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1 TIllustrations

Note that the scoring function we built in Algorithm

is an estimator of the density f (usually called the

silhouette), since f(z) = [;° Ly>¢dt = [} Lgsdt and

s(x) = ZkK:l(tk —tr—1)1,.q which is a discretiza-
; th

tion of [ 1g,dt. This fact is illustrated in Fig.

densityf I=10

Figure 1: density and scoring functions

2 Detailed Proofs

Proof of Proposition

Let t > 0. Recall that EM*(t) = at) — tA(?)
where a(t) denote the mass at level ¢, namely «(t) =
P(f(X) > t), and A(t) denote the volume at level ¢,
ie. A(t) = Leb({z, f(z) > t}). For h > 0, let A(h)
denote the quantity A(h) = 1/h(a(t + h) — a(t)) and
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B(h) = 1/h(A(t 4+ h) — A(t)). Tt is straightforward to
see that A(h) and B(h) converge when h — 0, and ex-
pressing EM* = o/ (£)—tX (t)—A(t), it suffices to show
that o/ (t) —tX (t) = 0, namely limy,_,g A(h)—t B(h) =
0. Now we have A(h) —t B(h) = %j;<f<t+hf -
t < %ft<f§t+hh = Leb(t < f <t+h)— 0 because
f has no flat part.

Proof of Lemma [1k

On the one hand, for every {2 measurable,

P(X € Q) — t Leb(Q) = /(f(m) ~ t)ds

Q

< / IRCCEU

< x) —t)dx
< /{ L V@D
— B(f(X) 2 ) — t Leb({f > t}).

It follows that {f > t} € argmaxamess. P(X €
A) —t Leb(A).

On  the other hand,
argmaxa mess. P(X € A) — t Leb(A) and
Leb({f > t} \ ) > 0. Then there is ¢ > 0
such that Leb({f > t + €} \ Q) > 0 (by sub-
additivity of Leb, if it is not the case, then
Leb({f >t} \ Q) = Leb(Uecq, {f >t +€}\ Q) =0).
We have thus

suppose €

/ (f(z) —t)dz > e.Leb({f >t+€}\Q) >0,
{f>tN\Q
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so that

/g(f(x)-—t)dm < j£f>f}(f(x)-—t)dw

[ ) - s
>\

z) —t)dr ,
<‘ADHU() )
P(X € Q) — t Leb(Q)
< P(F(X) > ) — t Leb({a. f(z) > £})

which is a contradiction: {f >t} C  Leb-a.s. .

To show that QF C {z,f(z) > t}, sup-
pose that Leb(2f N {f < t¢}) > 0. Then
by sub-additivity of Leb just as above, there

is e > 0 st Leb(y N{f < t—¢€}) > 0 and
fgm{fqie}f —t < —eLeb(Q;N{f <t—¢€}) <O.
It follows that P(X € Q) — ¢ Leb(Qf) < P(X €
WN\N{f<t—e€})—t Leb(25 \ {f <t —€}) whichis a
contradiction with the optimality of €2;.

Proof of Proposition

Proving the first assertion is immediate, since
J=(f(z) =t)dz > [, (f(x) = t)dz. Let us now turn
to the second assertion. We have:

EM*(t) — EM,(t) = /f @) =1

mm/Mq@>th

u>0.Js

~ inf /f>t(f(x) ~ t)da

u>0

- jf>u<f<x>-t>dx,

yet:

x) —t)dx
/{f>t}\{s>u}(f( )Y Jr/{s>u}\{f>t}(
< (Iflloe = £)-Leb(L1f > 1)\ {s > u})
n tLeb({s>u}\{f>t}),

t— f(2))da

so we obtain:

EM*(t) — EM,(t)

IN

max(t, [ flloe = 1)
X Leb({s > upA{f > t})
| flloc-Leb({s > u}A{f > 1}).

IN

To prove the third point, note that:

inf Leb({s > uA{f > t})

= 1Tn/§ Leb({Ts > tA{f > t})

Yet,

Leb({Ts > HA{f > t})

< Leb({f >t —[|Ts = fllo} N{f >t +[[T's — fll})
=AMt =ITs = flloo) = AE+Ts = flloc)

tHTs—flloo
= —/ )\,
t=[1Ts=flloo

On the other hand, we have A(t) = [pu Ly)>ide =

Jpa 9(@)|[IV f(2)||de  where we let g(x) =
1

o7 @ LIV F(@)[>0,f (x) >t} The  co-area for-

mula (see [I], p.249, th3.2.12) gives in this case:

(u)du .

1

At = fmdulff—uu)mﬂ{w,ﬂmzt}du(ﬂ:) =
oo , B
I dufffl(ugi\Wf(x)ud“(‘r) so that MN(¢) =
=510 ToTE@TAR(@)-

Let 7. such that Yu > ¢ [N(w)| =
ff—l(u) mdu(w) < ne. We obtain:

sup EM*(t) — EM(t)

teleintr o || f—Tsll oo 1 f 1 oo]
< 20| flloe IE IS = Tslloc.

In particular, if infp || f — T's||co < €1,

sup |EM*—EM;| <20 |flloo- inf || f —T's]|0o -
[e+€1, 1 Flloo] T

Proof of Proposition
Let 7 in {1,..., K'}. First, note that:

Hn7ti+1 (Qti+1 U Qh) = Hn,t7‘,+1 (Qti+1)
+ Hn,tz‘+1 (Qt7 ~N Qti+1)?

Hn,ti(Qt N Qtl) = Hp,, (Qtl) — Hpy, (Qn ~ O

i+1 i+1)'

It follows that
Hn,tz‘+1 (QtH—l U Qtl) + Hnyti (Qti+1 N Qt7)
= Hn,t; (Qti+1) + Hn,ti (Qtl) + Hn7ti+1 (Qh \ Qti+1)
— Hngt, (Qtl \ Qti+1) ;

with Hn,twl (Qtz \Qt'H»l) - H”htz‘ (Qtz \Qti+1) > 0 since
H, + is decreasing in t. But on the other hand, by
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definition of Qt and Qti we have:

i+1
Hn,ti+1 (Qti+1 U Qti) < Hn7ti+1 (Qt
Hnﬂfi (Qti+1 N Qtl) < Hn,ti (Qtl) :

i+1)7

Finally we get:

Hn,ti+1 (Qti+1 U Qtz)
Hnﬂfi (QtH»l n Qtl) =

= Hn7ti+1 (Qti+1) )
Hn,ti (Qtl) .

Proceeding by induction we have, for every m such
that k +m < K:

H" (Qti U Qti+1 u...J Qt'H»nL) = Hn,ti+m (Qti+m) )
Hmti (Qti N Ot'H»l n..nN Qt'i+m) = H"vti (Qtl) .

itm

Taking (i=1, m=k-1) for the first equation and (i=k,
m=K-k) for the second completes the proof.

Proof of Theorem [I]

We shall use the following lemma:

Lemma 2.1. With probability at least 1 — 0, for k €
{17 ...,K}, 0< EM*<tk) - EMSK(tk) < Q(I)n((s)

Proof of Lemma [2.1¢

Remember that by definition of €,
maxgeg Hp 1, (€2) and note that:

Hn,tk (th) =

EM*(ty) = max Hy, ()

meas.

On the other hand, using , with probability at least
1-94, for every G € G, |P(G)—P,(G)| < ®,(d). Hence,
with probability at least 1 — ¢, for all Q € G :

Hyp,, (@) = @ (0) < Hy, (Q) < Hylt, (2) + @4(9)

so that, with probability at least (1 — §), for k €
{1.., K},

Hnutk (th) - (I)n((5) < Htk( )
< EM*(tg)
< Hy gy, Q) + ©4(6)
whereby, with probability at least (1 — §), for k €

{1,..,K},

0 < EM*(t) — Hy, () < 28,(5) .

The following Lemma is a consequence of the deriva-
tive property of EM* (Proposition

Lemma 2.2. Let k in {1,..., K — 1}. Then for every
tin |tps1,tr], 0 < EM*(t) — EM™*(tg) < AM(tky1)(tr —
thr1) -

Combined with Lemma and the fact that EM,,
is non-increasing, and writing EM™*(t) — EM;, (t) =

(EM*(t) — EM*(tx)) + (EM*(ty) — EMs (t)) +
(EMs, (tr) — EMj, (t)) this result leads to:
Vk e {0,..,K — 1}, Vt € Jtrt1,ti],

0< EM*(t) — EMSK (t) < 2q)n((5) + )\(tk+1)(tk — tk+1)

which gives Lemma [2| stated in section Technical De-
tails. Notice that we have not yet used the fact that f
has a compact support.

The compactness support assumption allows an ex-
tension of Lemma to k = K, namely the in-
equality holds true for ¢ in |tk 11,tx] =]0,tx] as soon
as we let A(tx11) := Leb(suppf). Indeed the com-
pactness of suppf implies that A(t) —> Leb(suppf)
as t — 0. Observing that Lemma [2.1] already con-
tains the case k = K, this leads to, for k in {0,..., K}
and t € Jtgi1,tx), |[EM*(t) — EM,. ()] < 29,(5) +
A(tr+1)(tr — tg+1). Therefore, A being a decreasing
function bounded by A(Leb(suppf)), we obtain the fol-
lowing: with probability at least 1 — d, we have for all
t in ]0, tl]i

|[EM"(t) — EM,, (¢)]
<A+\/2109 1/5)

+ A(Le

Aﬁ\

b(suppf)) sup (tr —try1)-
1<k<K

Proof of Theorem [2]

The first part of this theorem is a consequence of
combined with:

sup |[EM*(t) — EM,,
t€]0,tn]

@] < 1= EMy(tn)

< 1—EM*(ty) +29,(9) ,

where we use the fact that 0 < EM*(ty) —
EM;, (tn) < 2®,(5) following from Lemma[2.1]
To see the convergence of sy (z), note that:

Z 1+ 1 k $EQt 1{k<N}

o0

z .

and analogically to remark [1| observe that EM;, <
EMs,, so that sup,epo,,) |[EM*(t) — EM;s ()] <
SUpyejo,ty] [ EM™(t) — EMj (t)| which prooves the last
part of the theorem.
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Proof of Lemma [3]

By definition, for every class of set H, EMj,(t) =
maxqey Hi(€2). The bias EM*(t) — EM(t) of the
model G is majored by EM*(t)—EM5(t) since F C G.
Remember that fp(z) = 30,5, ﬂxeF,;ﬁ fF f(y)dy
and note that for all ¢ > 0, {fp > t} € F. It fol-
lows that:

EM*(t) — EMj(t) = / (f — 1) — sup /C (f 1)

>t CeF

g/f>t(f—t)—/fF>t(f—t) since {fp >t} € F

_/f>t(ft)/fF>t(th)
SinceVGe]:,/Gf:/GfF
[ == ve=n+ [ o0
—/fpt(fF—t)
- /f>t(f I /{f>t}\{fF>t}(fF -

- / (fr—1) .
{fe>tI\{f>t}

Observe that the second and the third term in the
bound are non-positive. Therefore:

EM*(t) — EMA(t) < /

[ =gns [ 15—l
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