊤(
1

M
X1M×1)

→ B̄i(Bia) = Bi diag(a) (6)

We point out that the “column-normalization” step
in Ding et al. [2014] which was used to get rid of the
diag(a) component in the above equation is not neces-
sary in our approach. To show the convergence rate of
the above equation, it is straightforward to apply the
result in Lemma 1

Proposition 10. For the row-scaled estimation B̂i as
in Eq. (6), we have,

Pr(|B̂i,k −Bi,kak| ≥ ǫ) ≤ 8W 2 exp(− ǫ
2MNλminη

4

160W 0.5
)

Proof. By Proposition 9, we have,

Pr(|b̂∗(i)k − B̄i,k| ≥ ǫ/2) ≤ 8W 2 exp(− ǫ
2MNλminη

4

160W 0.5
)

Recall that,

Pr(| 1
M

X1M×1 −Bia| ≥ ǫ/2) ≤ exp(−ǫ2MN/2)

Therefore,

Pr(|B̂i,k −Bi,kak| ≥ ǫ)

≤8W 2 exp(− ǫ
2MNλminη

4

80W 0.5
) + exp(−ǫ2MN/2)

where the second term is dominated by the first term.

For the rest of this section, we will use (i, j) to index

the W rows of E,B,σ. Recall in Eq. (6), B̂(i,j),k →
B(i,j),kak = µi,jσ(i,j),kak, and B̂(j,i),k → B(j,i),kak =
µi,jσ(j,i),kak, and in algorithm 1 of the main paper, we
consider

σ̂(i,j),k ←
B̂(i,j),k

B̂(i,j),k + B̂(j,i),k

.
=

σ(i,j),kµi,jak

σ(i,j),kµi,jak + σ(j,i),kµi,jak

Therefore, due to the rounding scheme of the last step,
the estimation is consistent if |B̂(i,j),k − B(i,j),kak| ≤
0.5µi,jak. η is a lower bound of µi,jak. Putting the
above results together, we have,

Lemma 3. Given the success in Lemma 2, Algorithm
3 and the remaining post-processing steps in Algorithm
1 of the main paper can consistently estimate the rank-
ing matrix σ as M → ∞. Moreover, the error proba-

bility is less than 8W 2 exp(−MNλminη
6

160W 0.5 ).

D.5 Proof of Theorem 2

We now formally prove the sample complexity Theo-
rem 2 in the main paper.

Theorem 2 Let σ be separable and R be full rank.
Then the overall Algorithm 1 consistently recovers σ
up to a column permutation as the number of users
M →∞ and number of projections P →∞. Further-
more, ∀δ > 0, if

M ≥ max

{
40

log(3W/δ)

Nρ2η4
, 320

W 0.5 log(3W/δ)

Nη6λmin

}

and for

P ≥ 16
log(3W/δ)

q2∧
then Algorithm 1 fails with probability at most δ.
The other model parameters are defined as η =
min1≤w≤W [Ba]w , ρ = min{ d8 ,

πd2q∧
4W 1.5 }, d2 , (1 −

b)λmin, d = (1 − b)2λ2min/λmax, b = maxj∈C0,k B̄j,k

and λmin, λmax are the minimum /maximum eigenval-
ues of R̄. q∧ is the minimum normalized solid angle
of the extreme points of the convex hull of the rows of
E.

Proof. We combine the results in Lemmas 2 and 3, i.e.,
the error probability of alg. 1 can be upper bounded
by

Pe ≤2W 2 exp(−Pq2∧/8) + 8W 2 exp(−ρ2η4MN/20)

+ 8W 2 exp(−MNλminη
6

160W 0.5
)

This leads to the sample complexity results in the the-
orem.



E Algorithm 2 and Theorem 2 for

Gaussian Random Directions

The proof in Section D holds for any isotropic distri-
bution on d. If we assume d to be the standard spher-
ical Gaussian distribution, we can have better sample
complexity bounds following the steps in [Ding et al.,
2014, Theorem 2]. First note that,

Proposition 11. Let Xn,X ∈ Rm be two random
vectors, a, ǫ ∈ Rm be two vectors and ǫ > 0.

|Pr{Xn ≤ a} − Pr{X ≤ a}|
≤Pr(∃i : |Xn

i −Xi| ≥ ǫi) + Pr(a − ǫ ≤ X ≤ a+ ǫ)

The inequality is element-wise.

Proof. Note that

Pr{Xn ≤ a} ≤Pr{Xn ≤ a, ∀i : |Xn
i −Xi| ≤ ǫi}

+ Pr{Xn ≤ a, ∃i : |Xn
i −Xi| ≥ ǫi}

≤Pr{X ≤ a+ ǫ}+ Pr{∃i : |Xn
i −Xi| ≥ ǫi}

Similarly, by swapping Xn and X, we have,

Pr{X ≤ a− ǫ} ≤ Pr{Xn ≤ a} + Pr{∃i : |Xn
i −Xi| ≥ ǫi}

Combining them concludes the proof.

Proposition 12. Let the random projection directions
be d ∼ N (0, IW ) in Algorithm 2 of the main paper.

Then, ∀ ǫ > 0, let ρ = min{ d8 ,
√
πǫd2

4K
√

W log(2W/ǫ)
}. If

‖Ê−E‖∞ ≤ ρ, then, qi − pi(Ê) ≤ ǫ for a novel pair i

and pj(Ê)− qj ≤ ǫ for a non-novel pair j.

Proof. Recall the definition of qi and pi(Ê),

qi = Pr{∀j ∈ S(i), Eid ≥ Ejd}
pi(Ê) = Pr{∀j ∈ Ji, Êid ≥ Êid}

When i is a novel word, S(i) = Ji for ‖Ê − E‖∞ ≤
ρ ≤ d/8, therefore, by Proposition 11, we have,

|qi − pi(Ê)| ≤ Pr(∃j ∈ Ji : |ei,jd| ≥ δ)
+ Pr(∀j ∈ Ji : |zijd| ≤ δ)

(7)

where ei,j = Ei− Êi+ Êj −Ej and zij = Ei−Ej. To
apply the union bound to the second term in Eq. (7),

it suffice to consider only j ∈ ⋃K
k=1 Ck. Therefore, by

union bounding both the first and second terms, we
obtain,

|qi − pi(Ê)|
≤
∑

j

Pr(|ei,jd| ≥ δ) +
∑

j

Pr(|zijd| ≤ δ)

Note that eijd ∼ N (0, ‖zij‖22) and zijd ∼
N (0, ‖aij‖22) conditioned on Ê. Using the properties
of the Gaussian distribution we have,

Pr(|zijd| ≤ δ) =
∫ δ

−δ

1√
2π‖zij‖

e−t2/2‖zij‖2

dt

≤
√
2/π

‖zij‖
δ

.

By Proposition 3, ‖zij‖ ≥ d2 for j ∈ Ji, therefore,

Pr(|zijd| ≤ δ) ≤
√

2/π

d2

δ. Similarly, note that

Pr(|ei,jd| ≥ δ|Ê) = 2Q(δ/‖ei,j‖) ≤ exp(−δ2/2‖ei,j‖2)

by the property of the Q-function. Note that

‖ei,j‖ ≤‖Ei − Êi‖+ ‖Êj −Ej‖
≤2W 0.5‖E− Ê‖∞

Then, by marginalizing over Ê we obtain, Pr(|ei,jd| ≥
δ) ≤ exp(−δ2/8W‖E − Ê‖2∞). Combining these re-
sults, we obtain,

|qi − pi(Ê)| ≤ K
√
2/π

d2
δ+W exp(−δ2/8W‖E− Ê‖2∞)

hold true for any δ > 0. Therefore, if we set δ =
ǫ0ρ

2K
√

2/π
, and require

‖E− Ê‖∞ ≤
√
πǫd2

4K
√
W log(2W/ǫ)

then |qi − pi(Ê)| ≤ ǫ. In summary, we require ‖E −
Ê‖∞ ≤ min{

√
πǫd2

4K
√

W log(2W/ǫ)
, d/8}. We note that the

argument above holds true for a non-novel pair as well.

In Proposition 12, the bound on ‖E− Ê‖∞ is,

min{d
8
,

√
πǫd2

4K
√
W log(2W/ǫ)

}

which is an improvement over the result in Proposi-
tion 8,

min{d
8
,
πd2ǫ

W 1.5
}

where we could reduce the dependence on W from
W
√
W to K

√
W . Since K ≪ W , we obtain a gain

over the general isotropic distribution. This leads to
lightly improved results for the overall sample com-
plexity bounds:

Theorem 2(Gaussian Random Projections) Let σ be
separable and R be full rank. Then the overall Algo-
rithm 1 consistently recovers σ up to a column per-
mutation as the number of usersM →∞ and number



of projections P → ∞. Furthermore, if the random
directions for projections are drawn from a spherical
Gaussian distribution, then ∀δ > 0, if

M ≥ max

{
40

log(3W/δ)

Nρ2η4
, 320

W 0.5 log(3W/δ)

Nη6λmin

}

and for

P ≥ 16
log(3W/δ)

q2∧

then Algorithm 1 fails with probability at most δ.
The other model parameters are defined as η =

min1≤w≤W [Ba]w , ρ = min{ d8 ,
√
πd2q∧

4K
√

W log(2W/q∧)
}, d2 ,

(1−b)λmin, d = (1−b)2λ2min/λmax, b = maxj∈C0,k B̄j,k

and λmin, λmax are the minimum /maximum eigenval-
ues of R̄. q∧ is the minimum normalized solid angle
of the extreme points of the convex hull of the rows of
E.

F Proof of Theorem 1

The stated computational efficiency can be achieved
in the same way as discussed in Proposition 1 and 2 in
Ding et al. [2014]. We need to point out that the post-
processing steps in Algorithm 4 requires a computation
time of O(WK) which is dominated by that of the
Algorithm 2 and 3.
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