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A Proof of Lemma 1

Suppose there are two stationary points, i.e., φ′
L(x) = φ′

L(y) = 0, thus, by continuity of φL(.) in (tsi , tsi+1) there must be
a z ∈ (x, y) such that φ′′

L(z) = 0. We show it is a contradiction as

φ′′
L(ts) =

L∑

l

γlβ
2
l e

βlts > 0 (12)

for all 1 ≤ l ≤ L.

B Proof of Lemma 2

Assume we would like to find the maximizer of φL(.) in interval (a, b) and consider two points at one-third and two-third of
the interval, i.e., c = a+ b−a

3 and d = a+2 b−a
3 . It can be easily shown that, if φL(c) < φL(d), then the maximizer will be

on interval (c, b) and, if φL(c) < φL(d), then the maximizer must lie on interval (a, d). Therefore, by two evaluations, we
can shrink the interval containing the maximizer by a factor of 2

3 . Then, to reach the ε-neighborhood of the real maximizer,
we need evaluate the function 2 ∗ r times, where

(tsi+1 − tsi)(2/3)
r < ε. (13)

This will prove our claim.

C Additional Experimental Results

In this section, we provide additional experimental results on synthetic data, including an evaluation of the performance of
our method against the percentage of observed infections and the number of Montecarlo samples, as well as a scalability
analysis.

Performance vs. percentage of observed infections. Intuitively, the greater the number of observed infections, the more
accurately our method can infer the true source and its infection time. Figure 6 confirms this intuition by showing the
success probability against percentage of observed infections. However, we also find that the greater is the percentage of
observed infections, the smaller is the effect of observing additional infections; a diminishing return property.
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Figure 6: Accuracy vs. % observed infections.

Performance vs. number of Montecarlo samples. Drawing more transmission time samples {τji}(j,i)∈E leads to a better
estimate of Eq. 6, and thus a greater accuracy of our method. Figure 7 shows the success probability against number of
samples. Importantly, we observe that as long as the number of samples is large enough, the performance of our method
quickly flattens and does not depend on the number of samples any more.

Running time vs. percentage of observed infections. Figure 8 plots the average running time to infer the source of a
single cascade against the percentage of observed infections. Perhaps surprisingly, the running time barely increases with
the percentage of observed infections.

Running time vs. number of samples. Figure 9 plots the average running time against the number of Montecarlo samples
used to approximate the likelihood, Eq. 6.
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Figure 7: Accuracy vs. number of samples.
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Figure 8: Running time vs. % observed infections.
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Figure 9: Running time vs. number of samples.
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Toy example. We consider the same 64-node hierarchical Kronecker network as in Section 5.1 and visualize the approx-
imate likelihood given by Eq. 8 against number of observed cascades (C = 1, . . . , 8) for each node in the network using
150 Monte Carlo samples.
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Figure 10: Evolution of the proposed method with respect to the number of cascades.

Accuracy on a hierarchical Kronecker network. We additionally evaluate the accuracy of our method in comparison
with the same two state of the art methods and two baselines as in Section 5.1 in a Kronecker hierarchical network. Fig-
ure 11 shows the success probability (SP) and top-10 success probability, and mean squared error (MSE) on the estimation
of ts.
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Figure 11: Success Probability (SP), Top-10 Success Probability (Top-10 SP) and Mean-squared error (MSE) on the
estimation of ts for a hierarchical Kronecker network.
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