
A Sufficient Statistics Construction of Exponential Family
Lévy Measure Densities for Nonparametric Conjugate

Models: Supplementary Materail

Proof of Lemma 1: The result in Lemma 1 follows from the definition of
the functional derivative and a modification of the proof in the case where the
derivative is a standard partial derivative. For the sake of completeness we
sketch the argument. A standard reference for the definitions that follow is [1].

Given a space B of functions, for example the space of piecewise continuous
functions on (0,∞), and a functional F : B −→ R, the functional derivative of
F with respect to a(x) ∈ B is defined as

∂F [a(x)]

∂a(x)
= lim
ε→0

F [a(x) + εδ(x)]− F [a(x)]

ε
,

where δ(x) is an element of a class of test functions, usually taken to be a class
of indicator functions or the class of bump functions on the domain of B. Now,
to prove the result in 1 from Lemma 1, it suffices to prove the result for the
exponential family corresponding to the first component of η(z), i.e. for η1(z).
Thus, define the function ψ(η1(z)) by

ψ(η1(z)) =

∫
exp(η1(z)T1(x))µ(dx).

Now assume η1(z) is such that ψ(η1(z)) is finite. In addition assume ∃ ζ > 0
such that ∀ g(z) ∈ B if |η1(z)− g(z)| < ζ uniformly, then ψ(g(z)) exists and is
finite. Let 0 < δ(z) ≤ 1 and ε0 > 0 be a pair such that |η1(z)−(η1(z)+ε0δ(z))| <
ζ uniformly. Define ξ(z) = η1(z) + ε0δ(z) and note that

ψ(ξ(z))− ψ(η1(z))

ε0
=

∫
eξ(z)T1(x) − eη1(z)T1(x)

ε0
µ(dx)

=

∫
e(η1(z)T1(x))

e(ξ(z)−η1(z))T1(x) − 1

ε0
µ(dx) =

∫
e(η1(z)T1(x))

eε0δ(z)T1(x) − 1

ε0
µ(dx)

≤
∫
e(η1(z)T1(x))

eζ(δ(z))|T1(x)|

ζ
µ(dx)

≤
∫

1

ζ

∣∣∣e(η1(z)+ζδ(z))|T1(x)| + e(η1(z)−ζδ(z))|T1(x)|
∣∣∣µ(dx).
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Since the above integral is finite, it follows from the Lebesgue dominated
convergence theorem that

lim
ε→0

ψ(ξ(z))− ψ(η1(z))

ε0
=

∫
∂

∂(η1(z))

[
exp(η1(z)T1(x))

]
µ(dx).

Extension of the above to higher order functional derivatives proceeds by a stan-
dard induction argument. Finally, part 2. of Lemma 1 follows as both the usual
chain rule and multiplication by a constant rule hold for functional derivatives.

Construction and Proof of Theorem 1: For every pair n, i define ηn,i =

η
( i− 1

2

n

)
, A0,n,i = A0( i−1n , in ], and Tk,n,i = A0,n,iTk(s), where the Tk,n,i are

independent random variables with Tk(s) distributed according to a sufficient
statistic from an exponential family with density

h(s) exp

{〈
ηn,i, T (s)

〉
−A(ηn,i)

}
.

We use the notation A0( i−1n , in ] as shorthand for A0( in )−A0( i−1n +). Next define

Tk,n(0) = 0 and Tk,n(t) =
∑
i
n≤t

Tk,n,i(t) for t ≥ 0.

Note that with this definition, Tk,n has independent increments. Next, we
consider Tk(s) from the exponential family pθ(x|η(z)) and perform a Taylor
expansion on e−θTk(s) yielding

−
∫

(1− e−θTk(s))dLt(s) = −
∫ (

1−
( ∞∑
m=0

(−1)mθmTmk (s)

m!

))
dLt(s)

=

∞∑
m=1

(−1)mθm

m!

∫
Tmk (s)dLt(s)

=

∞∑
m=1

(−1)mθm

m!

∫
Tmk (s)

{∫ t

0

e〈η(z),T (s)〉−A(η(z))dA0(z)

}
ds

=

∞∑
m=1

(−1)mθm

m!

∫ t

0

{∫
Tmk (s)e〈η(z),T (s)〉−A(η(z))ds

}
dA0(z)

=

∞∑
m=1

(−1)mθm

m!

∫ t

0

e−A(η(z)) ∂
m
[
eA(η(z))

]
∂ηmk

dA0(z).

In the above, the last equality holds by Lemma 1.
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Next, in order to compute E[e−θTk,n ] we must first compute E[Tmk,n,i], where
the expectation is with respect to the density of the random variable Tk,n,i. To
that end we compute the density of Tk,n,i.

Since s is distributed according to the exponential family

h(x)eη(z),T (s)−A(η(z)),

as Tk(s) satisfies the conditions of the theorem, by setting u = Tk(s), and
v = A0,n,iTk(s), a simple calculation shows that Tk,n,i has a density of the form

A−10,n,i

(
dT−1k

du

∣∣∣∣
vA−1

0,n,i

)
h
(
T−1k

( v

A0,n,i

))
exp

(
〈ηn,i, vA−10,n,i〉 −A(ηn,i)

)
.

As this integrates to 1 with respect to v, we have

∫ {
A−10,n,i

(
dT−1k

du

∣∣∣∣
vA−1

0,n,i

)
h
(
T−1k

( v

A0,n,i

))
exp

(
〈ηn,i, vA−10,n,i〉

)}
dv = eA(ηn,i),

from which it follows that

∫ {
A−10,n,i

(
dT−1k

du

∣∣∣∣
vA−1

0,n,i

)
h
(
T−1k

( v

A0,n,i

))
exp

(
〈ηn,iA−10,n,i, v〉

)}
dv = eA(ηn,i).

Therefore, taking functional derivatives of both sides with respect to ηk,n,iA
−1
0,n,i,

by Lemma 1 we have

∫ {
Tmk,n,iA

−1
0,n,i

(
dT−1k

du

∣∣∣∣
vA−1

0,n,i

)
h
(
T−1k

( v

A0,n,i

))
exp
(
〈ηn,iA−10,n,i, v〉

)}
dv

=
∂m

∂(ηk,n,iA
−1
0,n,i)

m

[
eA(ηn,i)

]
= A0,n,i

∂m

∂(ηk,n,i)m

[
eA(ηn,i)

]
. (1)

Multiplying both sides of (1) by e−A(ηn,i), we conclude that

E[Tmk,n,i] = A0,n,i

(
e−A(ηn,i)

∂m

∂(ηk,n,i)m

[
eA(ηn,i)

])
.

Thus, as n −→ +∞

E[Tk.n(t)] =
∑
i
n≤t

E[Tk,n,i(t)] =

∑
i
n≤t

A0,n,i

(
e−A(ηn,i)

∂
[
eA(ηn,i)

]
∂ηk,n,i

)
−→

∫ t

0

e−A(η(z)) ∂
[
eA(η(z))

]
∂ηk(z)

dA0(z). (2)
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Now we consider the quantity E[e−θTk,n,i ]. Denoting the density of Tk,n,i by
fk,n,i(v) and performing a Taylor expansion on e−θTk,n,i we have

E[e−θTk,n,i ] =

∫
e−θTk,n,i(s)fk,n,i(v)dv =

∞∑
m=0

(−1)mθm

m!

∫
Tmk,n,i(s)fk,n,i(v)dv

= 1 +

∞∑
m=1

(−1)mθm

m!
E[Tmk,n,i]

= 1 +

∞∑
m=1

(−1)mθm

m!

{
A0,n,i

(
e−A(ηn,i)

∂m

∂(ηk,n,i)m

[
eA(ηn,i)

])}
,

where, similar to (2), as n −→ +∞ we have

∑
i
n≤t

A0,n,i

(
e−A(ηn,i)

∂m
[
eA(ηn,i)

]
∂(ηk,n,i)m

)
−→

∫ t

0

e−A(η(z)) ∂
m
[
eA(η(z))

]
∂(ηk(z))m

dA0(z). (3)

Defining

zn,i =

∞∑
m=1

(−1)mθm

m!

{
A0,n,i

(
e−A(ηn,i)

∂m

∂(ηk,n,i)m

[
eA(ηn,i)

])}
from (3) we conclude

∞∑
m=1

(−1)mθm

m!

∑
i
n≤t

{
A0,n,i

(
e−A(ηn,i)

∂m

∂(ηk,n,i)m

[
eA(ηn,i)

])}
=

∑
i
n≤t

zn,i −→ −
∫

(1− e−θTk(s))dLt(s).

As

E[e−θTk,n ] = E
[ ∏

i
n≤t

exp(−θTk,n,i)
]

=
∏
i
n≤t

(1 + zn,i),

we may now invoke a Lemma A.1 from Appendix 1 of [2]. We state the result
here for the sake of completeness:

Lemma 0.1 Let zn,i be real numbers, for n ≥ 1 and i ≥ 1. Assume that, as n→
∞, (i)

∑
a< i

n≤b
zn.i −→ z, (ii) maxa< i

n≤b
|zn,i| −→ 0, (iii) lim sup

∑
a< i

n≤b
zn.i ≤

M < +∞. Then
∏
a< i

n≤b
(1 + zn.i) −→ ez.

From the above lemma and the preceding calculations, we conclude that

E[e−θTk,n(s)] −→ exp

{
−
∫

(1− eθTk(s))dLt(s)

}
.
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As in [2] an analogous argument shows that the finite dimensional distribu-
tions of {Tk,n(s)} converge properly as well. The fact that, for all R > 0, the
sequence {Tk,n(s)}∞n=1 is tight in the space D([0, R]) of all functions that are
right continuous with left hand limits in the Skorohod topology follows from (2)
and the proof of 15.6 in [3]. Hence, as in [2], the sequence {Tk,n(s)} converges to
a random element of D([0, R]) for every R > 0, and the process so defined may
be taken to be the [0, R] restriction of a Lévy process Tk on [0,∞) whose Lévy
representation is given in Theorem 1. This completes the proof of the theorem.
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