Consistent Collective Matrix Completion under Joint Low Rank Structure: Supplementary Material

A Operator Bernstein Inequality

Theorem 1 (Operator Bernstein Inequality [\[4\]](#page-3-0)). Let S_i , $i = 1, 2, ..., m$ be i.i.d self-adjoint operators of dimension N. If there exists constants R and σ^2 , such that $\forall i \, \|S_i\|_{op} \leq R$ a.s., and $\sum_i \|E[S_i^2]\|_{op} \leq \sigma^2$,

$$
then \quad \forall \ t > 0 \quad Pr\left(\|\sum_{i} S_{i}\|_{op} > t\right) \le N \exp\left(\frac{-t^{2}/2}{\sigma^{2} + \frac{Rt}{3}}\right) \tag{25}
$$

B Proof of Lemma 1

Recall that:

- $T(\mathcal{X}) = \text{aff}\{\mathcal{Y} \in \bar{\mathfrak{X}} : \forall v, \text{rowSpan}(\mathbb{Y}_{r_v}) \subseteq \text{rowSpan}(\mathbb{X}_{r_v}) \text{ or } \text{rowSpan}(\mathbb{Y}_{c_v}) \subseteq \text{rowSpan}(\mathbb{X}_{c_v})\}$
- $T^{\perp}(\mathcal{X}) = \{ \mathcal{Y} \in \bar{\mathfrak{X}} : \forall v, \text{rowSpan}(Y_v) \perp \text{rowSpan}(M_v) \text{ and } \text{colSpan}(Y_v) \perp \text{colSpan}(M_v) \}$

We need to show that $\forall \mathcal{X} \in \bar{\mathfrak{X}}, \mathcal{X} \in T^{\perp}$ iff $\langle \mathcal{X}, \mathcal{Y} \rangle = 0, \forall \mathcal{Y} \in T$.

 \Rightarrow Let $\mathcal{X} \in \{ \mathcal{X} \in \bar{\mathfrak{X}} : \langle \mathcal{X}, \mathcal{Y} \rangle = 0, \forall \mathcal{Y} \in T \},$ if $\mathcal{X} \notin T^{\perp}$, then $\exists v$ such that at least one of the statements below hold true:

- (a) rowSpan $(X_v) \not\perp \text{rowSpan}(M_v)$, or
- (b) colSpan $(X_v) \not\perp \text{colSpan}(M_v)$

WLOG let us assume that (a) is true, the proof for the other case is analogous. Consider the decomposition $X_v = X_v^{(1)} + X_v^{(2)}$ such that rowSpan $(X_v^{(1)}) \perp \text{rowSpan}(M_v)$ and rowSpan $(X_v^{(2)}) \subseteq \text{rowSpan}(M_v)$. Consider the collective matrix $\mathcal Y$ such that $Y_{v'} = X_v^{(2)}$ if $v' = v$, and $Y_{v'} = 0$ otherwise. Clearly, $\mathcal Y \in \mathcal T$ as $\forall v, \text{rowSpan}(\mathbb{Y}_{r_v}) \subseteq \text{rowSpan}(\mathbb{X}_{r_v}),$ but $\langle \mathcal{X}, \mathcal{Y} \rangle \neq 0$, a contradiction.

 \iff If $\mathcal{X} \in T^{\perp}$, then by the definitions, $\forall \mathcal{Y} \in T$, $\langle \mathcal{X}, \mathcal{Y} \rangle = \sum_{v} \langle X_v, Y_v \rangle = 0$.

C Proof of Lemma 3

Recall \mathcal{R}_s and \mathcal{R}_{Ω} from (18) and (19). Also recall that $\forall \mathcal{X} \in \mathfrak{X}, \mathcal{X} = \sum_{v=1}^V \sum_{(i,j) \in \mathcal{I}(v)} \langle \mathcal{X}, \mathcal{E}^{(v,i,j)} \rangle \mathcal{E}^{(v,i,j)}$. Thus, $P_T(\mathcal{X}) = \sum_{v=1}^V \sum_{(i,j) \in \mathcal{I}(v)} \langle P_T(\mathcal{X}), \mathcal{E}^{(v,i,j)} \rangle \mathcal{E}^{(v,i,j)} = \sum_{v=1}^V \sum_{(i,j) \in \mathcal{I}(v)} \langle \mathcal{X}, P_T(\mathcal{E}^{(v,i,j)}) \rangle \mathcal{E}^{(v,i,j)}$ Define $\mathcal{V}_s := P_T \mathcal{R}_s P_T : \mathcal{X} \to \frac{1}{p(v_s, i_s, j_s)} \langle \mathcal{X}, P_T(\mathcal{E}^{(s)}) \rangle P_T(\mathcal{E}^{(s)}),$ where $p(v, i, j) = \frac{|\Omega_{r_v}|}{2n_{rv}m_v}$ $\frac{|\Omega_{r_{v}}|}{2n_{r_{v}}m_{r_{v}}}+\frac{|\Omega_{c_{v}}|}{2n_{c_{v}}m_{v}}$ $P_T(\mathcal{E}^{(s)})$, where $p(v, i, j) = \frac{|M_{rv}|}{2n_{rv}m_{rv}} + \frac{|M_{cv}|}{2n_{cv}m_{cv}}$.

We then have $E[\mathcal{V}_s] = \frac{1}{|\Omega|} P_T$, and

$$
\|\mathcal{V}_{s}\|_{\text{op}} = \sup_{\|\mathcal{X}\|_{F}=1} \frac{1}{p(v_{s}, i_{s}, j_{s})} \langle \mathcal{X}, P_{T}(\mathcal{E}^{(s)}) \rangle \| P_{T}(\mathcal{E}^{(s)}) \|_{F} = \frac{1}{p(v_{s}, i_{s}, j_{s})} \| P_{T}(\mathcal{E}^{(s)}) \|_{F}^{2}
$$

$$
\overset{(a)}{\leq} \frac{1}{p(v_{s}, i_{s}, j_{s})} \left(\frac{\mu_{0}R}{m_{r_{v_{s}}}} + \frac{\mu_{0}R}{m_{c_{v_{s}}}}\right) \overset{(b)}{\leq} \frac{1}{c_{0}\beta \log N},
$$
(26)

where (a) follows from the incoherence condition in Assumption 2, and (b) follows as $\forall k, |\Omega_k| >$ $c_0\mu_0n_kR\beta\log N$.

(i) Bound on $\|\mathcal{V}_s - E[\mathcal{V}_s]\|_{\text{op}}$

$$
\|\mathcal{V}_s - E[\mathcal{V}_s]\|_{\text{op}} \le \max\left(\|\mathcal{V}_s\|_{\text{op}}, \|E[\mathcal{V}_s]\|_{\text{op}}\right) \le \max\left(\frac{1}{c_0 \beta \log N}, \frac{1}{\Omega}\right) = \frac{1}{c_0 \beta \log N} \tag{27}
$$

where (a) follows as both \mathcal{V}_s and $E[\mathcal{V}_s]$ are positive semidefinite.

(ii) Bound on $\sum_{s=1}^{\vert\Omega\vert} \|E[(\mathcal{V}_s - E[\mathcal{V}_s])^2]\|_{\text{op}}.$

$$
E[(\mathcal{V}_s)^2(X)] = E\left[\frac{1}{p(v_s, i_s, j_s)^2} \langle \mathcal{X}, P_T(\mathcal{E}^{(s)}) \rangle \| P_T(\mathcal{E}^{(s)}) \|_F^2 P_T(\mathcal{E}^{(s)})\right]
$$

$$
\leq \frac{1}{c_0 \beta \log N} E\left[\frac{1}{p(v_s, i_s, j_s)} \langle \mathcal{X}, P_T(\mathcal{E}^{(s)}) \rangle P_T(\mathcal{E}^{(s)})\right] = \frac{1}{|\Omega| c_0 \beta \log N} P_T(\mathcal{X}).
$$
 (28)

 $||E[(\mathcal{V}_s - E[\mathcal{V}_s])^2]||_{op} = ||E[\mathcal{V}_s^2] - (E[\mathcal{V}_s])^2]||_{op} \le \max (||E[\mathcal{V}_s^2]||_{op}, ||(E[\mathcal{V}_s])^2||_{op}) \le \frac{1}{|\Omega|_{op} \beta}$ $\frac{1}{\left|\Omega\right|c_0\beta\log N}$, (29)

where (a) follows as $||P_T||_{op} \leq 1$.

Thus, $\sigma^2 := \sum_{s=1}^{\vert \Omega \vert} \Vert E[(\mathcal{V}_s - E[\mathcal{V}_s])^2] \Vert_{op} \leq \frac{1}{c_0 \beta \ln \vert \Omega \vert}$ $\overline{c_0 \beta \log N}$

(iii) The lemma follows by using (i) and (ii) above in the operator Bernstein inequality in [\(25\)](#page-0-0).

D Proof of Lemma 4

Recall that under the assumptions made in the paper $\|\cdot\|_{\mathscr{A}}$ is norm, and by the sub differential characterization of norms we have the following:

$$
\partial \|\mathcal{M}\|_{\mathscr{A}} = \{\mathcal{E} + \mathcal{W} : \mathcal{E} \in \mathscr{E}(\mathcal{M}) \cap T, \mathcal{W} \in T^{\perp}, \|\mathcal{W}\|_{\mathcal{A}}^* \le 1\}
$$
(30)

Recall $\mathscr{E}(\mathcal{M})$ from (4). In particular the set $\{\mathcal{E}_{\mathcal{M}} + \mathcal{W} : \mathcal{W} \in T^{\perp}, ||\mathcal{W}||_{\mathcal{A}}^{*} \leq 1\} \subset \partial ||\mathcal{M}||_{\mathscr{A}}$, where $\mathcal{E}_{\mathcal{M}}$ is the sign vector from Assumption 2.

Given any Δ , with $P_{\Omega}(\Delta) = 0$, consider any $W \in T^{\perp}$, such that $||P_{T^{\perp}}(\Delta)||_{\mathscr{A}} = \langle W, P_{T^{\perp}}(\Delta) \rangle$ and $\mathcal{E}_{\mathcal{M}} + \mathcal{W} \in \partial \|\mathcal{M}\|_{\mathscr{A}}$. Let $\mathcal{Y} = P_{\Omega}(\mathcal{Y})$ be a dual certificate satisfying the conditions stated in the Lemma.

$$
\|\mathcal{M} + \Delta\|_{\mathscr{A}} \stackrel{(a)}{\geq} \|\mathcal{M}\|_{\mathscr{A}} + \langle \mathcal{E}_{\mathcal{M}} + \mathcal{W} - \mathcal{Y}, \Delta \rangle = \|\mathcal{M}\|_{\mathscr{A}} + \langle \mathcal{E}_{\mathcal{M}} - P_T(\mathcal{Y}), P_T(\Delta) \rangle + \langle \mathcal{W} - P_{T^{\perp}}(\mathcal{Y}), P_{T^{\perp}}(\Delta) \rangle
$$

\n
$$
\stackrel{(b)}{\geq} \|\mathcal{M}\|_{\mathscr{A}} - \|\mathcal{E}_{\mathcal{M}} - P_T(\mathcal{Y})\|_F \|P_T(\Delta)\|_F + \|P_{T^{\perp}}(\Delta)\|_{\mathscr{A}} (1 - \|P_{T^{\perp}}(\mathcal{Y})\|_{\mathscr{A}}^*)
$$

\n
$$
\stackrel{(c)}{\geq} \|\mathcal{M}\|_{\mathscr{A}} - \frac{1}{2} \kappa_{\Omega}(N) \|\mathcal{E}_{\mathcal{M}} - P_T(\mathcal{Y})\|_F \|P_{T^{\perp}}(\Delta)\|_F + \frac{1}{2} \|P_{T^{\perp}}(\Delta)\|_{\mathscr{A}} \stackrel{(d)}{>} \|\mathcal{M}\|_{\mathscr{A}},
$$
\n(31)

where (a) follows as $\langle \Delta, \mathcal{Y} \rangle = 0$, (b) follows from Holder's inequality, (c) follows as $||P_{T^{\perp}}(\mathcal{Y})||_{\mathscr{A}}^* \leq \frac{1}{2}$ where (a) follows as $\langle \Delta, y \rangle = 0$, (b) follows from 110 der s mequality, (c) follows as $||T_T \cup y||_{\mathscr{A}} \ge 2$
and $\frac{1}{2} \kappa_{\Omega}(N) ||P_{T} \perp (\Delta) ||_F \ge ||P_T(\Delta)||_F$ w.h.p. (from (22)), and (d) follows as $||\mathcal{E}_{\mathcal{M}} - P_T(\mathcal{Y})||_$ $\kappa_\Omega(N)$ and using $\|\mathcal{X}\|_{\mathscr{A}} = \min_{Z \geq 0} tr(Z)$ s.t. $P_v[Z] = X_v \,\forall v \geq \min_{Z \geq 0} \|Z\|_F$ s.t. $P_v[Z] = X_v \,\forall v \geq \|\mathcal{X}\|_F$.

${\bf E} \quad {\bf Dual \; Centificate–Bound \; on \;} \| P_{T^\perp} {\cal Y}_p \|_{{\Bbb A}}^*$ A

Recall that \mathcal{Y}_p was constructed through a iterative process described in Sec. 5.2 following a golfing scheme introduced by Gross et al. [\[1\]](#page-3-1). The proof for the second property of the dual certificate, extends directly from the analogous proof for matrix completion by Recht [\[2\]](#page-3-2). We note that:

$$
||P_{T^{\perp}}\mathcal{Y}_{p}||_{\mathscr{A}}^{*} \leq \sum_{j=1}^{p} ||P_{T^{\perp}}\mathcal{R}_{\Omega^{(j)}}\mathcal{W}_{j-1}||_{\mathscr{A}}^{*} = \sum_{j=1}^{p} ||P_{T^{\perp}}(\mathcal{R}_{\Omega^{(j)}} - \mathcal{I})\mathcal{W}_{j-1}||_{\mathscr{A}}^{*} \leq \sum_{j=1}^{p} ||(\mathcal{R}_{\Omega^{(j)}} - \mathcal{I})\mathcal{W}_{j-1}||_{\mathscr{A}}^{*}
$$
\n(32)

Denote $\max_{(v,i,j)} |\langle \mathcal{X}, \mathcal{E}^{(v,i,j)} \rangle| = ||\mathcal{X}||_{\text{max}}.$

We state the following lemmas which are directly adapted from Theorem 3.5 and Lemma 3.6 in [\[2\]](#page-3-2): **Lemma 5.** Let Ω be any subset of entries of size $|\Omega|$ sampled independently according to Assumption 4, such that $E[R_s(\mathcal{W})] = \frac{1}{|\Omega|} \mathcal{W}$, then for all $\beta > 1$ and $N \ge 2$, the following holds with probability greater than $1 - N^{1-\beta}$ provided $|\Omega| > 6N\beta \log N$, and $\frac{|\Omega_k|}{n_k m_k} \ge \frac{|\Omega|}{N^2}$; $\forall k$:

$$
\|(\mathcal{R}_{\Omega} - \mathcal{I})\mathcal{W}\|_{\mathscr{A}}^* \le \|\mathcal{B}(\mathcal{R}_{\Omega}\mathcal{W} - \mathcal{W})\|_2 \le \sqrt{\frac{8\beta N^3 \log N}{3|\Omega|}} \|\mathcal{W}\|_{\max}
$$
(33)

Proof. The proof is obtained by applying the steps described for the analogous proof in [\[2\]](#page-3-2) on $||\mathcal{B}(\mathcal{R}_{\Omega}\mathcal{W}-\mathcal{W})||_2$. For $s=1,2,\ldots, |\Omega|$, let $\mathcal{V}_s=\mathcal{B}(\mathcal{R}_s(\mathcal{W}))$, then $\mathcal{B}(\mathcal{R}_{\Omega}\mathcal{W}-\mathcal{W})=\sum_{s=1}^{|\Omega|}(\mathcal{V}_s-E[\mathcal{V}_s])$ is a sum of independent zero mean random variables. From the proof of Theorem 3.5 in the work by Recht [\[3\]](#page-3-3), we have that for any $N \times N$ matrix Z , $||Z||_2 \le N||Z||_{\text{max}}$.

(i)
$$
\|\mathcal{V}_s - E[\mathcal{V}_s]\|_2 \le \|\mathcal{V}_s\|_2 + \|E[\mathcal{V}_s]\|_2 \le \frac{a}{|\Omega|} \|\mathcal{W}\|_{\max} + \frac{N}{|\Omega|} \|\mathcal{W}\|_{\max} \le \frac{3N^2}{2|\Omega|} \|\mathcal{W}\|_{\max}
$$
 for $N \ge 2$, where (a)
follows as $\frac{1}{p(v,i,j)} \le \frac{1}{\min_k \frac{|\Omega_k|}{n_k m_k}} \le \frac{N^2}{|\Omega|}$ if $\frac{|\Omega_k|}{n_k m_k} \ge \frac{|\Omega|}{N^2}$, $\forall k$; and $\|E[\mathcal{V}_s]\|_2 = \frac{1}{|\Omega|} \|\mathcal{B}(\mathcal{W})\|_2$.
(ii) $\|E[(\mathcal{V}_s - E[\mathcal{V}_s])^2]\|_2 = \|E[\mathcal{V}_s^2] - (E[\mathcal{V}_s])^2\|_2 \le \max \{||E[\mathcal{V}_s^2]||_2, ||(E[\mathcal{V}_s])^2||_2\}$.
Now, $\|(E[\mathcal{V}_s])^2\|_2 = \frac{1}{|\Omega|^2} \|\mathcal{B}(\mathcal{W}) * \mathcal{B}(\mathcal{W})\|_2 \le \frac{N^2}{|\Omega|^2} \|\mathcal{W}\|_{\max}^2$.
Also, $\|E[\mathcal{V}_s^2]\|_2 = \frac{1}{|\Omega|} \|\sum_{v=1}^V \sum_{(i,j) \in \mathcal{I}(v)} \frac{1}{p(v,i,j)} \langle \mathcal{W}, \mathcal{E}^{(v,i,j)} \rangle \mathcal{B}(\mathcal{E}^{(v,i,j)})\|_2 \le \frac{N^4}{|\Omega|^2} \|\mathcal{W}\|_{\max}^2$.
Thus $\sigma^2 := \|E[(\mathcal{V}_s - E[\mathcal{V}_s])^2]\|_2 \le \frac{N^4}{|\Omega|^2} \|\mathcal{W}\|_{\max}^2$

 $\sqrt{8\beta N^3 \log N}$ The proof follows by using the above bounds in operator Bernstein's inequality with $t =$ $\frac{\sqrt{3}\log N}{3|\Omega|}\|\mathcal{W}\|_{\max}$

Lemma 6. If $\forall k, |\Omega_k| \ge c_0 \beta n_k R \log N$, and the Assumptions in 3.1 are satisfied, then for sufficiently large c_0 , the following holds with probability greater that $1 - N^{1-\beta}$:

$$
\forall \mathcal{W} \in T \ \|P_T \mathcal{R}_{\Omega} \mathcal{W} - \mathcal{W}\|_{\max} \le \frac{1}{2} \|\mathcal{W}\|_{\max} \tag{34}
$$

Using the above lemmas in (32), we have:

$$
||P_{T^{\perp}}\mathcal{Y}_{p}||_{\mathscr{A}}^{*} \leq \sum_{j=1}^{p} ||(\mathcal{R}_{\Omega^{(j)}} - \mathcal{I})\mathcal{W}_{j-1}||_{\mathscr{A}}^{*} \leq \sum_{j=1}^{p} \sqrt{\frac{8\beta N^{3} \log N}{3|\Omega^{(j)}|}} ||\mathcal{W}_{j-1}||_{\max}
$$

$$
\leq 2 \sum_{j=1}^{p} 2^{-j} \sqrt{\frac{8\beta N^{3} \log N}{3|\Omega^{(j)}|}} ||\mathcal{E}_{\mathcal{M}}||_{\max} \leq 2 \sum_{j=1}^{p} 2^{-j} \sqrt{\frac{8\beta \mu_{1} R N \log N}{3|\Omega^{(j)}|}} \leq \frac{1}{2}, \quad (35)
$$

where (a) follows from Lemma 5, (b) from Lemma 6 as $W_j = W_{j-1} - P_T \mathcal{R}_{\Omega} W_{j-1}$, (c) from the second incoherence condition in Assumption 2, and finally (d) if for large enough c_1 , $|\Omega^{(j)}| > c_1 \mu_1 \beta RN \log N$.

Finally, the probability that the proposed dual certificate \mathcal{Y}_p fails the conditions of Lemma 4 is given by a union bound of the failure probabilities of (24), Lemma 5, and 6 for any partition $\Omega^{(j)}$: $3c_1 \log(N\kappa_{\Omega}(N))N^{1-\beta}$; thus proving Theorem 1.

E.1 Proof of Lemma 6

Using union bound and noting that $\sum_{v} n_{r_v} n_{c_v} \leq N^2$, we have:

$$
Pr(||P_T \mathcal{R}_{\Omega} \mathcal{W} - \mathcal{W}||_{\max} > \frac{1}{2} ||\mathcal{W}||_{\max}) \le Pr(\langle P_T \mathcal{R}_{\Omega} \mathcal{W} - \mathcal{W}, \mathcal{E}^{(v,i,j)} \rangle > \frac{1}{2} ||\mathcal{W}||_{\max} \text{ for any } (v,i,j))N^2
$$

For each (v, i, j) , sample $s' = (v_{s'}, i_{s'}, j_{s'})$ according to the sampling distribution in Assumption 4. Define $\Psi_{(v,i,j)} = \langle \mathcal{E}^{(v,i,j)}, P_T \mathcal{R}_{s'} \mathcal{W} - \frac{1}{|\Omega|} \mathcal{W} \rangle$. Recall the definition of \mathcal{R}_s from the paper. Now each entry of $P_T \mathcal{R}_{\Omega} \mathcal{W} - \mathcal{W}$ is distributed as $\sum_{s=1}^{|\Omega|} \Psi_{(v,s)}^{(s)}$ (v, i,j) , where $\Psi(v, i,j)$ are iid samples of $\Psi(v, i,j)$.

We have that : $|\Psi_{(v,i,j)}| \leq \frac{1}{p(v,i,j)} ||P_T(\mathcal{E}^{(v,i,j)})||_F^2 \langle \mathcal{E}^{(v,i,j)}, \mathcal{W} \rangle \leq \frac{1}{c'\beta \log N} ||\mathcal{W}||_{\max}$

Also, $E[\Psi_{(v,i,j)}^2] = E[\frac{1}{p(v,i)}]$ $\frac{1}{p(v,i,j)^2} \langle \mathcal{E}^{(v,i,j)}, \mathcal{W} \rangle^2 \langle \mathcal{E}^{(v,i,j)}, \mathcal{E}^{(s')} \rangle^2] \leq \frac{1}{|\Omega| c' \beta}$ $\frac{1}{|\Omega|c'\beta\log N}$, where the expectation is over s'. Standard Bernstein inequality can be used with the above bounds to prove the lemma.

References

- [1] D Gross. Recovering low-rank matrices from few coefficients in any basis. Information Theory, IEEE Transactions on, 2011.
- [2] B. Recht. A simpler approach to matrix completion. JMLR, 2011.
- [3] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. *SIAM review*, 2010.
- [4] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computational Mathematics, 12(4):389–434, 2012.