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Abstract

Online education provides data from stu-
dents solving problems at different levels of
proficiency over time. Unfortunately, meth-
ods that use these data for inferring student
knowledge rely on costly domain expertise.

We propose three novel data-driven meth-
ods that bridge sequence modeling with topic
models to infer students’ time varying knowl-
edge. These methods differ in complexity,
interpretability, accuracy and human super-
vision. For example, our most interpretable
method has similar classification accuracy to
the models created by domain experts, but
requires much less effort. On the other hand,
the most accurate method is completely data-
driven and improves predictions by up to 15%
in AUC, an evaluation metric for classifiers.

1 Introduction

In many instructional settings, students are graded
by their performance on instruments such as exams
or homework assignments. Usually, these instruments
are made of items — questions, problems, parts of ques-
tions — which are graded individually. Recent interest
in Massively Open Online Courses and intelligent tu-
toring systems promises large amounts of data from
students solving items at different levels of proficiency
over time. A challenge in educational technology is
how to use these data to adapt the instruction to stu-
dent needs. Modern personalization technologies in
education use student models (VanLehn, 1988), an es-
timate of the skill proficiency of the students.

Student modeling techniques that allow longitudinal
data — data collected at different time points — require
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a mapping of items to skills (Corbett and Anderson,
1995). Unfortunately, these mappings are mostly built
manually by context experts and psychologists — an
effort that can take years to accomplish (Beck, 2007).
Moreover, these mappings are treated as irrefutable
truth, while in fact, the context experts may be uncer-
tain as how to map a specific item into a skill ontology.
In this paper, we propose models that allow to reason
on what and when students learn.

2 Data-Driven Student Modeling

We operationalize a skill as a grouping — either through
hard or soft clustering — of items that have similar re-
sponse patterns by students. Other authors refer to
skills as topic skills (Desmarais, 2011), knowledge com-
ponents or factors (Cen et al., 2006). Usually, skills are
identified by domain experts to understand the class-
room progress. It is useful for skill definitions to be
interpretable. For example, a teacher may want a list
of students that have not mastered the skill of subtrac-
tion. On the other hand, a list of students that have
not mastered a skill called #97 may be less desirable.

Existing student modeling techniques require a map-
ping from items to skills. For example, Knowledge
Tracing (Corbett and Anderson, 1995), the de facto
standard for student modeling from longitudinal data,
uses a Hidden Markov Model (HMM) per skill to
model the student’s knowledge as latent variables. Fig-
ure la uses plate notation to describe the graphical
model of Knowledge Tracing. The binary observation
variable yy, , represents whether the student u gets the
t*" practice opportunity of skill s correctly. The binary
latent variable kj, ; represents whether the student has
learned the skill. L and FE are the skill-specific param-
eters of the model. The transition parameters L are
often referred as initial knowledge (or LO0), learning,
and forgetting probabilities. The emission parameters
E are commonly referred as guess and slip.

Knowledge Tracing is not fully data-driven because it
requires experts to define an item to skill mapping.
We propose three data-driven methods:



Modeling Skill Acquisition Over Time

# of items M

@@
@

on
O,

[e——

@;»
Y

time
Yi
@ Ty

# of students U

# of students U

(a) Knowledge Tracing (b) Topical HMM

Figure 1: Plate diagram of student models. The cir-
cles represent whether the variable is latent (white),
observed in training (light), or fully observable (dark),
and plates represent repetition.

Automatic Knowledge Tracing is a novel pipeline
that first discovers an item to skill mapping and
then estimates the student model. The advan-
tages of Automatic Knowledge Tracing are sim-
plicity of implementation and efficiency (§ 2.1).
Topical Hidden Markov Models (Topical HMM) is
a joint model that combines topic modeling with
HMMs. Topical HMM improves on the perfor-
mance of Automatic Knowledge Tracing with a
more computationally expensive model (§ 2.2).
ItemClue discovers interpretable models by using
low-cost domain knowledge (§ 2.3).

2.1 Automatic Knowledge Tracing

Algorithm 1 Automatic Knowledge Tracing

Require: performance sequences y, # of skills S
1: function AUTOMATICKNOWLEDGETRACING
Y + build_matrix(y)
Estimate V, K, such that Y = V x KT
(g9) « cluster(vq, ..., v, S), where v, € V
for se1...5 do:
ys < filter_skill(y, (g), s)

Ls, Es + train_hmm(yy)
return L, F, (g)

2
3:
4:
5
6
7

We formulate Automatic Knowledge Tracing using
clustering and matrix factorization. Matrix factoriza-
tion algorithms are useful to describe a large num-
ber of items with a small number of unobserved fac-
tors. Many matrix factorization techniques exist, some
which are equivalent to classic assessment methods in
education (Bergner et al., 2012). However, they typi-
cally do not generalize to unseen students, and do not
handle longitudinal data. In § 3, we describe the spe-
cific matrix factorization implementation we use for
our experiments.
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Algorithm 1 describes the Automatic Knowledge Trac-
ing algorithm. Its input is the set of ordered sequences
y, that describe the performance of students answering
items, and the number of skills S. Automatic Knowl-
edge Tracing is a pipeline with three major steps:

1. Tt first maps the sequences into the matrix (line 2)
where each entry is the performance of a student
solving an item. If a student answers an item mul-
tiple times, for simplicity, it only encodes the first
attempt. It then uses a matrix factorization al-
gorithm to discover the S latent loadings of items
(line 3).

. Then, it clusters the item loadings into S groups.
We interpret the groups as the item to skill map-
ping (line 4).

. Finally, it learns the Knowledge Tracing parame-
ters using the item to skill mapping found (line 7).
Automatic Knowledge Tracing algorithm can be
applied to unseen students, because it learns skill-
specific parameters, using the clusters found dur-
ing training.

2.2 Topical Hidden Markov Model

Automatic Knowledge Tracing is an efficient method
to model student knowledge from longitudinal data.
However, it makes two strong assumptions: (i) the
first encounter of the skill carries most of the infor-
mation, discarding other temporal data, and (ii) each
item requires exactly one skill. Albeit with a higher
computational cost, Topical HMM is a solution for
when these assumptions represent a limitation. Top-
ical HMM does not converge with off-the-shelf train-
ing procedures. In preliminary work (Gonzalez-Brenes
and Mostow, 2012, 2013) we presented limited re-
sults of Topical HMM. Here, we only briefly summa-
rize Topical HMM, but we report our novel training
method and substantially new results with original ex-
periments, analyses, datasets, and baselines.

2.2.1 Model

Figure 1b shows the plate diagram of Topical HMM.
Topical HMM combines topic modeling with HMMs,
by allowing topic (skill) knowledge to change over
time. It differs from prior work on dynamic topic mod-
els (Gruber et al., 2007) by allowing output variables
that we use for modeling performance over time, and
by having topics that do not change temporally.

The priors a,7,w are modeled with Dirichlet distri-
butions, because they allow easy calculations of the
posteriors of multinomial parameters. We use multi-
nomials to model the learning and emission parame-
ters. These parameters exist for each skill (not per
student), and apply to unseen students.
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The parameters ) represent the topic model — the item
to skill mapping. Topical HMM allows @ to be esti-
mated by an expert, or from data. Each parameter
Q™ is an S-dimensional multinomial representing the
skills required for item m. We assume that we know
a priori the total number of items M and the number
of skills S. Items are a convex combination of skills;
for example, if @™ = [0.5,0.5,0,0], we interpret item
m to be a mixture of skills 1 and 2, and not needing
skills 3 and 4. For every practice opportunity, the ran-
dom variable ¢ represents the skill of the item. Sensu
stricto, we allow only one skill g for each item, but by
modeling uncertainty on which skill it is, we enable soft
membership. The node k7 , is the knowledge student

u has of skill s at the t'" learning opportunity, and y, ;
is the binary output variable that models whether the
student answer is correct. Unlike Knowledge Tracing,
y is not indexed per skill, because the item to skill
mapping may be discovered with data.

We want Topical HMM to enforce that the knowl-
edge of a skill only changes when the skill is being
practiced. This way, the knowledge is updated with
evidence from data. We also want Topical HMM to
be general enough to be able to model the popular
requirement of disallowing forgetting (prohibit tran-
sitioning from a higher level knowledge state to lower
knowledge). These constraints introduce determinism,
which remove the theoretical convergence guarantees
of conventional inference techniques. For example,
consider a Topical HMM with two knowledge states—
novice and master. If we disallow forgetting, once a
knowledge node is sampled as a master state at time
t, a Pointwise Gibbs sampler would never sample a
novice value at time ¢+ 1. This implies non-ergodicity,
and that the sampler may not visit some regions.

2.2.2 Inference

Pointwise Gibbs Sampling is appropriate for some
nodes. For example, we can easily sample the topic
mixture Q™ for item m. Let’s define the S-dimensional
vector &™ such that each entry &E’;) is the empirical
count of item m being assigned to skill s:

U T,
&y =D 0(quss) - 6w, m) (1)
u t

Where 6(a,b) is the Kronecker function that is 1 iff
a =0, or 0 otherwise. We sample Q™ as:

Q™ ~ Dirichlet( am + a™)
empirical count prior

The other parameters can be sampled similarly. To
sample the skill nodes, we use the student model and
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(a) Unrolled model, S = 2

(b) HMM for skill 1

Figure 2: Knowledge sampling example, g = 1,q4 =1

Algorithm 2 Knowledge sampling algorithm

Require: y, ; ...y7 , parameters £ and L
1: function SAMPLE KNOWLEDGE(skill s, stud. u)

2: Yy .- yg < filter skill(s,ys 1 ... ys 7,)
3: Yi...vr < pk . KLlyy -y EPL LS
4: fortel...T, do
5: r + translate(¢)
Y1k if r = 0%
6: P(ki,t =k)ocqy A if gus = s

.
O(ky -1, k) otherwise®

the topic model— the item to skill mixture. We jus-
tify sampling from the student model with an exam-
ple. Suppose we are using Topical HMM to model
data from two skills, multiplication and subtraction.
Imagine a student who is an expert at subtraction,
but a novice in multiplication. If this student gets an
item wrong, it is likely that the item is using a skill
the student does not know, in this case, multiplication.
Therefore the student model can inform on the infer-
ence of the item to skill estimates. Thus, we sample:

P(qus = @) < Y p(Wuslk 1, BCFue) p(glQ™)  (2)
L | S

q

student model topic model
Here E? % is the emission probability for skill ¢’ for
the current level of mastery of the student.

Algorithm 2 describes how we infer the posterior prob-
ability of the knowledge nodes, and we illustrate it
with an example in Figure 2. We show ¢ nodes as vis-
ible, because we suppose that we have sampled them
already (g2 =1, 1 = 2, g3 = 2, ¢4 = 1). For a skill s:

1. We first build a sequence with only the time steps
where the knowledge nodes are allowed to change
their value because the skill is being practiced
(Line 2). Figure 2b shows how such sequence may
look like.

We calculate the maximum likelihood of the la-
tent states of the newly-built sequence using the
Forward-Backward algorithm for HMMs (Rabiner
and Juang, 1986) (Line 3).
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3. Finally, we sample Topical HMM’s knowledge
states (Lines 4-6):
e The first time skill s is practiced: we sample
the student knowledge with the probability
of initial knowledge (nodes with a star x).
e Practicing skill s:  we sample from the
HMM'’s forward-backward probabilities.
e Otherwise, we deterministically use the pre-
vious knowledge (nodes with two lines ®).

During prediction, we can infer the posterior distri-
bution of the performance by sampling directly from
the emission probability, ¥, : o E®*ut where s
Qu,t- Alternatively, we can marginalize out the stu-
dent knowledge and skill nodes:

POt =) < DY plgulQ)p@HIE)

14

3)

s/

In preliminary experiments we did not find any sig-
nificant differences between these strategies, possibly
because we collected a large number of samples. We
only report the uncollapsed sampling results.

2.3 ItemClue

In their seminal work, Chi et al. (1981) suggest that
novice students categorize items by surface features,
such as “words in problem text.” On the other hand,
more seasoned students group items that require the
same principle together, such as “conservation of mo-
mentum”.

Here, we operationalize interpretability as skills that
are cohesive on their surface features. We argue that
defining a function to parse surface features is less la-
bor intensive than annotating each item from a poten-
tially very large pool. Our novel method, ItemClue,
builds a Bayesian prior to bias similar items together
in Topical HMM. ItemClue uses an expert-defined fea-
ture extraction function to quantify the similarity be-
tween a pair of items. It then uses the output of a
clustering algorithm as a prior to bias the estimation
of Topical HMM towards clusterings that group sim-
ilar items together. However, unlike prior work that
requires experts to annotate each of the thousands of
items that the system may have, we only require ex-
perts to create a feature extraction function.

Algorithm 3 describes how to build an ItemClue prior
for Topical HMM: it inputs items xi...xps, a fea-
ture extraction function to specify the similarity of the
items, the number of clusters S, and a bias intensity
parameter of how much the item similarity should in-
fluence discovery of the item to skill mappings. Lines
2-4 build a similarity matrix comparing each item to
each other using Euclidean distance and a feature ex-
traction function. Line 5 uses clustering to group sim-
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Algorithm 3 Item Clue

1: function ITEMCLUEPRIOR(Item text z1,...xas,
feature extraction function f, number of clusters
S, intensity a)

2: for each item ¢ = 1...¢); do
3: for each item j =1...¢y do
4: D, ; = distance(f(t}), {(t}))
5: (x; — cluster ¢;) = cluster(D, S)
6: for each mapping z; — ¢; do
T for each skill s+ 1...5 do
8: if s=c¢; then
9: aés) —a
10: else
11: afy <1

return o

ilar items together into S clusters. Finally, lines 6-11
build a Dirichlet prior for Topical HMM.

We consider extracting surface features from the cor-
rect answer (Li et al., 2013) and the text of the
item (Karlovéec et al., 2012). In preliminary experi-
ments we do not find substantive differences in predic-
tive performance of these two strategies. Therefore, we
just report results on the correct answer. For a Math
tutor, we parse the correct answers by replacing the
whole and fractional parts of numbers with N, and v
for variables. For example, a correct response that is
—2.5y + 100 becomes —N.Nv + N. We build a bag of
letter n-grams (n = 2,3) from the parsed text.

3 Empirical Evaluation

Student models are typically evaluated with a clas-
sification evaluation metric that assesses their fore-
casts of whether a student will answer an item cor-
rectly (Dhanani et al., 2014). However, high accuracy
is not a sufficient condition for a model to be useful
for personalizing education.

Consider the item difficulty classifier that makes pre-
dictions based on the item difficulty. This is, it esti-
mates the likelihood of a student answering an item
correctly as the fraction of correct answers of an item
in the training set. This classifier is not a function of
practice opportunities: its decision boundary is opti-
mized to predict always “correct answer” or “incorrect
answer” independently of amount of practice. There-
fore, such classifier does not signal when students ac-
quire knowledge, and is not useful for adaptivity. We
aspire to have models that are useful for adapting tu-
toring decisions.

In this section, we evaluate our methods with classifi-
cation metrics following conventional practice (§ 3.1).
To address our concerns with classification metrics, we
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then select the most accurate method and investigate
if its parameters may be useful for adaptivity (§ 3.2).
Lastly, we report on interpretable item to skill map-

pings (§ 3.3).
3.1 Model Comparison

We evaluate on two datasets from the PSLC
Datashop (Koedinger et al., 2010), a repository for ed-
ucational data. In these datasets, each observation is
labeled with problem and step identifiers. We conduct
our analysis on the step level by assigning a unique
identifier to them. The Carnegie Learning Bridge to
Algebra Cognitive Tutor® prepares students to an Al-
gebra I class. This dataset has an item bank of 5,233
different items and 123 students. Each student an-
swered an average of 340.73 items (st. dev. 102, min.
48, max. 562, median 341), for a total of 41,910 obser-
vations. The Carnegie Learning Algebra I Cognitive
Tutor is a first-year Algebra course for core instruc-
tion. This dataset includes data from 205 students
and an item bank of 3,081 questions. Each student
answered an an average of 373.37 items (st. dev. 286,
min. 3, max. 989, median 314), for a total of 73,181
observations. Both datasets are very unbalanced —
over 75% of the items were answered correctly. We
split the datasets into 3 sets of non-overlapping stu-
dents: a training set, a development set to tune hyper-
parameters, and a test which we queried only once. No
tuning was done on the test set, and because it only
contains unseen students, it is a harder prediction task.

We evaluate our student models as the classification
task of predicting future student performance. We ob-
serve the history preceding the time step we want to
predict. For example, to predict on the third time step,
we use the data up to the second time step. We eval-
uate the model predictions using the Area Under the
Curve (AUC) of the Receiver Operating Characteris-
tic (ROC) curve. The AUC assigns random chance a
score of 0.5 and a perfect classifier a 1.

We encode two biases in the priors’ hyper-parameters
a,7 and w: (i) Practice helps learning, and there is
no forgetting. We favor students transitioning to a
level of better performance, and not going back to the
previous level. For this, we tune for the combinations
of magnitudes of this effect for 7 = 10,100 and w =
10,100. (ii) Sparse item to skill mapping. For our
experiments with Topical HMM, we encourage sparsity
on the item to skill parameter (Q), motivated by the
assumption that each item uses only a few skills. We
set o = 0.1.

We compare student models and classifiers:

¢ HMM. Can we find evidence of multiple skills? Our
methods should perform better than assuming there
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are no skills in the data.
Student Performance. The likelihood of answer-
ing item at time ¢ correctly is the fraction of items
answered correctly up to time ¢t — 1. Intuitively, this
is the student “batting average”.
Random. Does the item to skill mapping matter?
We create a random item to skill mapping with five
skills and assign items randomly to one of five cate-
gories. We then train Topical HMM to learn the stu-
dent model (transition and emission probabilities),
without updating the item to skill mapping.
Item difficulty. We described this classifier earlier
in the section. It is not useful for adaptive tutoring.
Domain Experts. How accurate are experts at
creating item to skill mappings? We use Topical
HMM with an item to skill mapping previously de-
signed using domain knowledge. We initialize the
parameter () of Topical HMM with the expert model
and do not update its values. If the expert decided
that an item uses multiple skills, we assign uniform
weight to each skill even though the experts may
have used a different interpretation (e.g., conjunc-
tive). Modeling multiple skills per item is an active
area of research (Gonzélez-Brenes et al., 2014).
Automatic Knowledge Tracing. We implement
Automatic Knowledge Tracing using a Bayesian
HMM, and with an existing matrix factorization im-
plementation used in education (Thai-Nghe et al.,
2010). We leave experimenting with alternative ma-
trix factorizations algorithms for future work. We
tune the hyperparameters in the development set
(e.g., the number of skills), this results in four and
six skills for the Bridge to Algebra® and the Alge-
bra I datasets, respectively. Unseen items in the test
set are set to random skills.
e Topical HMM. For Topical HMM, we also tune
the hyperparameters and infer five and six skills for
the Bridge to Algebra®, and Algebra I, respectively.

Our optimization method for Topical HMM does not
update its beliefs with new observations, requiring a
large memory and runtime footprint to re-sample the
entire sequence. To speed up computations, in all of
our experiments we predict up to the 150" time step
in the development set, and up to the 200*" time step
in the test set. For sampling, we collect 2,000 samples,
discarding the first 500 samples.

For all of the methods we pick the best random restart
using the development set. Figures 3a and 3b show
the AUC of the different methods on the test set of
the Algebra I and Bridge to Algebra® datasets. The
error bars show the 95% confidence intervals calculated
with an implementation of the Logit method', which
corrects for the non-independence of the points of the

1
www.subcortex.net/research/code/area_under_roc_curve
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In both datasets, Topical HMM outperforms all other
approaches. In the Algebra I dataset, the difference
between the expert model and Topical HMM is statis-
tically significant because the confidence intervals do
not overlap. Topical HMM discovers the most predic-
tive item to skill mapping with an AUC of .77 + .01
(with 95% confidence), while the model handcrafted
by experts only achieves an AUC of .67 £ .02; thus,
the automatic approach is 15% better than the expert
approach. Automatic Knowledge Tracing also per-
forms statistically better than the expert (AUC= .73),
but worse than Topical HMM, and the item difficulty
(AUC=.74).

In the Bridge to Algebra® dataset, the fully data-
driven Topical HMM achieves the same performance
as experts using domain knowledge (AUC= .77), but
requires much less human effort. Unfortunately, we
do not have an estimate of how long annotation took,
but if we make a conservative estimate that an ex-
pert takes two minutes per item to label the skills
needed, it would take her around 6 days of non-stop
work to process a single dataset. On a 2007 laptop
(Intel® Xeon® 3Ghz, with 16Gb of RAM), Automatic
Knowledge Tracing requires over 2 hours, while Topi-
cal HMM requires 6 hours of computation. Although
the higher performance of Topical HMM over Auto-
matic Knowledge Tracing comes with higher compu-
tational cost, it is over 24 times faster than a human
estimate, yet it achieves the same classification perfor-
mance in this dataset.

In both datasets, our data-driven models are signifi-
cantly more accurate than assuming an item to skill
mapping with a single skill (HMM), using the student
performance (Student Perf.), or assigning items to
skills randomly (Random). The random item to skill
mapping performs significantly better than chance.
We hypothesize that tuning multiple restarts in the
development set caused this.
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Topical HMM is not meaningfully better than the item
difficulty classifier, which can be significantly better
than the human experts. Koedinger et al. (2012) ar-
gue that classification accuracy is not as important as
having an item to skill mapping and a student model.
Unfortunately, eventhough the item difficulty classifier
has high accuracy, it is not useful for building adaptive
tutors, an item to skill mapping or a student model.
The item difficulty classifier has limited usefulness for
adaptivity because its decision boundary is not a func-
tion of how much a student has practiced a skill. Prior
work has been only partially successful on using diffi-
culty in improving student models for adaptive tutor-
ing. For example, Khajah et al. (2014) argue that item
difficulty confounds with student learning. In the next
section we study if our most accurate model, Topical
HMM, is suitable for adaptive tutoring.

3.2 Best-Model Drill Down

Table 1: Learned Parameters with Topical HMM in
the Bridge to Algebra® datset

skill Learn Forget LO Guess Slip
0 .70 .27 13 .11 .06
1 .75 21 .18 .10 .04
2 .79 .20 43 .08 .06
3 .85 12 44 .08 .06
4 91 .05 91 .01 .55

Table 1 shows the learned parameters of Topical HMM
for the Bridge to Algebra® dataset. These parameters
suggest that Topical HMM can be used to infer when
a student has mastered a skill. Knowing when stu-
dents have learned content is useful for adaptivity, for
example, to stop teaching a skill that the student has
already mastered. Again, the item difficulty classifier
is not useful for this purpose.

We now investigate whether Topical HMM'’s recovered
parameters are reliable. For this purpose, we construct
a synthetic data set with 300 students and 30 items
that we assigned to one of two skills. We want syn-
thetic data to be plausible; for example, the probabil-
ity of answering an item correctly if guessed should be
lower than the probability of answering an item cor-
rectly if known. Therefore, we hand-crafted some of
the behavior of the synthetic students:

e The initial knowledge probability is 0.3.
e The learning rate is 0.15.

e The (1-guess) probability is 0.95.

e The slip probability is 0.05.

Figure 4 marks with an ‘x’ the true parameters that
generate the synthetic data. We ran 100 different
random restarts of our Topical HMM’s optimization
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Figure 5: Histogram of number of skills mapped to an
item in the Algebra I dataset

procedure, with 1,000 different samples each. We dis-
card the first 400 for burn-in. For inference in Topical
HMM, we set up informationless flat priors: o = —1,
B =1, 7=1,w=1. For the parameters that deter-
mine the initial knowledge and learning rate, most of
the samples are in the vicinity of the true parameter
value. However, for determining the emission proba-
bilities (guess and slip) the sampler often gets stuck in
two local optima, each one near the true value of only
one of the parameters.

3.3 Interpretability

The item to skill mappings discovered by Topical
HMM are not very easy to interpret, mainly because
an item is often assigned to multiple skills. For exam-
ple, Figure 5 counts the number of skills mapped to
an item. For this, we take the last sample of the pa-
rameter (), and count the number of entries for every
item that has probability higher than a threshold of
0.05. In both datasets, the experts assign most items
to a single skill for around 80% of the time. Topical
HMM assigns a single skill with a frequency of about
40%, with a mode of 2 skills per item.
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We now use ItemClue to bias the estimation towards
more interpretable models. We report extracting fea-
tures from the correct answers of the Algebra I dataset
with a strong prior (a = 10?):

i. Positive integer constants, abstracted as V.
Plotting operations, are responses that require
students to manipulate a plot.

Simple (1 operator) constant expressions, e.g. N -
N, N+ N.

Complex (24 operator) constant expressions, e.g.
N—-N-N,N+N-N.

Simple (1 operator) variable expressions, e.g.
N/N -z, Nz + N.

Complex (2+ operator) variable expressions, e.g.
Nz(z+ N), z(N.N)+ N.

ii.
iii.

iv.

vi.

TtemClue discovers skills automatically, but naming
the skills required human analysis. The six clusters
discovered are more coarse than the ones discovered
by the expert.

While the interpretability of the model increases, the
performance of the model decreases. The AUC when
ItemClue is not used (intensity a 10%) is approx-
imately 0.8, and it decreases when using a stronger
prior (a = 10%) to 0.65. At the strongest prior
(a = 103), Topical HMM is using only the prior to
discover the item to skill mapping.

4 Relation to Prior Work

We now review prior work that uses student perfor-
mance data to find the item to skill mapping. However,
other sources of data are available (Li et al., 2011).
Prior methods that used performance data for discov-
ering the skill definition are restricted due to (i) inabil-
ity to handle longitudinal data or (ii) not being fully
automatic:
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i. Matrix-based methods (Winters et al., 2005),
such as SPARFA (Waters et al., 2013), Non-
Negative Matrix Factorization (Desmarais, 2011)
and the Q-Matrix Method (Barnes, 2005) are
not designed for longitudinal data, and therefore
do not model student learning. These methods
do not distinguish between poor performance at
early time steps and poor performance after a lot
of practice. Future work may extend Automatic
Knowledge Tracing to use these techniques, in-
stead of the linear factorization we used. Matrix-
based techniques often suffer from the cold start
problem— they cannot predict on unseen items
or students. Automatic Knowledge Tracing can
predict on unseen students, and Topical HMM
has no such limitations.

Semi-automatic approaches, such as Learning
Factors Analysis (Cen et al., 2006), are designed
for temporal data, but require the labor-intensive
task of having experts to annotate every item
of the pool. As we have seen, modern tutoring
systems may have thousands of items, and these
methods result very costly. Future work may pro-
vide a thorough comparison of Learning Factors
Analysis and ItemClue.

ii.

Promising recent work (Lindsey et al., 2014) allows
temporal data but does not allow multiple skills. The
authors have contacted us for follow-up comparisons,
but their work was not yet published during the prepa-
ration of this paper.

Dynamic collaborative filtering techniques have been
applied with very limited success. For example, ten-
sor factorization (Thai-Nghe et al., 2010) assumes that
student performance changes over time, independently
of recent student performance.

We formulate Topical HMM as a hierarchical Bayesian
model in which each item is modeled as a mixture
over an underlying set of skills. Our formulation of
Topical HMM is related to Input-Output HMM (Ben-
gio and Frasconi, 1994) and Factorial HMM (Ghahra-
mani and Jordan, 1997). We now briefly discuss these
approaches. The Input-Output HMM, as well as the
conventional HMM, is tractable only with a relatively
small number of states: to represent b bits of informa-
tion about the history of a time sequence, an Input-
Output HMM would need 2° distinct states (Ghahra-
mani and Jordan, 1997). A Factorial HMM works
around this exponentially large number of states with
a distributed state representation that can achieve the
same task with b binary state variables. However, Fac-
torial HMMs only model an output sequence. Topi-
cal HMM combines concepts from both Input-Output
HMMs and Factorial HMMs: it uses a distributed
state representation and is able to map input sequences
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to output sequences.

5 Conclusion

We present fully data-driven methods that discover
how items map into skills and when students master
them. Our main contributions are the novel Auto-
matic Knowledge Tracing and ItemClue algorithms, a
new optimization technique for Topical HMM, and a
novel evaluation of these techniques.

We make substantial progress from what was possi-
ble — we are unaware of prior methods that can dis-
cover an item to skill mapping from longitudinal per-
formance data automatically. Our three methods have
different trade-offs of complexity, interpretability, ac-
curacy and human effort required. Topical HMM is
fully automatic and has the best prediction accuracy
at a higher computational cost and low interpretabil-
ity. Automatic Knowledge Tracing has the best run-
time performance, yet it only has a minor decrease of
accuracy. ItemClue finds the most interpretable mod-
els at the expense of accuracy and the requirement of
low cost domain knowledge.

The gain of our data-driven model seems dependent on
the domain. For example, in the pre-algebra dataset,
our automatic approaches perform similar to the ex-
pert model, albeit with less human effort. However,
on the Algebra I dataset, our best method improves
by 15% the expert model. A secondary contribu-
tion is that we provide evidence that it is possible to
build high accuracy classifiers that are not appropriate
for personalizing education. Our experiment suggests
that Topical HMM’s may recover the student model
parameters, and therefore, may be useful for personal-
izing education. In future work we will study evalua-
tion techniques for adaptive algorithms.

Follow-up work may improve Topical HMM’s opti-
mization algorithm to allow efficient online updates. A
multi-skill model is not trivial to update because the
assignment of an item to skill may change when fur-
ther performance evidence is presented (Hooker et al.,
2009). We believe our methods are suited for guiding
tutoring activities, but not high-stakes assessments.
Future work may evaluate our methods in a controlled
experiment or with simulations (Lee and Brunskill,
2012).

Our algorithms are relevant to the topic modeling,
graphical models, and collaborative filtering communi-
ties. Collaborative filtering tasks are often evaluated
on movie datasets (Koren et al., 2009), eventhough
their usefulness in this domain is disputed (Vander-
bilt, 2013). We are looking forward for future applica-
tions of collaborative filtering techniques in education
as well as cross-domain comparisons.
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