A Sufficient Statistics Construction of Exponential Family
Lévy Measure Densities for Nonparametric Conjugate
Models: Supplementary Materail

Proof of Lemma 1: The result in Lemma 1 follows from the definition of
the functional derivative and a modification of the proof in the case where the
derivative is a standard partial derivative. For the sake of completeness we
sketch the argument. A standard reference for the definitions that follow is [1].

Given a space B of functions, for example the space of piecewise continuous
functions on (0,00), and a functional F' : B — R, the functional derivative of
F with respect to a(x) € B is defined as
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where §(z) is an element of a class of test functions, usually taken to be a class
of indicator functions or the class of bump functions on the domain of B. Now,
to prove the result in 1 from Lemma 1, it suffices to prove the result for the
exponential family corresponding to the first component of 7(z), i.e. for n;(z).
Thus, define the function ¢ (n;(z)) by

B(m(2)) = / exp(1 (2) T (2)) u(d).

Now assume 7 (z) is such that ¢ (n;(z)) is finite. In addition assume 3 ¢ > 0
such that V g(z) € B if |n1(z) — g(2)| < ¢ uniformly, then ¥ (g(2)) exists and is
finite. Let 0 < §(z) < 1 and g9 > 0 be a pair such that |11 (2)—(n1(2)+£0d(2))| <
¢ uniformly. Define £(z) = n1(2) + €0d(z) and note that
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Since the above integral is finite, it follows from the Lebesgue dominated
convergence theorem that
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Extension of the above to higher order functional derivatives proceeds by a stan-

dard induction argument. Finally, part 2. of Lemma 1 follows as both the usual
chain rule and multiplication by a constant rule hold for functional derivatives.

Construction and Proof of Theorem 1: For every pair n,i define n,; =
i1 A .
77(Z 2), AO,n,i = /10(E z}, and Tk,n,i = AO,n,iTk(S)a where the Tk,n,i are

n n'n
independent random variables with Tj(s) distributed according to a sufficient

statistic from an exponential family with density
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We use the notation Ag(*=1, £] as shorthand for Ag(%)—Ag(“=1+). Next define

i
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T n(0) = 0 and Ty, (¢) = Z Ty n,i(t) for t > 0.
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Note that with this definition, 7T}, has independent increments. Next, we
consider T (s) from the exponential family pg(z|n(z)) and perform a Taylor
expansion on e~ 7k(*) yielding
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In the above, the last equality holds by Lemma 1.



Next, in order to compute E[e~%7+7] we must first compute E[T}7, ], where

the expectation is with respect to the density of the random variable T}, ,, ;. To
that end we compute the density of T}, ;.
Since s is distributed according to the exponential family
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as Ty(s) satisfies the conditions of the theorem, by setting u = Ty(s), and
v = Ao n,iTk(s), a simple calculation shows that T} ,, ; has a density of the form
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As this integrates to 1 with respect to v, we have
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from which it follows that
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Therefore, taking functional derivatives of both sides with respect to ny ;A
by Lemma 1 we have
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Multiplying both sides of (1) by e=4(.) we conclude that
B[}, 4] = Aoni (eA(""'i)am [eA(”"-ri)}).
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Thus, as n — 400
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Now we consider the quantity E[e~?Tk]. Denoting the density of Ty ,.; by

fr.n.i(v) and performing a Taylor expansion on e~ Tk we have
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where, similar to (2), as n — +o0o0 we have
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from (3) we conclude
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we may now invoke a Lemma A.1 from Appendix 1 of [2]. We state the result
here for the sake of completeness:

Lemma 0.1 Let 2, ; be real numbers, forn > 1 andi > 1. Assume that, asn —
00, (i) Za<%§b Zni — 2, (i) max, iy |2n,i
M < +oo. Then [[,o: (1 +2n4) —> €.
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From the above lemma and the preceding calculations, we conclude that
E[e=Tkn(8)] — eXp{ - /(1 - eeTk(s))st(s)}.
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As in [2] an analogous argument shows that the finite dimensional distribu-
tions of {T} (s)} converge properly as well. The fact that, for all R > 0, the
sequence {T} ,(s)}5%; is tight in the space D([0, R]) of all functions that are
right continuous with left hand limits in the Skorohod topology follows from (2)
and the proof of 15.6 in [3]. Hence, as in [2], the sequence {T} ,,(s)} converges to
a random element of D([0, R]) for every R > 0, and the process so defined may
be taken to be the [0, R] restriction of a Lévy process T on [0, 00) whose Lévy
representation is given in Theorem 1. This completes the proof of the theorem.
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