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1 Illustrations

Note that the scoring function we built in Algorithm
1 is an estimator of the density f (usually called the
silhouette), since f(x) =

∫∞
0
1f≥tdt =

∫∞
0
1Ω∗t

dt and

s(x) :=
∑K
k=1(tk − tk−1)1x∈Ω̂tk

which is a discretiza-

tion of
∫∞

0
1Ω̂t

dt. This fact is illustrated in Fig. 1

Figure 1: density and scoring functions

2 Detailed Proofs

Proof of Proposition 1

Let t > 0. Recall that EM∗(t) = α(t) − tλ(t)
where α(t) denote the mass at level t, namely α(t) =
P(f(X) ≥ t), and λ(t) denote the volume at level t,
i.e. λ(t) = Leb({x, f(x) ≥ t}). For h > 0, let A(h)
denote the quantity A(h) = 1/h(α(t + h) − α(t)) and

B(h) = 1/h(λ(t + h) − λ(t)). It is straightforward to
see that A(h) and B(h) converge when h→ 0, and ex-
pressing EM∗

′
= α′(t)−tλ′(t)−λ(t), it suffices to show

that α′(t)−tλ′(t) = 0, namely limh→0A(h)−t B(h) =
0. Now we have A(h) − t B(h) = 1

h

∫
t≤f≤t+h f −

t ≤ 1
h

∫
t≤f≤t+h h = Leb(t ≤ f ≤ t+h)→ 0 because

f has no flat part.

Proof of Lemma 1:

On the one hand, for every Ω measurable,

P(X ∈ Ω)− t Leb(Ω) =

∫
Ω

(f(x)− t)dx

≤
∫

Ω∩{f≥t}
(f(x)− t)dx

≤
∫
{f≥t}

(f(x)− t)dx

= P(f(X) ≥ t)− t Leb({f ≥ t}).

It follows that {f ≥ t} ∈ arg maxAmeas. P(X ∈
A)− t Leb(A).

On the other hand, suppose Ω ∈
arg maxA meas. P(X ∈ A) − t Leb(A) and
Leb({f > t} \ Ω) > 0. Then there is ε > 0
such that Leb({f > t + ε} \ Ω) > 0 (by sub-
additivity of Leb, if it is not the case, then
Leb({f > t} \ Ω) = Leb(∪ε∈Q+

{f > t + ε} \ Ω) = 0 ).
We have thus

∫
{f>t}\Ω

(f(x)− t)dx > ε.Leb({f > t+ ε} \ Ω) > 0 ,
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so that∫
Ω

(f(x)− t)dx ≤
∫
{f>t}

(f(x)− t)dx

−
∫
{f>t}\Ω

(f(x)− t)dx

<

∫
{f>t}

(f(x)− t)dx ,

i.e

P(X ∈ Ω)− t Leb(Ω)

< P(f(X) ≥ t)− t Leb({x, f(x) ≥ t})

which is a contradiction: {f > t} ⊂ Ω Leb-a.s. .

To show that Ω∗t ⊂ {x, f(x) ≥ t}, sup-
pose that Leb(Ω∗t ∩ {f < t}) > 0. Then
by sub-additivity of Leb just as above, there
is ε > 0 s.t Leb(Ω∗t ∩ {f < t − ε}) > 0 and∫

Ω∗t∩{f<t−ε}
f − t ≤ −ε.Leb(Ω∗t ∩ {f < t − ε}) < 0.

It follows that P(X ∈ Ω∗t ) − t Leb(Ω∗t ) < P(X ∈
Ω∗t \ {f < t− ε})− t Leb(Ω∗t \ {f < t− ε}) which is a
contradiction with the optimality of Ω∗t .

Proof of Proposition 2

Proving the first assertion is immediate, since∫
f≥t(f(x)− t)dx ≥

∫
s≥t(f(x)− t)dx. Let us now turn

to the second assertion. We have:

EM∗(t)− EMs(t) =

∫
f>t

(f(x)− t)dx

− sup
u>0

∫
s>u

(f(x)− t)dx

= inf
u>0

∫
f>t

(f(x)− t)dx

−
∫
s>u

(f(x)− t)dx ,

yet:∫
{f>t}\{s>u}

(f(x)− t)dx+

∫
{s>u}\{f>t}

(t− f(x))dx

≤ (‖f‖∞ − t).Leb
(
{f > t} \ {s > u}

)
+ t Leb

(
{s > u} \ {f > t}

)
,

so we obtain:

EM∗(t)− EMs(t) ≤ max(t, ‖f‖∞ − t)

× Leb
(
{s > u}∆{f > t}

)
≤ ‖f‖∞.Leb

(
{s > u}∆{f > t}

)
.

To prove the third point, note that:

inf
u>0

Leb
(
{s > u}∆{f > t}

)
= inf

T↗
Leb
(
{Ts > t}∆{f > t}

)
Yet,

Leb
(
{Ts > t}∆{f > t}

)
≤ Leb({f > t− ‖Ts− f‖∞}r {f > t+ ‖Ts− f‖∞})
= λ(t− ‖Ts− f‖∞) − λ(t+ ‖Ts− f‖∞)

= −
∫ t+‖Ts−f‖∞

t−‖Ts−f‖∞
λ′(u)du .

On the other hand, we have λ(t) =
∫
Rd 1f(x)≥tdx =∫

Rd g(x)‖∇f(x)‖dx where we let g(x) =
1

‖∇f(x)‖1{x,‖∇f(x)‖>0,f(x)≥t}. The co-area for-

mula (see [1], p.249, th3.2.12) gives in this case:
λ(t) =

∫
R du

∫
f−1(u)

1
‖∇f(x)‖1{x,f(x)≥t}dµ(x) =∫∞

t
du
∫
f−1(u)

1
‖∇f(x)‖dµ(x) so that λ′(t) =

−
∫
f−1(u)

1
‖∇f(x)‖dµ(x).

Let ηε such that ∀u > ε, |λ′(u)| =∫
f−1(u)

1
‖∇f(x)‖dµ(x) < ηε. We obtain:

sup
t∈[ε+infT↗ ‖f−Ts‖∞,‖f‖∞]

EM∗(t)− EMs(t)

≤ 2.ηε.‖f‖∞ inf
T↗
‖f − Ts‖∞.

In particular, if infT↗ ‖f − Ts‖∞ ≤ ε1,

sup
[ε+ε1,‖f‖∞]

|EM∗−EMs| ≤ 2.ηε.‖f‖∞. inf
T↗
‖f−Ts‖∞ .

Proof of Proposition 3

Let i in {1, ...,K}. First, note that:

Hn,ti+1
(Ω̂ti+1

∪ Ω̂ti) = Hn,ti+1
(Ω̂ti+1

)

+Hn,ti+1(Ω̂ti r Ω̂ti+1),

Hn,ti(Ω̂ti+1
∩ Ω̂ti) = Hn,ti(Ω̂ti)−Hn,ti(Ω̂ti r Ω̂ti+1

).

It follows that

Hn,ti+1(Ω̂ti+1 ∪ Ω̂ti) +Hn,ti(Ω̂ti+1 ∩ Ω̂ti)

= Hn,ti+1
(Ω̂ti+1

) +Hn,ti(Ω̂ti) +Hn,ti+1
(Ω̂ti \ Ω̂ti+1

)

−Hn,ti(Ω̂ti \ Ω̂ti+1) ,

with Hn,ti+1
(Ω̂ti \ Ω̂ti+1

)−Hn,ti(Ω̂ti \ Ω̂ti+1
) ≥ 0 since

Hn,t is decreasing in t. But on the other hand, by
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definition of Ω̂ti+1 and Ω̂ti we have:

Hn,ti+1
(Ω̂ti+1

∪ Ω̂ti) ≤ Hn,ti+1
(Ω̂ti+1

) ,

Hn,ti(Ω̂ti+1
∩ Ω̂ti) ≤ Hn,ti(Ω̂ti) .

Finally we get:

Hn,ti+1
(Ω̂ti+1

∪ Ω̂ti) = Hn,ti+1
(Ω̂ti+1

) ,

Hn,ti(Ω̂ti+1 ∩ Ω̂ti) = Hn,ti(Ω̂ti) .

Proceeding by induction we have, for every m such
that k +m ≤ K:

Hn,ti+m(Ω̂ti ∪ Ω̂ti+1 ∪ ... ∪ Ω̂ti+m) = Hn,ti+m(Ω̂ti+m) ,

Hn,ti(Ω̂ti ∩ Ω̂ti+1
∩ ... ∩ Ω̂ti+m

) = Hn,ti(Ω̂ti) .

Taking (i=1, m=k-1) for the first equation and (i=k,
m=K-k) for the second completes the proof.

Proof of Theorem 1

We shall use the following lemma:

Lemma 2.1. With probability at least 1 − δ, for k ∈
{1, ...,K}, 0 ≤ EM∗(tk)− EMsK (tk) ≤ 2Φn(δ).

Proof of Lemma 2.1:

Remember that by definition of Ω̂tk : Hn,tk(Ω̂tk) =
maxΩ∈G Hn,tk(Ω) and note that:

EM∗(tk) = max
Ω meas.

Htk(Ω) = max
Ω∈G

Htk(Ω) ≥ Htk(Ω̂tk).

On the other hand, using (5), with probability at least
1−δ, for every G ∈ G, |P(G)−Pn(G)| ≤ Φn(δ). Hence,
with probability at least 1− δ, for all Ω ∈ G :

Hn,tk(Ω)− Φn(δ) ≤ Htk(Ω) ≤ Hn,tk(Ω) + Φn(δ)

so that, with probability at least (1 − δ), for k ∈
{1..,K},

Hn,tk(Ω̂tk)− Φn(δ) ≤ Htk(Ω̂tk)

≤ EM∗(tk)

≤ Hn,tk(Ω̂tk) + Φn(δ) ,

whereby, with probability at least (1 − δ), for k ∈
{1, ..,K},

0 ≤ EM∗(tk)−Htk(Ω̂tk) ≤ 2Φn(δ) .

The following Lemma is a consequence of the deriva-
tive property of EM∗ (Proposition 1)

Lemma 2.2. Let k in {1, ...,K − 1}. Then for every
t in ]tk+1, tk], 0 ≤ EM∗(t)−EM∗(tk) ≤ λ(tk+1)(tk −
tk+1) .

Combined with Lemma 2.1 and the fact that EMsK

is non-increasing, and writing EM∗(t) − EMsK (t) =
(EM∗(t) − EM∗(tk)) + (EM∗(tk) − EMsK (tk)) +
(EMsK (tk)− EMsK (t)) this result leads to:

∀k ∈ {0, ...,K − 1}, ∀t ∈ ]tk+1, tk],

0 ≤ EM∗(t)− EMsK (t) ≤ 2Φn(δ) + λ(tk+1)(tk − tk+1)

which gives Lemma 2 stated in section Technical De-
tails. Notice that we have not yet used the fact that f
has a compact support.

The compactness support assumption allows an ex-
tension of Lemma 2.2 to k = K, namely the in-
equality holds true for t in ]tK+1, tK ] =]0, tK ] as soon
as we let λ(tK+1) := Leb(suppf). Indeed the com-
pactness of suppf implies that λ(t) → Leb(suppf)
as t → 0. Observing that Lemma 2.1 already con-
tains the case k = K, this leads to, for k in {0, ...,K}
and t ∈ ]tk+1, tk], |EM∗(t) − EMsK (t)| ≤ 2Φn(δ) +
λ(tk+1)(tk − tk+1). Therefore, λ being a decreasing
function bounded by λ(Leb(suppf)), we obtain the fol-
lowing: with probability at least 1− δ, we have for all
t in ]0, t1]:

|EM∗(t)−EMsK (t)|

≤
(
A+

√
2log(1/δ)

) 1√
n

+ λ(Leb(suppf)) sup
1≤k≤K

(tk − tk+1).

Proof of Theorem 2

The first part of this theorem is a consequence of (10)
combined with:

sup
t∈]0,tN ]

|EM∗(t)− EMsN (t)| ≤ 1− EMsN (tN )

≤ 1− EM∗(tN ) + 2Φn(δ) ,

where we use the fact that 0 ≤ EM∗(tN ) −
EMsN (tN ) ≤ 2Φn(δ) following from Lemma 2.1.
To see the convergence of sN (x), note that:

sN (x) =
t1√
n

∞∑
k=1

1

(1 + 1√
n

)k
1x∈Ω̂tk

1{k≤N}

≤ t1√
n

∞∑
k=1

1

(1 + 1√
n

)k
< ∞,

and analogically to remark 1 observe that EMsN ≤
EMs∞ so that supt∈]0,t1] |EM∗(t) − EMs∞(t)| ≤
supt∈]0,t1] |EM∗(t)−EMsN (t)| which prooves the last
part of the theorem.
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Proof of Lemma 3

By definition, for every class of set H, EM∗H(t) =
maxΩ∈HHt(Ω). The bias EM∗(t) − EM∗G(t) of the
model G is majored by EM∗(t)−EM∗F (t) since F ⊂ G.
Remember that fF (x) :=

∑
i≥1 1x∈Fi

1
|Fi|

∫
Fi
f(y)dy

and note that for all t > 0, {fF > t} ∈ F . It fol-
lows that:

EM∗(t)− EM∗F (t) =

∫
f>t

(f − t)− sup
C∈F

∫
C

(f − t)

≤
∫
f>t

(f − t)−
∫
fF>t

(f − t) since {fF > t} ∈ F

=

∫
f>t

(f − t)−
∫
fF>t

(fF − t)

since ∀G ∈ F ,
∫
G

f =

∫
G

fF

=

∫
f>t

(f − t)−
∫
f>t

(fF − t) +

∫
f>t

(fF − t)

−
∫
fF>t

(fF − t)

=

∫
f>t

(f − fF ) +

∫
{f>t}\{fF>t}

(fF − t)

−
∫
{fF>t}\{f>t}

(fF − t) .

Observe that the second and the third term in the
bound are non-positive. Therefore:

EM∗(t)− EM∗F (t) ≤
∫
f>t

(f − fF ) ≤
∫
Rd

|f − fF | .
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