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Abstract

Deep directed generative models are devel-
oped. The multi-layered model is designed
by stacking sigmoid belief networks, with
sparsity-encouraging priors placed on the
model parameters. Learning and inference
of layer-wise model parameters are imple-
mented in a Bayesian setting. By exploring
the idea of data augmentation and introduc-
ing auxiliary Pólya-Gamma variables, sim-
ple and efficient Gibbs sampling and mean-
field variational Bayes (VB) inference are im-
plemented. To address large-scale datasets,
an online version of VB is also developed.
Experimental results are presented for three
publicly available datasets: MNIST, Caltech
101 Silhouettes and OCR letters.

1 Introduction

The Deep Belief Network (DBN) (Hinton et al., 2006)
and Deep Boltzmann Machine (DBM) (Salakhutdinov
and Hinton, 2009) are two popular deep probabilistic
generative models that provide state-of-the-art results
in many problems. These models contain many layers
of hidden variables, and utilize an undirected graph-
ical model called the Restricted Boltzmann Machine
(RBM) (Hinton, 2002) as the building block. A nice
property of the RBM is that gradient estimates on the
model parameters are relatively quick to calculate, and
stochastic gradient descent provides relatively efficient
inference. However, evaluating the probability of a
data point under an RBM is nontrivial due to the com-
putationally intractable partition function, which has
to be estimated, for example using an annealed impor-
tance sampling algorithm (Salakhutdinov and Murray,
2008).
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A directed graphical model that is closely related to
these models is the Sigmoid Belief Network (SBN)
(Neal, 1992). The SBN has a fully generative pro-
cess and data are readily generated from the model
using ancestral sampling. However, it has been noted
that training a deep directed generative model is diffi-
cult, due to the “explaining away” effect. Hinton et al.
(2006) tackle this problem by introducing the idea of
“complementary priors” and show that the RBM pro-
vides a good initialization to the DBN, which has the
same generative model as the SBN for all layers except
the two top hidden layers. In the work presented here
we directly deal with training and inference in SBNs
(without RBM initialization), using recently developed
methods in the Bayesian statistics literature.

Previous work on SBNs utilizes the ideas of Gibbs
sampling (Neal, 1992) and mean field approximations
(Saul et al., 1996). Recent work focuses on extend-
ing the wake-sleep algorithm (Hinton et al., 1995) to
training fast variational approximations for the SBN
(Mnih and Gregor, 2014). However, almost all previ-
ous work assumes no prior on the model parameters
which connect different layers. An exception is the
work of Kingma and Welling (2013), but this is men-
tioned as an extension of their primary work. Previ-
ous Gibbs sampling and variational inference proce-
dures are implemented only on the hidden variables,
while gradient ascent is employed to learn good model
parameter values. The typical regularization on the
model parameters is early stopping and/or L2 regu-
larization. In an SBN, the model parameters are not
straightforwardly locally conjugate, and therefore fully
Bayesian inference has been difficult.

The work presented here provides a method for plac-
ing priors on the model parameters, and presents a
simple Gibbs sampling algorithm, by extending recent
work on data augmentation for Bayesian logistic re-
gression (Polson et al., 2013). More specifically, a set of
Pólya-Gamma variables are used for each observation,
to reformulate the logistic likelihood as a scale mix-
ture, where each mixture component is conditionally
normal with respect to the model parameters. Effi-
cient mean-field variational learning and inference are
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also developed, to optimize a data-augmented varia-
tional lower bound; this approach can be scaled up
to large datasets. Utilizing these methods, sparsity-
encouraging priors are placed on the model parameters
and the posterior distribution of model parameters is
estimated (not simply a point estimate). Based on ex-
tensive experiments, we provide a detailed analysis of
the performance of the proposed method.

2 Model formulation

2.1 Sigmoid Belief Networks

Deep directed generative models are considered for bi-
nary data, based on the Sigmoid Belief Network (SBN)
(Neal, 1992) (using methods like those discussed in
Salakhutdinov et al. (2013), the model may be read-
ily extended to real-valued data). Assume we have
N binary visible vectors, the nth of which is denoted
vn ∈ {0, 1}J . An SBN is a Bayesian network that
models each vn in terms of binary hidden variables
hn ∈ {0, 1}K and weights W ∈ RJ×K as

p(vjn = 1|wj ,hn, cj) = σ(w>j hn + cj) , (1)

p(hkn = 1|bk) = σ(bk) , (2)

where σ(·) is the logistic function defined as
σ(x) = 1/(1 + exp(−x)), vn = [v1n, . . . , vJn]>,
hn = [h1n, . . . , hKn]>, W = [w1, . . . ,wJ ]>, c =
[c1, . . . , cJ ]> and b = [b1, . . . , bK ]> are bias terms.
The “local” latent vector hn is observation-dependent
(a function of n), while the “global” parameters W
are used to characterize the mapping from hn to vn
for all n.

The SBN is closely related to the RBM, which is a
Markov random field with the same bipartite struc-
ture as the SBN. Specifically, the energy function of
an RBM is defined as

−E(vn,hn) = v>n c+ v>n Whn + h>n b , (3)

and the probability of an observation vn is

p(vn) =
1

Z

∑
hn

exp(−E(vn,hn)) , (4)

where Z is a computationally intractable partition
function that guarantees p(vn) is a valid probability
distribution. In contrast, the energy function of an
SBN may be written as

−E(vn,hn) = v>n c+ v>n Whn + h>n b

−
∑
j

log(1 + exp(w>j hn + cj)) . (5)

The additional term in (5), when compared to (3),
makes the energy function no longer a linear function

of weights W, but a simple partition function is ob-
tained. Therefore, the full likelihood under an SBN is
trivial to calculate. Furthermore, SBNs explicitly ex-
hibit the generative process to obtain data, in which
the hidden layer provides a directed “explanation” for
patterns generated in the visible layer.

2.2 Autoregressive Structure

Instead of assuming that the visible variables in an
SBN are conditionally independent given the hidden
units, a more flexible model can be built by using an
autoregressive structure. The autoregressive sigmoid
belief network (ARSBN) (Gregor et al., 2014) is an
SBN with within-layer dependency captured by a fully
connected directed acyclic graph, where each unit xj
can be predicted by its parent units x<j , defined as
{x1, . . . , xj−1}. To be specific,

p(vjn = 1|hn,v<j,n) = σ(w>j hn + s>j,<jv<j,n + cj) ,

p(hkn = 1|h<k,n) = σ(u>k,<kh<k,n + bk) , (6)

where S = [s1, . . . , sJ ]> and U = [u1, . . . ,uK ]> are a
lower triangular matrix that contains the autoregres-
sive weights within layers, while W is utilized to cap-
ture the dependencies between different layers. The
graphical model is provided in Supplemental Section
A. If no hidden layer exists, we obtain the fully visible
sigmoid belief network (Frey, 1998), in which accurate
probabilities of test data points can be calculated.

In the work presented here, only stochastic autoregres-
sive layers are considered, while Gregor et al. (2014)
further explore the utilization of deterministic hid-
den layers. Furthermore, instead of using the simple
linear autoregressive structure, one can increase the
representational power of the model by using more-
complicated autoregressive models, such as the work
by Larochelle and Murray (2011), where each condi-
tional p(vjn|v<j,n) is modeled by a neural network.

2.3 Deep Sigmoid Belief Networks

Similar to the way in which deep belief networks and
deep Boltzmann machines build hierarchies, one can
stack additional hidden layers to obtain a fully directed
deep sigmoid belief network (DSBN). Consider a deep
model with L layers of hidden variables. To generate
a sample, we begin at the top, layer L. For each layer
below, activation h(l) is formed by a sigmoid transfor-
mation of the layer above h(l+1) weighted by W(l+1).
We repeat this process until the observation is reached.
Therefore, the complete generative model can be writ-
ten as

p(vn,hn) = p(vn|h(1)
n )p(h(L)

n )
L−1∏
l=1

p(h(l)
n |h(l+1)

n ) . (7)
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Let {h(l)1n, h
(l)
2n, . . . , h

(l)
Kln
} represent the set of hidden

units for observation n in layer l. For the top layer,

the prior probability can be written as p(h
(L)
kn = 1) =

σ(c
(L+1)
k ), where c

(L+1)
k ∈ R. Defining vn = h

(0)
n ,

conditioned on the hidden units h
(l)
n , the hidden units

at layer l − 1 are drawn from

p(h
(l−1)
kn |h(l)

n ) = σ((w
(l)
k )>h(l)

n + c
(l)
k ) , (8)

where W(l) = [w
(l)
1 , . . . ,w

(l)
Kl−1

]> connects layers l and

l − 1 and c(l) = [c
(l)
1 , . . . , c

(l)
Kl−1

]> is the bias term.

2.4 Bayesian sparsity shrinkage prior

The learned features are often expected to be sparse.
In imagery, for example, features learned at the bot-
tom layer tend to be localized, oriented edge filters
which are similar to the Gabor functions known to
model V1 cell receptive fields (Lee et al., 2008).

Under the Bayesian framework, sparsity-encouraging
priors can be specified in a principled way. Some
canonical examples are the spike-and-slab prior, the
Student’s-t prior, the double exponential prior and the
horseshoe prior (see Polson and Scott (2012) for a dis-
cussion of these priors). The three parameter beta
normal (TPBN) prior (Armagan et al., 2011), a typical
global-local shrinkage prior, has demonstrated better
(mixing) performance than the aforementioned priors,
and thus is employed in this paper. The TPBN shrink-
age prior can be expressed as scale mixtures of nor-
mals. If Wjk ∼ TPBN(a, b, φ), where j = 1, . . . , J, k =
1, . . . ,K, (leaving off the dependence on the layer l,
for notational convenience) then

Wjk ∼ N(0, ζjk) , (9)

ζjk ∼ Gamma(a, ξjk) , ξjk ∼ Gamma(b, φk) ,

φk ∼ Gamma(1/2, ω) , ω ∼ Gamma(1/2, 1) .

When a = b = 1
2 , the TPBN recovers the horseshoe

prior. For fixed values of a and b, decreasing φ encour-
ages more support for stronger shrinkage. In high-
dimensional settings, φ can be fixed at a reasonable
value to reflect an appropriate expected sparsity rather
than inferring it from data.

Finally, to build up the fully generative model, com-
monly used isotropic normal prior are imposed on the
bias term b and c, i.e. b ∼ N(0, νbIK), c ∼ N(0, νcIJ).

Note that when performing model learning, we trun-
cate the number of hidden units at each layer at K,
which may be viewed as an upper bound within the
model on the number of units at each layer. With the
aforementioned shrinkage on W, the model has the
capacity to infer the subset of units (possibly less than
K) actually needed to represent the data.

3 Learning and inference

In this section, Gibbs sampling and mean field varia-
tional inference are derived for the sigmoid belief net-
works, based on data augmentation. From the per-
spective of learning, we desire distributions on the
model parameters {W(l)} and {c(l)}, and distributions

on the data-dependent {h(l)
n } are desired in the con-

text of inference. The extension to ARSBN is straight-
forward and provided in Supplemental Section C. We
again omit the layer index l in the discussion below.

3.1 Gibbs sampling

Define V = [v1, . . . ,vN ] and H = [h1, . . . ,hN ]. From
recent work for the Pólya-Gamma data augmentation
strategy (Polson et al., 2013), that is, if γ ∼ PG(b, 0),
b > 0, then

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞
0

e−γψ
2/2p(γ)dγ , (10)

where κ = a − b/2. Properties of the Pólya-Gamma
variables are summarized in Supplemental Section B.
Therefore, the data-augmented joint posterior of the
SBN model can be expressed as

p(W,H, b, c, γ(0), γ(1)|V) (11)

∝ exp

∑
j,n

(vjn −
1

2
)(w>j hn + cj)−

1

2
γ
(0)
jn (w>j hn + cj)

2


· exp

∑
k,n

(hkn −
1

2
)bk −

1

2
γ
(1)
k b2k

 · p0(γ(0), γ(1),W, b, c) ,

where γ(0) ∈ RJ×N and γ(1) ∈ RK are augmented ran-
dom variables drawn from the Pólya-Gamma distribu-
tion. The term p0(γ(0), γ(1),W, b, c) contains the prior
information of the random variables within. Let p(·|−)
represent the conditional distribution given other pa-
rameters fixed, then the conditional distributions used
in the Gibbs sampling are as follows.

For γ(0), γ(1): The conditional distribution of γ(0) is

p(γ
(0)
jn |−) ∝ exp

(
−1

2
γ
(0)
jn (w>j hn + cj)

2

)
· PG(γ

(0)
jn |1, 0)

= PG(1,w>j hn + cj) , (12)

where PG(·, ·) represents the Pólya-Gamma distribu-

tion. Similarly, we can obtain p(γ
(1)
k |−) = PG(1, bk).

To draw samples from the Pólya-Gamma distribution,
two strategies are utilized: (i) using rejection sampling
to draw samples from the closely related exponentially
tilted Jacobi distribution (Polson et al., 2013); (ii)
using a truncated sum of random variables from the
Gamma distribution and then match the first moment
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to keep the samples unbiased (Zhou et al., 2012). Typ-
ically, a truncation level of 20 works well in practice.

For H: The sequential update of the local conditional
distribution of H is p(hkn|−) = Ber(σ(dkn)), where

dkn = bk +w>k vn −
1

2

J∑
j=1

(
wjk + γ

(0)
jn (2ψ

\k
jnwjk + w2

jk)
)
,

where ψ
\k
jn = w>j hn −wjkhkn + cj . Note that wk and

wj represent the kth column and the transpose of the
jth row of W, respectively. The difference between
an SBN and an RBM can be seen more clearly from
the sequential update. Specifically, in an RBM, the
update of hkn only contains the first two terms, which
implies the update of the hkn are independent of
each other. In the SBN, the existence of the third
term demonstrates clearly the posterior dependencies
between hidden units. Although the rows of H
are correlated, the columns of H are independent,
therefore the sampling of H is still efficient.

For W: The prior is a TPBN shrinkage prior with
p0(wj) = N(0,diag(ζj)), then we have p(wj |−) =
N(µj ,Σj), where

Σj =

[
N∑
n=1

γ
(0)
jn hnh

>
n + diag(ζ−1j )

]−1
, (13)

µj = Σj

[
N∑
n=1

(vjn −
1

2
− cjγ(0)jn )hn

]
. (14)

The update of the bias term b and c are similar to the
above equation.

For TPBN shrinkage: One advantage of this hier-
archical shrinkage prior is the full local conjugacy that
allows the Gibbs sampling easily implemented. Specif-
ically, the following posterior conditional distribution
can be achieved: (1) ζjk|− ∼ GIG(0, 2ξjk,W

2
jk); (2)

ξjk|− ∼ Gamma(1, ζjk+φk); (3) φk|− ∼ Gamma( 1
2J+

1
2 , ω +

∑J
j=1 ξjk); (4) ω|− ∼ Gamma( 1

2K + 1
2 , 1 +∑K

k=1 φk), where GIG denotes the generalized inverse
Gaussian distribution.

3.2 Mean field variational Bayes

Using the VB inference with the traditional mean field
assumption, we approximate the posterior distribution

with Q =
∏
j,k qwjk

(wjk)
∏
j,n qhjn(hjn)q

γ
(0)
jn

(γ
(0)
jn ); for

notational simplicity the terms concerning b, c, γ(1)

and the parameters of the TPBN shrinkage prior are
omitted. The variational lower bound can be obtained
as

L = 〈log p(V|W,H, c)〉+ 〈log p(W)〉+ 〈log p(H|b)〉
− 〈log q(W)〉 − 〈log q(H)〉 , (15)

where 〈·〉 represents the expectation w.r.t. the varia-
tional approximate posterior.

Note that 〈log p(V|−)〉 =
∑
j,n〈log p(vjn|−)〉, and

each term inside the summation can be further lower
bounded by using the augmented Pólya-Gamma vari-
ables. Specifically, defining ψjn = w>j hn + cj , we can
obtain

〈log p(vjn|−)〉 ≥ − log 2 + (vjn − 1/2)〈ψjn〉

−1

2
〈γ(0)jn 〉〈ψ

2
jn〉+ 〈log p0(γ

(0)
jn )〉 − 〈log q(γ

(0)
jn )〉 , (16)

by using (10) and Jensen’s inequality. Therefore, the
new lower bound L′ can be achieved by substituting
(16) into (15). Note that this is a looser lower bound
compared with the original lower bound L, due to the
data augmentation. However, closed-form coordinate
ascent update equations can be obtained, shown be-
low.

For γ(0), γ(1): optimizing L′ over q(γ
(0)
jn ), we have

q(γ
(0)
jn ) ∝ exp

(
−1

2
γ
(0)
jn 〈ψ

2
jn〉
)
· PG(γ

(0)
jn |1, 0)

= PG
(

1,
√
〈ψ2
jn〉

)
. (17)

Similarly, we can obtain p(γ
(1)
k |−) = PG(1,

√
〈b2k〉). In

the update of other variational parameters, only the

expectation of γ
(0)
jn is needed, which can be calculated

by 〈γ(0)jn 〉 = 1

2
√
〈ψ2

jn〉
tanh(

√
〈ψ2

jn〉
2 ). The variational

distribution for other parameters are in the exponen-
tial family, hence the update equations can be derived
from the Gibbs sampling, which are straightforward
and provided in Supplemental Section D.

In order to calculate the variational lower bound, the
augmented Pólya-Gamma variables are integrated out,
and the expectation of the logistic likelihood under the
variational distribution is estimated by Monte Carlo
integration algorithm. In the experiments 10 samples
are used and were found sufficient in all cases consid-
ered.

The computational complexity of the above inference
is O(NK2), where N is the total number of training
data points. Every iteration of VB requires a full pass
through the dataset, which can be slow when applied
to large datasets. Therefore, an online version of VB
inference is developed, building upon the recent online
implementation of latent Dirichlet allocation (Hoffman
et al., 2013). In online VB, stochastic optimization is
applied to the variational objective. The key observa-
tion is that the coordinate ascent updates in VB pre-
cisely correspond to the natural gradient of the vari-
ational objective. To implement online VB, we sub-
sample the data, compute the gradient estimate based
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on the subsamples and follow the gradient with a de-
creasing step size.

3.3 Learning deep networks using SBNs

Once one layer of the deep network is trained, the
model parameters in that layer are frozen (at the mean
of the inferred posterior) and we can utilize the in-
ferred hidden units as the input “data” for the training
of the next higher layer. This greedy layer-wise pre-
training algorithm has been shown to be effective for
DBN (Hinton et al., 2006) and DBM (Salakhutdinov
and Hinton, 2009) models, and is guaranteed to im-
prove the data likelihood under certain conditions. In
the training of a deep SBN, the same strategy is em-
ployed. After finishing pre-training (sequentially for
all the layers), we then “un-freeze” all the model pa-
rameters, and implement global training (refinement),
in which parameters in the higher layer now can also
affect the update of parameters in the lower layer.

Discriminative fine-tuning (Salakhutdinov and Hinton,
2009) is implemented in the training of DBM by us-
ing label information. In the work presented here for
the SBN, we utilize label information (when available)
in a multi-task learning setting (like in Bengio et al.
(2013)), where the top-layer hidden units are gener-
ated by multiple sets of bias terms, one for each label,
while all the other model parameters and hidden units
below the top layer are shared. This multi-task learn-
ing is only performed when generating samples from
the model.

4 Related work

The SBN was proposed by Neal (1992), and in the
original paper a Gibbs sampler was proposed to do in-
ference. A natural extension to a variational approxi-
mation algorithm was proposed by Saul et al. (1996),
using the mean field assumption. A Gaussian-field
(Barber and Sollich, 1999) approach was also used for
inference, by making Gaussain approximations to the
unit input. However, due to the fact that the model
is not locally conjugate, all the methods mentioned
above are only used for inference of distributions on
the hidden variables H, and typically model parame-
ters W are learned by gradient descent.

Another route to do inference on SBNs are based on
the idea of Helmholtz machines (Dayan et al., 1995),
which are multi-layer belief networks with recognition
models, or inference networks. These recognition mod-
els are used to approximate the true posterior. The
wake-sleep algorithm (Hinton et al., 1995) was first
proposed to do inference on such recognition models.
Recent work focuses on training the recognition mod-

els by maximizing a variational lower bound on the
marginal log likelihood (Mnih and Gregor, 2014; Gre-
gor et al., 2014; Kingma and Welling, 2013; Rezende
et al., 2014).

In the work reported here, we focus on providing a
fully Bayesian treatment on the “global” model pa-
rameters and the “local” data-dependent hidden vari-
ables. An advantage of this approach is the ability to
impose shrinkage-based (near) sparsity on the model
parameters. This sparsity helps regularize the model,
and also aids in interpreting the learned model. The
idea of Pólya-Gamma data augmentation was first pro-
posed to do inference on Bayesian logistic regression
(Polson et al., 2013), and later extended to the in-
ference of negative binomial regression (Zhou et al.,
2012), logistic-normal topic models (Chen et al., 2013),
and discriminative relational topic models (Chen et al.,
2014). The work reported here serves as another appli-
cation of this data augmentation strategy, and a first
implementation of analysis of a deep-learning model in
a fully Bayesian framework.

5 Experiments

We present experimental results on three publicly
available binary datasets: MNIST, Caltech 101 Sil-
houettes, and OCR letters. To assess the performance
of SBNs trained using the proposed method, we show
the samples generated from the model and report the
average log probability that the model assigns to a test
datum.

5.1 Experiment setup

For all the experiments below, we consider a one-
hidden-layer SBN with K = 200 hidden units, and
a two-hidden-layer SBN with each layer containing
K = 200 hidden units. The autoregressive version
of the model is denoted ARSBN. The fully visible sig-
moid belief network without any hidden units is de-
noted FVSBN.

The SBN model is trained using both Gibbs sampling
and mean field VB, as well as the proposed online VB
method. The learning and inference discussed above
is almost free of parameter tuning; the hyperparam-
eters settings are given in Section 2. Similar reason-
able settings on the hyperparameters yield essentially
identical results. The hidden units are initialized ran-
domly and the model parameters are initialized using
an isotropic normal with standard deviation 0.1. The
maximum number of iterations for VB inference is set
to 40, which is large enough to observe convergence.
Gibbs sampling used 40 burn-in samples and 100 pos-
terior collection samples; while this number of samples
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Figure 1: Performance on the MNIST dataset. (Left) Training data. (Middle) Averaged synthesized samples. (Right)
Learned features at the bottom layer.

is clearly too small to yield sufficient mixing and an
accurate representation of the posteriors, it yields ef-
fective approximations to parameter means, which are
used when presenting results. For online VB, the mini-
batch size is set to 5000 with a fixed learning rate of
0.1. Local parameters were updated using 4 iterations
per mini-batch, and results are shown over 20 epochs.

The properties of the deep model were explored by ex-
amining Ep(v|h(2))[v]. Given the second hidden layer,
the mean was estimated by using Monte Carlo inte-
gration. Given h(2), we sample h(1) ∼ p(h(1)|h(2))
and v ∼ p(v|h(1)), repeat this procedure 1000 times
to obtain the final averaged synthesized samples.

The test data log probabilities under VB inference are
estimated using the variational lower bound. Eval-
uating the log probability using the Gibbs output is
difficult. For simplicity, the harmonic mean estimator
is utilized. As the estimator is biased (Wallach et al.,
2009), we refer to the estimate as an upper bound.

ARSBN requires that the observation variables are put
in some fixed order. In the experiments, the ordering
was simply determined by randomly shuffling the ob-
servation vectors, and no optimization of the ordering
was tried. Repeated trials with different random or-
derings gave empirically similar results.

5.2 Binarized MNIST dataset

We conducted the first experiment on the MNIST digit
dataset which contains 60, 000 training and 10, 000 test
images of ten handwritten digits (0 to 9), with 28×28
pixels. The binarized version of the dataset is used ac-
cording to (Murray and Salakhutdinov, 2009). Analy-
sis was performed on 10, 000 randomly selected train-
ing images for Gibbs and VB inference. We also ex-
amine the online VB on the whole training set.

Table 1: Log probability of test data on MNIST dataset.
“Dim” represents the number of hidden units in each layer,
starting with the bottom one. (∗) taken from Salakhutdi-
nov and Murray (2008), (�) taken from Mnih and Gregor
(2014), (.) taken from Salakhutdinov and Hinton (2009).
SBN.multi denotes SBN trained in the multi-task learning
setting.

Model Dim Test log-prob.
SBN (online VB) 25 −138.34
RBM∗ (CD3) 25 −143.20
SBN (online VB) 200 −118.12
SBN (VB) 200 −116.96
SBN.multi (VB) 200 −113.02
SBN.multi (VB) 200 − 200 −110.74
FVSBN (VB) − −100.76
ARSBN (VB) 200 −102.11
ARSBN (VB) 200 − 200 −101.19
SBN (Gibbs) 200 −94.30
SBN� (NVIL) 200 −113.1
SBN� (NVIL) 200 − 200 −99.8
DBN∗ 500 − 2000 −86.22
DBM. 500 − 1000 −84.62

The results for MNIST, along with baselines from
the literature are shown in Table 1. We report the
log probability estimates from our implementation of
Gibbs sampling, VB and online VB using both the
SBN and ARSBN model.

First, we examine the performance in a low-
dimensional model, with K = 25, and the results are
shown in Table 1. All VB methods give similar results,
so only the result from the online method is shown for
brevity. VB SBN shows improved performance over an
RBM in this size model (Salakhutdinov and Murray,
2008).

Next, we explore an SBN with K = 200 hidden units.
Our methods achieve similar performance to the Neu-
ral Varitional Inference and Learning (NVIL) algo-
rithm (Mnih and Gregor, 2014), which is the current
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Figure 2: The impact of the number of hidden units on
the average variational lower bound of test data under the
one-hidden-layer SBN

state of the art for training SBNs.

Using a second hidden layer, also with size 200, gives
performance improvements in all algorithms. In VB
there is an improvement of 3 nats for the SBN model
when a second layer is learned. Furthermore, the
VB ARSBN method gives a test log probability of
−101.19. The current state of the art on this size deep
sigmoid belief network is the NVIL algorithm with
−99.8, which is quantitatively similar to our results.
The online VB implementation gives lower bounds
comparable to the batch VB, and will scale better to
larger data sizes.

The TPBN prior infers the number of units needed
to represent the data. The impact on the number of
hidden units on the test set performance is shown in
Figure 2. The models learned using 100, 200 and 500
hidden units achieve nearly identical test set perfor-
mance, showing that our methods are not overfitting
the data as the number of units increase. All mod-
els with K > 100 typically utilize 81 features. Thus,
the TPBN prior gives “tuning-free” selection on the
hidden layer size K. The learned features are shown
in Figure 1. These features are sparse and consistent
with results from sparse features learning algorithms
(Lee et al., 2008).

The generated samples for MNIST are presented in
Figure 1. The synthesized digits appear visually good
and match the true data well.

We further demonstrate the ability of the model to
predict missing data. For each test image, the lower
half of the digit is removed and considered as missing
data. Reconstructions are shown in Figure 3, and the
model produces good completions. Because the labels
of the images are uncertain when they are partially

Figure 3: Missing data prediction. For each subfigure,
(Top) Original data. (Middle) Hollowed region. (Bottom)
Reconstructed data.

observed, the model can generate different digits than
the true digit (see the transition from 9 to 0, 7 to 9
etc.).

5.3 Caltech 101 Silhouettes dataset

The second experiment is based on the Caltech 101 Sil-
houettes dataset (Marlin et al., 2010), which contains
6364 training images and 2307 test images. Estimated
log probabilities are reported in Table 2.

Table 2: Log probability of test data on Caltech 101 Sil-
houettes dataset. “Dim” represents the number of hidden
units in each layer, starting with the bottom one. (∗) taken
from Cho et al. (2013).

Model Dim Test log-prob.
SBN (VB) 200 −136.84
SBN (VB) 200 − 200 −125.60
FVSBN (VB) − −96.40
ARSBN (VB) 200 −96.78
ARSBN (VB) 200 − 200 −97.57
RBM∗ 500 −114.75
RBM∗ 4000 −107.78

In this dataset, adding the second hidden layer to
the VB SBN greatly improves the lower bound. Fig-
ure 5 demonstrates the effect of the deep model on
learning. The first hidden layer improves the lower
bound quickly, but saturates. When the second hid-
den layer is added, the model once again improves the
lower bound on the test set. Global training (refine-
ment) further enhances the performance. The two-
layer model does a better job capturing the rich struc-
ture in the 101 total categories. For the simple dataset
(MNIST with 10 categories, OCR letters with 26 cate-
gories, discussed below), this large gap is not observed.

Remarkably, our implementation of FVSBN beats the
state-of-the-art results on this dataset (Cho et al.,
2013) by 10 nats. Figure 4 shows samples drawn from
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Figure 4: Performance on the Caltech 101 Silhouettes dataset. (Left) Training data. (Middle) Averaged synthesized
samples. (Right) Learned features at the bottom layer.
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Figure 5: Average variational lower bound obtained from
the SBN 200 − 200 model on the Caltech 101 Silhouettes
dataset.

the trained model; different shapes are synthesized and
appear visually good.

5.4 OCR letters dataset

The OCR letters dataset contains 16× 8 binary pixel
images of 26 letters in the English alphabet. The
dataset is split into 42, 152 training and 10, 000 test
examples. Results are reported in Table 3. The pro-
posed ARSBN with K = 200 hidden units achieves a
lower bound of −37.97. The state-of-the-art here is a
DBM with 2000 hidden units in each layer (Salakhut-
dinov and Larochelle, 2010). Our model gives results
that are only marginally worse using a network with
100 times fewer connections.

Table 3: Log probability of test data on OCR letters
dataset. “Dim” represents the number of hidden units in
each layer, starting with the bottom one. (∗) taken from
Salakhutdinov and Larochelle (2010).

Model Dim Test log-prob.
SBN (online VB) 200 −48.71
SBN (VB) 200 −48.20
SBN (VB) 200 − 200 −47.84
FVSBN (VB) − −39.71
ARSBN (VB) 200 −37.97
ARSBN (VB) 200 − 200 −38.56
SBN (Gibbs) 200 −40.95
DBM∗ 2000 − 2000 −34.24

6 Discussion and future work

A simple and efficient Gibbs sampling algorithm and
mean field variational Bayes approximation are devel-
oped for learning and inference of model parameters
in the sigmoid belief networks. This has been imple-
mented in a novel way by introducing auxiliary Pólya-
Gamma variables. Several encouraging experimental
results have been presented, enhancing the idea that
the deep learning problem can be efficiently tackled in
a fully Bayesian framework.

While this work has focused on binary observations,
one can model real-valued data by building latent bi-
nary hierarchies as employed here, and touching the
data at the bottom layer by a real-valued mapping, as
has been done in related RBM models (Salakhutdinov
et al., 2013). Furthermore, the logistic link function is
typically utilized in the deep learning literature. The
probit function and the rectified linearity are also con-
sidered in the nonlinear Gaussian belief network (Frey
and Hinton, 1999). Under the Bayesian framework,
by using data augmentation (Polson et al., 2011), the
max-margin link could be utilized to model the non-
linearities between layers when training a deep model.
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