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1 Numerical illustration of Sparse G-group cover’s per-
formance

In this section, we compare the performance of minimizing the TU relaxation g∗∗G,G of
the proposed Sparse G-group cover (c.f., Section 5.4) in problem (2), which we will
call Sparse latent group lasso (SLGL), with Basis pursuit (BP) and Sparse group Lasso
(SGL). Recall the SGL criteria is (1 − α)

∑
G∈G

√
|G|‖xG‖q + α‖xG‖1, with q = 2 in

[3]. We compare also against SGL∞ where we set q = ∞, which is better suited
for signals with equal valued non-zero coefficients. We generate a sparse signal x\ in
dimensions p = 200, covered by G = 5 groups, randomly chosen from the M = 29
groups. The groups generated are interval groups, of equal size of 10 coefficients, and
with an overlap of 3 coefficients between each two consecutive groups. The true signal
x\ has 3 non-zero coefficients (all set to one) in each of its 5 active groups (cf., Figure
2). Note that these groups lead a TU group structure G, so the TU relaxation in this
case is tight. We recover x\ from its compressive measurements y = Ax\ +w, where
the noise w is a random Gaussian vector of variance σ = 0.01 and A is a random
column normalized Gaussian matrix. We encode the data via ‖y − Ax‖2 ≤ ‖w‖2
using the true `2-norm of the noise. We produce the data randomly 10 times and report
the averaged results.

����

Figure 1: Recovery error of SLGL, SGL, and BP
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x\ xBP solution xSGL solution xSGL∞ solution xSLGL solution

relative errors:
‖x\−xBP‖2
‖x\‖2

= .128
‖x\−xSGL‖2
‖x\‖2

= .181
‖x\−xSGL∞‖2
‖x\‖2

= .085
‖x\−xSLGL‖2
‖x\‖2

= .058

Figure 2: Recovery for n = 0.25p, s = 15, p = 200, G = 5 out of M = 29 groups.

Figure 1 measures the relative recovery error with ‖x
\−x̂‖2
‖x\‖2 , as we vary the number of

compressive measurements. Since the SLGL criteria uses the fact that x\ lies in the unit
`∞-ball, we include this constraint in the all the other formulations for fairness. Since
the true signal exhibit strong overall sparsity we use α = 0.95 in SGL as suggested
in [3] (we tried several values of α, and this seemed to give the best results for SGL).
We use an interior point method to obtain high accuracy solutions to each formulation.
Figure 8 shows that SLGL outperforms the other criterias as we vary the number of
measurements.

2 Proof of Proposition 2
Proposition (Convexification). The convex envelope of gG,∩(x) over the unit `∞-ball
is

g∗∗G,∩(x) =

{∑
Gi∈G di‖xGi‖∞ if x ∈ [−1, 1]p

∞ otherwise

Proof. Since gG,∩(x) is a TU-penalty, we can use Proposition 1 in the main text, to
compute its convex envelope:

g∗∗G,∩(x) = min
s∈[0,1]p,ω∈[0,1]M

{dTω : Hβ ≤ 0, |x| ≤ s}

= min
ω∈[0,1]M

{dTω : H

[
ω
|x|

]
≤ 0}

=
∑
Gi∈G

di‖xGi‖∞ (since w∗i = ‖xG‖∞)

for x ∈ [−1, 1]p, g∗∗G,∩(x) =∞ otherwise.
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3 Proof of Proposition 3
Proposition (Convexification). When the group structure leads to a TU biadjacency
matrixB, the convex envelope of the group `0-“norm” over the unit `∞-ball is

g∗∗G,0(x) =

{
minω∈[0,1]M {dTω : Bω ≥ |x|} if x ∈ [−1, 1]p

∞ otherwise

Proof. Note that gG,0(x) can be written in the form given in Definition 4 with M =
[−B, Ip] and c = 0. Thus, when B is TU, so is M [2, Proposition 2.1], and thus we
can use Proposition 1 in the main text, to compute its convex envelope:

g∗∗G,0(x) = min
s ∈ [0, 1]p

ω ∈ [0, 1]M

{dTω : Bω ≥ s, |x| ≤ s}

= min
ω∈[0,1]M

{dTω : Bω ≥ |x|}

for x ∈ [−1, 1]p, g∗∗G,0(x) =∞ otherwise.

4 Proof of Proposition 4
Proposition. Given any group structure G, gG,s(x) is not a TU penalty.

Proof. LetG(G∪P, E) denote the bipartite graph representation of the group structure
G. We use the linearization trick employed in [1] to reduce gG,s(x) to an integer
program. For conciseness, we consider gG,s(s) only for binary vectors s ∈ {0, 1}p,
since gG,s(x) = gG,s(1supp(x)).

gG,s(s) = min
ω∈{0,1}M

{
M∑
i=1

ωi‖sGi‖0 : Mβ ≤ 0}

= min
ω∈{0,1}M

{
∑

(i,j)∈E

ωisj : Mβ ≤ 0}

= min
ω∈{0,1}M

z∈{0,1}|E|

{
∑

(i,j)∈E

zij : Mβ ≤ 0,Eβ ≤ z + 1}

Recall thatE is the edge-node incidence matrix ofG(G∪P, E). The constraintEβ ≤
z − 1 corresponds to zij ≥ ωi + sj − 1,∀(i, j) ∈ E . Although both matrices M and

E are TU, their concatenation M̃ =

[
M
E

]
is not TU. To see this, let us first focus on

the case whereM = [−B, Ip].
Given any coefficient i ∈ P covered by at least one group Gi, we denote the corre-
sponding edge in the bipartite graph by ej = (i,M + i), which corresponds to the jth

row ofE. This translates into having the entries M̃ i,i = −1,M̃ i,M+i = 1,M̃p+j,i =

1, and M̃p+j,M+i = 1. The determinant of the submatrix resulting from these entries
is −2, which contradicts the definition of TU (cf., Def. 4). It follows then that M̃ is
TU iff G = {∅}.
A similar argument holds forM = H .
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5 Proof of Proposition 5
Proposition (Convexification). The convex surrogate via Proposition 1 in the main
text, for gG,s(x) with M = H (i.e., the group intersection model with sparse groups)
is given by

ΩG,s(x) :=
∑

(i,j)∈E

(‖xGi‖∞ + |xj | − 1)+

for x ∈ [−1, 1]p, and, ΩG,s(x) :=∞ otherwise. Note that ΩG,s(x) ≤ g∗∗G,s(x).

Proof. For x ∈ [−1, 1]p,

ΩG,s(x) = min
ω∈[0,1]M

z∈[0,1]|E|

{
∑

(i,j)∈E

zij : Hβ ≤ 0,Eβ ≤ z + 1, |x| ≤ s}

=
∑

(i,j)∈E

(‖xGi‖∞ + |xj | − 1)+

since ω∗i = ‖xGi‖∞, s∗ = |x|, and z∗ij = (ω∗i + s∗j − 1)+.

6 Proof of Proposition 6
Proposition (Convexification). The convex surrogate given by Proposition 1 in the
main text, for gG,s(x) with M = [−B, Ip] (i.e., the group `0-“norm” with sparse
groups) is given by

ΩG,s(x) := min
ω∈[0,1]M

{
∑

(i,j)∈E

(ωi + |xj | − 1)+ : Bω ≥ |x|}

for x ∈ [−1, 1]p, ΩG,s(x) =∞ otherwise.

Proof. For x ∈ [−1, 1]p,

ΩG,s(x) =min
ω∈[0,1]M

z∈[0,1]|E|

{
∑

(i,j)∈E

zij : Bω ≥ s,Eβ ≤ z + 1, |x| ≤ s}

= min
ω∈[0,1]M

{
∑

(i,j)∈E

(ωi + |xj | − 1)+ : Bω ≥ |x|}

since s∗ = |x|, and z∗ij = (ωi + s∗j − 1)+.

7 Proof of Proposition 8
Proposition. (Convexification) The convexification of the tree `0-“norm” over the unit
`∞-ball is given by

g∗∗T,0(x) =

{∑
G∈GH

‖xG‖∞ if x ∈ [−1, 1]p

∞ otherwise
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Proof. Since this is a TU-penalty we can use Proposition 1 in the main text, to compute
its convex envelope:

g∗∗T,0(x) = min
s∈[0,1]p

{1Ts : Ts ≥ 0, |x| ≤ s}

?
=
∑
G∈GH

‖xG‖∞

for x ∈ [−1, 1]p, ∞ otherwise, and where the groups G ∈ GH are defined as each
node and all its descendants. (?) holds since any feasible s should satisfy s ≥ |x| and
sparent ≥ schild, so starting from the leaves, each leaf satisfies si ≥ |xi|, and since we are
looking to minimize the sum of si’s, we simply set si = xi. For a node i with two chil-
dren j, k as leaves, it will satisfy si ≥ |xi|, |sj |, |sk|, thus si = max{|xi|, |xj |, |xk|},
and so on. Thus, si = max{k is a descendant of i or i itself} |xk|

8 Proof of Proposition 9
Proposition (Convexification). The convex envelope of gD(x) over the unit `∞-ball
whenBT is a TU matrix is given by

g∗∗D (x) =

{
maxG∈G ‖xG‖1 if x ∈ [−1, 1]p,BT |x| ≤ 1

∞ otherwise

Proof. Since this is a TU penalty we can use Proposition 1 in the main text, to compute
its convex envelope:

g∗∗D (x) =

{
min ω∈[0,1]

s∈[0,1]p
{ω : BTs ≤ ω1, |x| ≤ s} if x feasible

∞ otherwise

=

{
‖BT |x|‖∞ if x ∈ [−1, 1]p,BT |x| ≤ 1

∞ otherwise

9 Proof of Proposition 11
Proposition (Convexification). The convex envelope of gG,D(x) over the unit `∞-ball
is

g∗∗G,D(x) =

{∑
(i,j)∈E(|xi|+ |xj | − 1)+ if x ∈ [−1, 1]p

∞ otherwise

Proof. We use the linearization trick employed in [1] to reduce gG,D(x) to a TU
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penalty. Let s = 1supp(x),

gG,D(x) =
∑

(i,j)∈E

sisj

= min
z∈{0,1}|E|

{
∑

(i,j)∈E

zij : zij ≥ si + sj − 1}

= min
z∈{0,1}|E|

{
∑

(i,j)∈E

zij : EGs ≤ z − 1}

Now we can apply Proposition 1 in the main text, to compute the convex envelope:

g∗∗G,D(x) = min
s∈[0,1]p,z∈[0,1]|E|

{
∑

(i,j)∈E

zij : EGs ≤ z − 1, |x| ≤ s}

=
∑

(i,j)∈E

(|xi|+ |xj | − 1)+ (s∗ = x, z∗ij = (s∗i + s∗j − 1)+)

for x ∈ [−1, 1]p, g∗∗G,D(x) =∞ otherwise.
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