
Computational Complexity of
Linear Large Margin Classification With Ramp Loss

Søren Frejstrup Maibing Christian Igel
Department of Mathematical Sciences

University of Copenhagen
Department of Computer Science

University of Copenhagen

Abstract

Minimizing the binary classification error
with a linear model leads to an NP-hard
problem. In practice, surrogate loss func-
tions are used, in particular loss functions
leading to large margin classification such
as the hinge loss and the ramp loss. The
intuitive large margin concept is theoreti-
cally supported by generalization bounds
linking the expected classification error to
the empirical margin error and the com-
plexity of the considered hypotheses class.
This article addresses the fundamental
question about the computational com-
plexity of determining whether there is a
hypotheses class with a hypothesis such
that the upper bound on the generaliza-
tion error is below a certain value. Results
of this type are important for model com-
parison and selection. This paper takes
a first step and proves that minimizing
a basic margin-bound is NP-hard when
considering linear hypotheses and the ρ-
margin loss function, which generalizes
the ramp loss. This result directly implies
the hardness of ramp loss minimization.

1 INTRODUCTION

Some of the most fundamental problems in
machine learning are NP-hard (Johnson and
Preparata, 1978; Hush, 1999; Šíma, 2002; Bartlett
and Ben-David, 2002; Ben-David et al., 2003b;
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Feldman et al., 2009). Let us consider bi-
nary classification based on sample data S =
{(x1, y1), . . . , (x`, y`)} drawn i.i.d. from an un-
known joint distribution D over the input space
X = Rn and the output space Y = {−1, 1}.
Our goal is to find a hypothesis h : X →
R minimizing the generalization error (risk)
R0-1(h) = E(x,y)∼D[L0-1(y, h(x))] under the 0-1
loss L0-1(y, y′) = 1y 6=sgn(y′), where the indicator
function 1A returns 1 if A is true and 0 other-
wise and sgn(z) = 21z≥0 − 1. The generaliza-
tion error can be estimated by the empirical risk
R0-1
S (h) := 1

`

∑`
i=1 L0-1(yi, h(xi)). However, even

if we restrict h to be of affine linear form, mini-
mizing the empirical risk is NP hard (the size of
the problem is measured by the number of bits de-
scribing S, w.l.o.g. assuming rational input values).
Thus, one typically replaces the 0-1 loss by a surro-
gate loss function Lsurr (e.g., the squared loss, the
ramp loss, or the hinge loss). Then generalization
bounds are derived linking the generalization er-
ror to the empirical risk under the surrogate loss,
the number of data points, and restrictions on h
(Boucheron et al., 2005). These bounds are usu-
ally of the form

R0-1(h) ≤ Rsurr
S (h) +B(H, `, δ)

with probability 1−δ, where H denotes a restricted
hypotheses class, h ∈ H, and the term B is decreas-
ing in ` and δ. Such bounds do not only provide
a better theoretical understanding, they also moti-
vate the design of new learning algorithms. They
are used (and sometimes abused) for comparing hy-
potheses and as a basis for model selection strate-
gies.

Given that Rsurr
S (h), h ∈ H, can be minimized

efficiently, it seems that the computational hard-
ness problem has been circumvented. However,
ultimately we strive for hypotheses with small
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risk. The expected risk is assessed by Rsurr
S (h) +

B(H, `, δ), where both terms depend on the choice
of the hypotheses class H. Tuning H to the prob-
lem at hand is an optimization of its own and often
referred to as model selection. For soft-margin sup-
port vector machines (SVMs, Cortes and Vapnik,
1995; Schölkopf and Smola, 2002), the most promi-
nent large margin classifiers, this amounts to choos-
ing a regularization parameter and, in the non-
linear case, a kernel function. Now, the—in our
opinion fundamental and so far mostly neglected—
question arises: what is the computational com-
plexity of determining if Rsurr

S (h) + B(H, `, δ) can
be smaller than a certain value for some choice of
H? Results of this type are necessary for the anal-
ysis of model comparison and selection techniques
relying on generalization bounds. In this study, we
take a first step and consider the computational
complexity of minimizing a margin bound for lin-
ear hypotheses.

Large margin classification, which aims at maxi-
mizing the minimum distance of correctly classi-
fied training input points from the decision bound-
ary between the classes, is a common strategy for
finding hypotheses that generalizes well. It can
be motivated by minimizing the right hand side
of generalization bounds (Vapnik, 1998; Schölkopf
and Smola, 2002; Boucheron et al., 2005; Mohri
et al., 2012). Typical loss functions leading to large
margin classification are the hinge loss and the ρ-
margin loss function (Mohri et al., 2012). In basic
generalization bounds for large margin classifiers,
often called margin bounds, B depends on the mar-
gin in relation to the spread of the training data as
measured by, for example, the trace of the Gram
matrix or the radius of the smallest ball containing
the training data.

In the following, we focus on the (non-convex) ρ-
margin loss function (Mohri et al., 2012), which
generalizes the ramp loss also known as truncated
hinge loss (Collobert et al., 2006a,b; Wu and Liu,
2007; Huang et al., 2014). The bounded ρ-margin
loss function is a robust variant of the hinge loss
used in standard SVMs (Cortes and Vapnik, 1995).
Collobert et al. (2006a) proposed to replace the
hinge loss in SVMs with the ramp loss to improve
the scaling of SVMs in the sense that the number
of support vectors is reduced. They also showed
advantages of using the ramp loss for transduc-
tive SVMs (Collobert et al., 2006a,b). Wu and
Liu (2007) and Brooks (2011) also investigated
SVMs with ramp loss. Because of the increased

robustness against outliers, Wu and Liu (2007) re-
fer to their approach as robust truncated hinge loss
SVM (RSVM). Recently, Huang et al. (2014) have
proposed the ramp loss linear programming SVM
(ramp- LPSVM).

In the following, we look at a basic generalization
bound considering the ρ-margin loss function pre-
sented in the textbook by Mohri et al. (2012) and
prove, inspired by the work of Ben-David et al.
(2003a), that minimizing this margin bound is NP-
hard for linear hypotheses. This implies that mini-
mizing the ramp loss is NP-hard. The next section
states the main result, which is proven in section 3
and quantitatively discussed in section 4.

2 MAIN RESULT

We start by defining our margin based surrogate
loss. For any target margin ρ > 0, let the auxiliary
function Φρ : R→ [0, 1] be given by

Φρ(x) :=





0 if ρ ≤ x
1− x/ρ if 0 < x < ρ

1 if x ≤ 0

.

The ρ-margin loss function Lρ : R × R → [0, 1] is
now defined as Lρ(y, y′) := Φρ(yy

′) for any y, y′ ∈
R (Mohri et al., 2012), see Figure 1. Accordingly,
the empiricalmargin error for ρ > 0 w.r.t. a sample
S is given by RρS(h) = 1

`

∑`
i=1 Lρ(yi, h(xi)).

R

R

Φρ

0-1 loss

0 ρ

1

0

Figure 1: Plot of 0-1 loss L0-1(y, y′) and Φρ over yy′.

For ρ ≤ 1 the ρ-margin loss function is a
lower bound on the hinge loss Lhinge(y, y

′) =
max(0, 1 − yy′) underlying support vector ma-
chines. The ramp loss (Collobert et al., 2006a,b;
Huang et al., 2014), also called truncated hinge loss
(Wu and Liu, 2007),1 is defined as Lramp(y, y′) =

1Other notions of ramp loss exist, however, our def-
inition is arguably the most popular one, and the al-
ternative definitions we know of can be mapped to the
ρ-margin loss function in a similar way.
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min(1, Lhinge(y, y
′)). It holds Lramp = L1, that is,

for ρ = 1 the ρ-margin loss function equals the
ramp loss.

We consider the following basic result, which cor-
responds to Corollary 5.1 by Mohri et al. (2012) for
the special case of a linear kernel:
Theorem 2.1 (Corollary 5.1, Mohri et al., 2012).
For any fixed λ > 0 and any fixed ρ > 0, the fol-
lowing holds for any δ > 0 with probability at least
1− δ for any h ∈ Hλ = {x 7→ 〈w,x〉 | ‖w‖ ≤ λ}:

R0-1(h) ≤ RρS(h) +
2λ

`ρ
r + 3

√
log 2

δ

2`
,

where r =
√∑`

i=1〈xi,xi〉.

We show that minimizing this upper bound on the
generalization error is hard, that is, we show that
the following problem is NP-hard:
Definition 2.2 (Minimization of Margin Bound
with Linear Hypothesis (Min-MB-Linear)). Let
λ > 0, let ρ > 0, let Hλ = {x 7→ 〈w,x〉 | ‖w‖ ≤
λ}, and let S be a sample with ` elements. We
formulate the problem as: Given ε > 0, does there
exist h∗ ∈ Hλ such that

RρS(h∗) +
2λ

`ρ
r ≤ ε ?

For the moment, we omit 3

√
log 2

δ

2` in the problem
formulation, since the choice of h∗ is independent
of this term (see section 4). Given definition 2.2,
our main result reads:
Theorem 2.3. For any ρ > 0 the Min-MB-Linear
problem is NP-hard.

We will proof the theorem by reducing the Max-
E2-Sat problem to Min-MB-Linear. Given a value
of ρ and a Max-E2-Sat instance, we will fix a λ
depending on ρ and the number of variabels in the
instance. Given ρ and λ, the 2λ

`ρ r term in Defini-
tion 2.2 is constant, and thus from Theorem 2.3 it
follows:
Corollary 2.4. Let Hλ = {x 7→ 〈w,x〉 | ‖w‖ ≤
λ}, and let S be a sample with ` elements. Then
the following problem is NP-hard: Given ε > 0,
does there exist h∗ ∈ Hλ such that

RρS(h∗) ≤ ε ?

That is, minimizing the ramp loss is NP-hard. This
basically follows from its similarity to the 0-1 loss,
and we can adopt proof techniques that were ap-
plied to the 0-1 loss to show our results.

3 REDUCTION OF MAX-E2-SAT
TO MIN-MB-LINEAR

To prove Theorem 2.3, we will reduce the Max-
E2-Sat problem to the Min-MB-Linear problem.
The construction and method of proof extends the
methods used by Ben-David et al. (2003a). Af-
ter stating Max-E2-Sat, we proceed by defining an
instance transformation and a solution transforma-
tion. Then we proof the correctness of the reduc-
tion.

3.1 Max-E2-Sat

The problem we will reduce is the well-known sat-
isfiability problem Max-E2-Sat defined as:

Definition 3.1 (Max-E2-Sat). Given a set K of
m clauses, where each clause is a disjunction of ex-
actly two Boolean literals over a set of n variables,
that is, K = {α1 ∨ β1, . . . , αm ∨ βm} where αi ∈ V
or αi ∈ V , and βi ∈ V or βi ∈ V for all 1 ≤ i ≤ m
with variable set V = {ν1, . . . , νn}. Given ε > 0,
does there exist B ∈ {0, 1}n (the i’th component
of B defines a truth assignment for νi, where 0 is
interpreted as false and 1 as true) such that

R0-1
K (B) ≤ ε ,

where R0-1
K (B) = 1

m

∑m
i=1 L0-1(B(αi ∨ βi), 1) and

B(αi ∨ βi) is the evaluation of αi ∨ βi using B as
truth assignment?

Our results are based on the following theorem:

Theorem 3.2. The Max-E2-Sat problem is NP-
hard.

A proof of this result can be found in the work of
Garey et al. (1974).

3.2 The instance transformation

Let K be a set of m clauses over n variables (in the
construction we will have dim(X ) = n + 1). We
fix the error of the Min-MB-Linear problem to be

at most ε′ = 2
7 + ε

7 +
2
√

n
2 +9ρ2√
7mρ

√
80ρ2

7 + 1 and fix

λ =
√

n
2 + 9ρ2. For each clause C ∈ K and each

variable νj ∈ V we define

ψj(C) =





2
√

2ρ if νj ∈ C
−2
√

2ρ if νj ∈ C
0 otherwise

.
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Table 1: For νj and νk in C with j ≤ k, we define ϕ(C) for each clause C ∈ K to consist of these seven samples
(u, 1), (u1, 1), (u2, 1), (v1,−1), (v2,−1), (v̂1,−1), and (v̂2,−1).

the j’th place the k’th place
u = (0, . . . , 0, ψj(C) , 0, . . . , 0, ψk(C) , 0, . . . , 0, 1)
u1 = (0, . . . , 0, −ψj(C) , 0, . . . , 0, ψk(C) , 0, . . . , 0, 1)
u2 = (0, . . . , 0, ψj(C) , 0, . . . , 0, −ψk(C) , 0, . . . , 0, 1)

v1 = (0, . . . , 0, 0 , 0, . . . , 0, ψk(C) , 0, . . . , 0, 1)
v2 = (0, . . . , 0, ψj(C) , 0, . . . , 0, 0 , 0, . . . , 0, 1)
v̂1 = (0, . . . , 0, 0 , 0, . . . , 0, −ψk(C) , 0, . . . , 0, 1)
v̂2 = (0, . . . , 0, −ψj(C) , 0, . . . , 0, 0 , 0, . . . , 0, 1)

Labelled 1

Labelled −1

Assuming νj and νk occur in C with j ≤ k,
we define ϕ(C) for each clause C ∈ K to con-
sist of the following seven samples (u, 1), (u1, 1),
(u2, 1), (v1,−1), (v2,−1), (v̂1,−1), and (v̂2,−1)
constructed as shown in Table 1. Furthermore, we
define f(K) :=

⋃
C∈K ϕ(C) as the sample in the

Min-MB-Linear problem. Note that by definition
the number of examples in f(K) is ` := 7m, and
since for a point x1 labelled 1 in f(K) we have
‖x1‖2 = 2(2

√
2ρ)2+1 = 16ρ2+1 and for a point x0

labelled −1 we have ‖x0‖2 = (2
√

2ρ)2+1 = 8ρ2+1,
we get

r =

√∑

C∈K

∑

x∈ϕ(C)

‖x‖2

=
√

(3 · 16ρ2 + 3 + 4 · 8ρ2 + 4)m

=
√

(80ρ2 + 7)m .

The idea behind this construction is to create a
configuration that allows to choose a hyperplane
separating the point (2

√
2ρ, 2
√

2ρ) from the points
(0, 2
√

2ρ) and (2
√

2ρ, 0) with a margin of ρ, see
Figure 2.

3.3 The solution transformation

Given a hypothesis h ∈ Hλ defined by h(x) =
〈w,x〉 for w = (w1, . . . , wn, b) ∈ Rn+1 as so-
lution to the Min-MB-Linear problem, we define
a solution g(h) to the Max-E2-Sat problem by
g(h) := (ξ1(h), . . . , ξn(h))T with

ξi(h) :=

{
0 if wi < 0

1 if wi ≥ 0
.

3.4 Analysis of the reduction

To prove the Theorem 2.3 we need the following
lemma:

(−2
√
2ρ, 0)

(−2
√
2ρ, 2
√
2ρ) (2

√
2ρ, 2
√
2ρ)

(2
√
2ρ,−2

√
2ρ)

(2
√
2ρ, 0)

(0,−2
√
2ρ)

(0, 2
√
2ρ)

(a) For each C ∈ K we make a construction in two di-
mensions corresponding to the two variables occurring in
C. The dots are labelled 1 and the crosses are labelled
−1.

(0, 2
√
2ρ) (2

√
2ρ, 2

√
2ρ)

ρ

(2
√
2ρ, 0)(0, 0)

(√
23ρ
2 ,

√
23ρ
2

)

(b) This figure depicts the right upper quad-
rant of the construction of ϕ(C). An opti-
mal hyperplane illustrated by the dashed line,
could pass through the point (

√
23ρ
2
,
√

23ρ
2

)
with a margin of ρ.

Figure 2: The construction in the instance transforma-
tion.

Lemma 3.3. Let B ∈ {0, 1}n and define h such
that g(h) = B with h(x) = 〈w,x〉 and w =
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(w1, . . . , wn, b) ∈ Rn+1. Then the following holds:

Rρf(K)(h) ≥ 2

7
+

1

7
R0-1
K (B)

Proof. Assume C ∈ K is not satisfied by B and
assume without loss of generality that C = ν1 ∨
ν2. Hence, by definition we have ψ1(C) = 2

√
2ρ

and ψ2(C) = 2
√

2ρ. Since C is not satisfied by B
this gives B1 = 0 and B2 = 0 and thus w1 < 0
and w2 < 0. Define h+ := {x | 〈w,x〉 ≥ 0}.
Now we prove the following claim: The number of
points in ϕ(C) correctly labelled by h is at most
four. In other words 7 − 7R0-1

ϕ(C)(h) ≤ 4, which
gives 3 ≤ 7R0-1

ϕ(C)(h). To prove this, we observe
that the following holds:

1. If (2
√

2ρ, 2
√

2ρ, 0, . . . , 0, 1) ∈ h+ (i.e.
〈w, (2

√
2ρ, 2
√

2ρ, 0, . . . , 0, 1)〉 ≥ 0) then
w12
√

2ρ + w22
√

2ρ + b ≥ 0, hence
w12
√

2ρ + w22
√

2ρ ≥ −b. However, since
w1 < 0 and w2 < 0 we have w12

√
2ρ ≥ −b and

w22
√

2ρ ≥ −b, so (2
√

2ρ, 0, 0, . . . , 0, 1) ∈ h+

and (0, 2
√

2ρ, 0, . . . , 0, 1) ∈ h+.
2. If (2

√
2ρ,−2

√
2ρ, 0, . . . , 0, 1) ∈ h+ then

w12
√

2ρ − w22
√

2ρ ≥ −b, hence −w22
√

2ρ ≥
−b so (0,−2

√
2ρ, 0, . . . , 0, 1) ∈ h+.

3. If (−2
√

2ρ, 2
√

2ρ, 0, . . . , 0, 1) ∈ h+ then
−w12

√
2ρ+w22

√
2ρ ≥ −b, hence −w12

√
2ρ ≥

−b so (−2
√

2ρ, 0, 0, . . . , 0, 1) ∈ h+.
As (2

√
2ρ, 2
√

2ρ, 0, . . . , 0),
(2
√

2ρ,−2
√

2ρ, 0, . . . , 0), and
(−2
√

2ρ, 2
√

2ρ, 0, . . . , 0) are all labelled 1 in
the definition of ϕ(C), and (2

√
2ρ, 0, 0, . . . , 0),

(0, 2
√

2ρ, 0, . . . , 0), (0,−2
√

2ρ, 0, . . . , 0), and
(−2
√

2ρ, 0, 0, . . . , 0) are labelled −1 in ϕ(C) we
have that h+ contains at least as many points
from ϕ(C) labelled −1 as points labelled 1.

Now, define ]h+−1 to be the number of points from
ϕ(C) labelled −1 that are contained in h+ and ]h+1
to be the number of points from ϕ(C) labelled 1
that are contained in h+. From the above we have
]h+1 ≤ ]h+−1, hence 4 − ]h+−1 ≤ 4 − ]h+1 . Now,
since ϕ(C) contains four points labelled −1, the
number of points labelled −1 that h labels correctly
is 4− ]h+−1. Similarly, ]h+1 is the number of points
labelled 1 that h labels correctly, hence the total
number of points that h labels correctly satisfies
7− 7R0-1

ϕ(C)(h) = 4− ]h+−1 + ]h+1 ≤ 4 as wanted.

On the other hand, we assume C ∈ K is satisfied
by B and assume again without loss of generality
that C = ν1 ∨ ν2. Since B satisfies C, at least one

of w1 or w2 is greater than or equal to 0. Similarly
as before we prove the claim: The number of points
in ϕ(C) correctly labelled by h is at most five. In
other words 7 − 7R0-1

ϕ(C′)(h) ≤ 5, which gives 2 ≤
7R0-1

ϕ(C′)(h). To prove this, we define h+ as before
and observe that the following holds:

1. If (2
√

2ρ,−2
√

2ρ, 0, . . . , 0, 1) ∈ h+

and (−2
√

2ρ, 2
√

2ρ, 0, . . . , 0, 1) ∈ h+

then w12
√

2ρ − w22
√

2ρ + b ≥ 0 and
−w12

√
2ρ + w22

√
2ρ + b ≥ 0. Adding

these two inequalities gives 2b ≥ 0, hence
b ≥ 0. Since w1 ≥ 0 or w2 ≥ 0 we have
w12
√

2ρ + b ≥ 0 or w22
√

2ρ + b ≥ 0,
hence (2

√
2ρ, 0, 0, . . . , 0, 1) ∈ h+ or

(0, 2
√

2ρ, 0, . . . , 0, 1) ∈ h+.
2. If (2

√
2ρ, 2
√

2ρ, 0, . . . , 0, 1) ∈ h+ and
(−2
√

2ρ, 2
√

2ρ, 0, . . . , 0, 1) ∈ h+ then
w12
√

2ρ + w22
√

2ρ + b ≥ 0 and
−w12

√
2ρ + w22

√
2ρ + b ≥ 0. Adding these

two inequalities gives 2w22
√

2ρ+2b ≥ 0, hence
w22
√

2ρ+ b ≥ 0 so (0, 2
√

2ρ, 0, . . . , 0, 1) ∈ h+.
3. If (2

√
2ρ, 2
√

2ρ, 0, . . . , 0, 1) ∈ h+ and
(2
√

2ρ,−2
√

2ρ, 0, . . . , 0, 1) ∈ h+ then
w12
√

2ρ + w22
√

2ρ + b ≥ 0 and
w12
√

2ρ − w22
√

2ρ + b ≥ 0. Again, adding
these two gives 2w12

√
2ρ + 2b ≥ 0 so

w12
√

2ρ+ b ≥ 0, hence (2
√

2ρ, 0, 0, . . . , 0, 1) ∈
h+.

The above gives that if h+ contains two examples
labelled 1 then h+ contains at least one example la-
belled −1. Furthermore, it gives that if h+ contains
all three examples labelled 1 then h+ contains at
least two examples labelled −1. By defining ]h+−1
and ]h+1 as before, this provides us with the in-
equality ]h+1 ≤ ]h+−1 + 1, hence 4− ]h+−1 ≤ 5− ]h+1
which again gives 7−7R0-1

ϕ(C′)(h) = 4−]h+−1+]h+1 ≤
5 proving the claim.

By definingm1 to be the number of clauses satisfied
by B, m0 = m −m1 to be the number of clauses
not satisfied by B, and

f1(K) :=
⋃

C∈K
B(C)=1

ϕ(C) and f0(K) :=
⋃

C∈K
B(C)=0

,

where B(C) = 1 if C is satisfied by B and B(C) =
0 otherwise, we get by the above claims:

7m1R
0-1
f1(K)(h) = 7m1

1

7m1

∑

C∈K
B(C)=1

7R0-1
ϕ(C)(h)
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= 7
∑

C∈K
B(C)=1

R0-1
ϕ(C)(h) ≥ 7

2

7
m1 = 2m1

7m0R
0-1
f0(K)(h) = 7m0

1

7m0

∑

C∈K
B(C)=0

7R0-1
ϕ(C)(h)

= 7
∑

C∈K
B(C)=0

R0-1
ϕ(C)(h) ≥ 7

3

7
m0 = 3m0

Since f(K) = f1(K) ∪ f0(K) (because f1(K) and
f0(K) are clearly disjoint) we get from these in-
equalities

`R0-1
f(K)(h) = 7m1R

0-1
f1(K)(h) + 7m0R

0-1
f0(K)(h)

≥ 2m1 + 3m0

= 2m1 + 3(m−m1) = 3m−m1

= 3m−m+mR0-1
K (B)

= 2m+mR0-1
K (B) .

Inserting m = `
7 we get R0-1

f(K)(h) ≥ 2
7 + 1

7R
0-1
K (B),

hence by the inequality Rρf(K)(h) ≥ R0-1
f(K)(h) the

result follows.

This allows us to prove Theorem 2.3.

Proof of Theorem 2.3. First, we assume that the
answer to the Max-E2-Sat problem is “yes”, that
is, we assume that there exists B = (B1, . . . , Bn) ∈
{0, 1}n such that R0-1

K (B) ≤ ε. We define h(x) =
〈w,x〉 where w = (w1, . . . , wn, b) is given by

wi =

{
1√
2

, if Bi = 1

− 1√
2

, if Bi = 0

and b = −3ρ. From this we see that ‖w‖ =√
w2

1 + · · ·+ w2
n + b2 =

√
n
2 + 9ρ2 = λ, hence

h ∈ Hλ.

Let C ∈ K. From this, we note that no point la-
belled −1 in ϕ(C) is in the set h+ := {x | 〈w,x〉 ≥
0} since a point x0 labelled −1 has only one non-
zero component (apart from the constant 1 in the
end of each example) which is either 2

√
2ρ or

−2
√

2ρ, hence we have

〈w,x0〉 ≤
2
√

2ρ√
2
− 3ρ = −ρ < 0 .

This implies that h classifies all points labelled −1
correctly. A point x1 labelled 1 in ϕ(C) has two
non-zero components (again apart from the con-
stant 1), therefore, if both of these components

have the same sign as the corresponding compo-
nents of w, we have

〈w,x1〉 =
4
√

2ρ√
2
− 3ρ = ρ > 0 .

On the other hand, if the signs of the components
differ we have

〈w,x1〉 ≤ b = −3ρ < 0 ,

which gives that x1 ∈ h+ if and only if both of the
non-zero components (not 1) have the same sign
as those of w. Now, if B satisfies C such a point
must exist by definition of ϕ(C), since if we as-
sume without loss of generality that C = ν1 ∨ ν2
then B1 = 1 or B2 = 1 (or both), hence at least
one of the first two components of w is 2

√
2ρ.

As ϕ(C) contains u = (2
√

2ρ, 2
√

2ρ, 0, . . . , 0),
u1 = (−2

√
2ρ, 2
√

2ρ, 0, . . . , 0), and u2 =
(2
√

2ρ,−2
√

2ρ, 0, . . . , 0), one of these must have
the same sign in the first two components as w.
Therefore, for each clause C ′ satisfied byB we have
that h correctly labels at least five of the exam-
ples in ϕ(C ′) (four labelled −1 and one labelled 1),
and for each clause C ′′ not satisfied by B, h cor-
rectly labels at least four of the examples in ϕ(C ′′).
Now, define m1 to be the number of clauses satis-
fied by B and let m0 = m − m1, that is m0 is
the number of clauses not satisfied by B. This
gives ` − `R0-1

f(K)(h) ≥ 5m1 + 4m0 = m1 + 4m =

m−mR0-1
K (B) + 4m.

Now, we claim that `− `R0-1
f(K)(h) = `− `Rρf(K)(h),

or equivalently R0-1
f(K)(h) = Rρf(K)(h). This is again

equivalent to stating that no point x ∈ ϕ(C) for
any C ∈ K satisfies |〈w,x〉| < ρ, since the margin
loss outside the strip |〈w,x〉| < ρ is equal to the
0-1 loss. We can easily verify this by calculating
|〈w,x〉| for every point in ϕ(C) as shown in Table
2, where we only calculate the two dimensions in
which the components (except the bias) of x are
non-zero.

This gives ` − `Rρf(K)(h) ≥ m −mR0-1
K (B) + 4m,

hence by m = `
7 we have

`Rρf(K)(h) ≤ `− 5

7
`+

`

7
R0-1
K (B) ⇒

Rρf(K)(h) ≤ 2

7
+

1

7
R0-1
K (B) .

Using the definition of λ and the calculated value
of r we get

Rρf(K)(h) +
2λ

`ρ
r ≤2

7
+

1

7
R0-1
K (B)
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Table 2: This table displays the values of |〈w,x〉| in the 2-dimensional case (where a := 2
√

2ρ). The dashed vertical
line indicates the separation of the points labelled 1 and −1, and each value of w corresponds to a hyperplane.

Values of x

(a, a) (−a, a) (a,−a) (a, 0) (0, a) (−a, 0) (0,−a)
V
al
ue
s
of

w

( 1√
2
, 1√

2
) ρ 3ρ 3ρ ρ ρ 5ρ 5ρ

(− 1√
2
, 1√

2
) 3ρ ρ 7ρ 5ρ ρ ρ 5ρ

( 1√
2
,− 1√

2
) 3ρ 7ρ ρ ρ 5ρ 5ρ ρ

(− 1√
2
,− 1√

2
) 7ρ 3ρ 3ρ 5ρ 5ρ ρ ρ

+
2
√

n
2 + 9ρ2

`ρ

√
(80ρ2 + 7)m

≤2

7
+
ε

7
+

2
√

n
2 + 9ρ2√
7mρ

√
80ρ2

7
+ 1

=ε′

as wanted.

On the other hand, we assume that the answer
to the Min-MB-Linear problem is “yes”, that is,
we assume that there exists h ∈ H such that
Rρf(K)(h) + 2λ

`ρ r ≤ ε′, hence by definition of λ and
r we assume Rρf(K)(h) ≤ 2

7 + ε
7 .

Now, we want to show that B constructed
from h as in the solution transformation satisfies
R0-1
K (B) ≤ ε. To achieve this we observe by Lemma

3.3 that we have

R0-1
K (B) ≤ 7Rρf(K)(h)− 2 ≤ 7

(
2

7
+
ε

7

)
− 2 = ε

as wanted, which completes the proof.

4 QUANTITATIVE ANALYSIS

In this section, we will discuss our result quantita-
tively. The term bounded in the Min-MB-Linear
problem is an upper bound on the generalization

error using the 0-1 loss with the term 3

√
log 2

δ

2`
added. For this term to make sense from the
machine learning point of view, it must be less
than 1 since otherwise the bound is trivial. In the
reduction to the Min-MB-Linear problem we ask
whether we can find a hypothesis h such that

RρS(h) +
2λ

`ρ
r ≤ 2

7
+
ε

7
+

2
√

n
2 + 9ρ2√
7mρ

√
80ρ2

7
+ 1 .

Assuming 0 < ε ≤ 1 (which makes sense in context
of the Max-E2-Sat problem) we thus need

m >
7

25

(
2
√

n
2 + 9ρ2

ρ

√
80ρ2

7
+ 1 +

3√
2

√
log

2

δ

)2

.

On the other hand, the maximal number of clauses
we can make with n variables, without making du-
plicates, is 4

(
n
2

)
= 4 n!

2!(n−2)! = 2n(n−1), since there
are

(
n
2

)
possible choices for picking two variables

and each pair of variables comes in four different
versions when taking negation into account. This
gives m ≤ 2n(n− 1), hence we need

2n(n− 1) >

7

25

(
2
√

n
2 + 9ρ2

ρ

√
80ρ2

7
+ 1 +

3√
2

√
log

2

δ

)2

.

The left hand side scales quadratically, the right
hand side linearly with n, see Figure 3 for illustra-
tions. This shows that the upper bound is indeed
informative from a machine learning point of view.

5 DISCUSSION AND
CONCLUSION

The main result shows that minimizing a basic
margin bound is NP-hard when considering linear
hypotheses and the ρ-margin loss function. This
directly implies NP-hardness of minimizing the ρ-
margin loss and in particular the ramp loss, a loss
function used in many learning algorithms (Col-
lobert et al., 2006a,b; Wu and Liu, 2007; Brooks,
2011; Huang et al., 2014). This extends the well-
known result that minimizing the 0-1 error is NP-
hard (see Ben-David et al., 2003a). Unfortunately,
our proof cannot easily be extended to not bounded
loss functions such as the hinge loss.
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Figure 3: The functions n 7→ 2n(n − 1) and n 7→
7
25

(
2
√
n
2
+9ρ2

ρ

√
80ρ2

7
+ 1 + 3√

2

√
log 2

δ

)2

for different

values of ρ and δ. We observe that the value of 2n(n−1)
is larger than the other functions for every n ≥ N for
some N around 17. The first axis corresponds to the
dimension of the input space and the second to the size
of the sample.

This study is motivated by the analysis of general-
ization bounds from which model selection strate-
gies are derived. We do not claim that optimizing
the upper bound given by Theorem 2.1 is a proper
model selection strategy, but many model selection
methods are based on optimizing—arguably more
sophisticated—generalization bounds. Our result
indicates that the model selection of large margin
classifiers may be a hard problem if based on gen-
eralization bounds, which would justify the use of
heuristics for model selection such as gradient de-
scent methods on multimodal objective functions
(e.g., Chapelle et al., 2002; Glasmachers and Igel,
2010).

Theorem 2.3 does not directly extend to the non-
linear case involving non-linear kernels. Ben-David
et al. (2003a) prove that while a specific sample
may give a computational intractable problem in
one class of hypotheses, it may be easily learned in
another class. Thus, a construction proving hard-
ness in one class of hypotheses does not necessarily
carry over to another class of hypotheses. However,
since the method for proving Theorem 2.3 is based
on an extension of the method for proving that
finding optimal half-spaces is hard, we hypothesize
that a similar extension exists for results proving
that learning kernel-based half-spaces is hard, see
Shalev-Shwartz et al. (2010) for research in this di-
rection.

Acknowledgements

Support from the European Commission through
project AKMI (PCIG10-GA-2011-303655) is grate-
fully acknowledged.

References

P. Bartlett and S. Ben-David. Hardness results for
neural networks approximation problems. Theo-
retical Computer Science, 284:53–66, 2002.

S. Ben-David, N. Eiron, and P. M. Long. On the
difficulty of approximately maximizing agree-
ments. Journal of Computer and System Sci-
ences, 66(3):496–514, 2003a.

S. Ben-David, N. Eiron, and H. U. Simon. Limi-
tations of learning via embeddings in Euclidean
half spaces. Journal of Machine Learning Re-
search, 3:441–461, 2003b.

S. Boucheron, O. Bousquet, and G. Lugosi. The-
ory of Classification: a Survey of Some Recent
Advances. ESAIM: Probability and Statistics, 9:
323–375, 2005.

J. P. Brooks. Support vector machines with the
ramp loss and the hard margin loss. Operations
Research, 59(2):467–479, 2011.

O. Chapelle, V. Vapnik, O. Bousquet, and
S. Mukherjee. Choosing multiple parameters for
support vector machines. Machine Learning, 46
(1):131–159, 2002.

R. Collobert, F. Sinz, J. Weston, and L. Bottou.
Large scale transductive SVMs. The Journal of
Machine Learning Research, 7:1687–1712, 2006a.

R. Collobert, F. Sinz, J. Weston, and L. Bottou.
Trading convexity for scalability. In Proceedings

266



Søren Frejstrup Maibing, Christian Igel

of the 23rd International Conference on Machine
Learning (ICML), pages 201–208. ACM, 2006b.

C. Cortes and V. Vapnik. Support-vector networks.
Machine Learning, 20(3):273–297, 1995.

V. Feldman, V. Guruswami, P. Raghavendra, and
Y. Wu. Agnostic learning of monomials by half-
spaces is hard. In Symposium on Foundations of
Computer Science (FOCS), pages 385–394, 2009.

M. R. Garey, D. S. Johnson, and L. Stockmeyer.
Some simplified np-complete problems. In Pro-
ceedings of the Sixth Annual ACM Symposium
on Theory of Computing (STOC), pages 47–63.
ACM, 1974.

T. Glasmachers and C. Igel. Maximum likelihood
model selection for 1-norm soft margin SVMs
with multiple parameters. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
32(8):1522–1528, 2010.

X. Huang, L. Shi, and J. A. K. Suykens. Ramp
loss linear programming support vector machine.
Journal of Machine Learning Research, 15:2185–
2211, 2014.

D. R. Hush. Training a sigmoidal node is hard.
Neural Computation, 11(5):1249–1260, 1999.

D. S. Johnson and F. P. Preparata. The densest
hemisphere problem. Theoretical Computer Sci-
ence, 6(1):93–107, 1978.

M. Mohri, A. Rostamizadeh, and A. Talwalkar.
Foundations of Machine Learning. MIT Press,
2012.

B. Schölkopf and A. J. Smola. Learning with Ker-
nels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, 2002.

S. Shalev-Shwartz, O. Shamir, and K. Sridharan.
Learning kernel-based halfspaces with the 0-1
loss. SIAM Journal on Computing, 40(6):1623–
1646, 2010.

J. Šíma. Training a single sigmoidal neuron is hard.
Neural Computation, 14(11):2709–2728, 2002.

V. Vapnik. Statistical Learning Theory. Wiley,
1998. ISBN 978-0-471-03003-4.

Y. Wu and Y. Liu. Robust truncated hinge loss
support vector machines. Journal of the Amer-
ican Statistical Association, 102(479):974–983,
2007.

267


