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A Operator Bernstein Inequality

Theorem 1 (Operator Bernstein Inequality [4]). Let S;, i = 1,2,...,m be i.i.d self-adjoint operators of
dimension N. If there exists constants R and o2, such that Vi ||Si||op < R a.s., and Y, || E[S?]||op < 02,

then V>0 Pr(| S, Sillop > 1) < Nexp (554) (25)
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B Proof of Lemma 1

Recall that:

o T(X) = aff{y € X:V v,rowSpan(Y,,) C rowSpan(X,,) or rowSpan(Y,,) C rowSpan(X,,)}
o TH(X)={Y € X:Vv,rowSpan(Y,) L rowSpan(M,) and colSpan(Y,) L colSpan(M,)}

We need to show that VX € X, X € T+ iff (X,)) =0,VY € T.

— Let X € {X¥ € X:(X,Y) =0,V € T},if X ¢ T+, then Jv such that atleast one of the statements
below hold true:

(a) rowSpan(X,) £ rowSpan(M,), or
(b) colSpan(X,) £ colSpan(M,)

WLOG let us assume that (a) is true, the proof for the other case is analogous. Consider the decompo-
sition X, = X"+ X% such that rowSpan(ngl)) 1 rowSpan(M,) and rowSpan(X£2)) C rowSpan(M,).
Consider the collective matrix ) such that Y,, = XQSQ) if v/ = v, and Y, = 0 otherwise. Clearly, Y € T
as V v, rowSpan(Y,,) C rowSpan(X,, ), but (X¥,Y) # 0, a contradiction.

< If X € T+, then by the definitions, VY € T, (X,Y) = > (X,,Y,) = 0.

C Proof of Lemma 3

Recall R, and Rg from (18) and (19). Also recall that VA € X, X = Y1) 3 iy ez (X, ECHI)E@ED,
Thus, Pp(X) = Zle Z(i,j)el(v)<PT(X)v 5(v’i’j)>5(v’i’j) = 21‘;/:1 E(i,j)el’(v) (X, PT(g(U’i’j)»g(v’i’j)

Define Vs := PrRsPr: X — ;«){a PT(g(S))>1]DT(€(S))7 where p(?},i,j) = 5l + e, |

P(Vs,is,js) 2Ny Moy, 2Ny Mey



We then have E[Vs] = ﬁPT, and
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where (a) follows from the incoherence condition in Assumption 2, and (b) follows as Vk, Qx| >
coponk BB log N.

(i) Bound on [|[Vs — E[Vs]|lop

1
Wsllop = sup ————=(X, Pr(®) | Pr(EW)|r = 1Pr(€@)1%

(26)

(a) 1 1 1
s — EVs||lop < sllops || E[Vs]llop) < T oA o) T T AN 2
Ve = EVullop < max (Vg [ EWlp) < max (i ) = s (20)
where (a) follows as both Vs and E[Vs] are positive semidefinite.
(i) Bound on -2, | Z[(Ve — EVA])?]llop-
1
BV (X)) = B |- (X, Pr€) | Pre) [ Pr(e)
p(USalsa]s)
1 1 1
< E X, Pr(EONPr(EW)| = —————Pr(X). (2
~ coflog N [p(vs,z’s,js)< PrEPrET) |QcoBlog N (%) 28)
(a) 1
ES_E520:E2_E520< E20 E520 < ——, (2
IE[(Vs = EVs]) ]llop = I1E[VS] = (E[Vs])"]llop< max (| E[VS][lop, [[(E[Vs])"[lop) < Qo loe N’ (29)
where (a) follows as || Pr|op < 1.
Q
Thus, 0 := 3.0 | E[(Vs — BV lop < qaiegn
(iii) The lemma follows by using (i) and (i) above in the operator Bernstein inequality in (25]).
D Proof of Lemma 4
Recall that under the assumptions made in the paper || - ||z is norm, and by the sub differential
characterization of norms we have the following:
M|y ={E+W:ECEMNT,W T W5 <1} (30)

Recall &(M) from (4). In particular the set {Ex + W : W € T, |[W|% < 1} C 9| M|, where Epy is
the sign vector from Assumption 2.

Given any A,with Po(A) = 0, consider any W € T+, such that ||Pri(A)|ly = (W, Pri(A)) and
Em+W € 0|M|y. Let Y = Po(Y) be a dual certificate satisfying the conditions stated in the
Lemma.

M+ Al (g Ml + EMm+W =V, A) = Moy + (Ep — Pr(Y), Pr(A)) + (W = Pro (D), Pro(A))

®)
2 [Mlla = l[Em = PrO) e Pr(A) [ 7 + [ Pro(A)]lo (1= [[Pro (D))
© 1

1 (@)
2 (Ml = Sra(N)[[Em = PrV)llFl Pro(A)lle + 5 1Pre (A)lls > Ml (31)

where (a) follows as (A,Y) = 0, (b) follows from Holder’s inequality, (c) follows as ||Pp. ()|, < 3
and %HQ(N)HPTJ_(A)HF > ||Pr(A)||r w.h.p. (from (22)), and (d) follows as ||Exr — Pr(Y)|r < m
and using || X = mingyotr(Z) s.t.Py[Z] = X, Yo > mingyo | Z||F s.t.Py[Z] = Xy Vv > || X||F.



E Dual Certificate-Bound on || Pr.Y,|*,

Recall that ), was constructed through a iterative process described in Sec. 5.2 following a golfing
scheme introduced by Gross et al. [I]. The proof for the second property of the dual certificate,
extends directly from the analogous proof for matrix completion by Recht [2]. We note that:

p

p p
I1Prodollsy < Y IPreRoo Wil = Y I1Pre(Rawy = DWi-illiy < Y 1(Row — D)Wl
j=1 j=1 J=1
(32)

Denote max, ; j) [{X, E(U’i’j)>| = || X || max-

We state the following lemmas which are directly adapted from Theorem 3.5 and Lemma 3.6 in [2]:

Lemma 5. Let ) be (my subset of entries of size || sampled independently according to Assumption 4,
such that E[Rs(W)] = |Q|W then for all B > 1 and N > 2, the following holds with probability greater

than 1 — N8 provided |Q] > 6NBlog N, and J?@'k > J@,Vk

. 8BN3log N
(Ra =)Wy < [IB(RaW = W)lla <4/ WHWHmm (33)

Proof. The proof is obtained by applying the steps described for the analogous proof in [2] on
IB(RoW = W)l|o. For s = 1,2,...,]9Q], let V, = B(Rs(W)), then B(RoW — W) = S (v, — E[V,))
is a sum of independent zero mean random variables. From the proof of Theorem 3.5 in the work by
Recht [3], we have that for any N x N matrix Z, || Z]|2 < N||Z||max-

. ( ) 2 2
(1) [1Vs = EVll2 < Vellz + 1BV 2 < 2510 s + 351 s < 857 W llana for N > 2, where (a)

2. Q Q
follows as 5ty < min;.nkl < fi i A = b Vhs and [ EW]ll2 = gy [BOV)|l2

Now, II(E[Vs])2!\2 = ﬁIIB( ) x BOW)|2 < |mz\|WHmax

\%4
1 > .
’Z p(v,z,j) (W,g(vJ,J))B(E(U,W))H ’QP ||)/V||maX

)
Thus U HEK —F Vs])z] ‘ S HWHmax

The proof follows by using the above bounds in operator Bernstein’s inequality with ¢ =

8BN3log N
SBNIEN )

Lemma 6. IfVk, |Qx| > cofniRlog N, and the Assumptions in 3.1 are satisfied, then for sufficiently
large cg, the following holds with probability greater that 1 — N1

1

Using the above lemmas in (32), we have:

p
. 8BN3log N
HPlepHyi < Z ||(RQ(j> —HWj- 1H&f Z 3/Q ])‘ ||Wj—1||max
j=1
® .. [88N3log N (©) 861 RN log N (d) 1
<2y 270 22| mx<2 2J R T 35



where (a) follows from Lemma 5, (b) from Lemma 6 as W; = W;_1 — PrRoW,— 1, (c) from the second
incoherence condition in Assumption 2, and finally (d) if for large enough ¢y, QY| > ¢ BRN log N.

Finally, the probability that the proposed dual certificate ), fails the conditions of Lemma 4 is
given by a union bound of the failure probabilities of (24), Lemma 5, and 6 for any partition 0w,
3c1 log (Nko(N))N'=#; thus proving Theorem 1.

E.1 Proof of Lemma 6

Using union bound and noting that > n,,n., < N2, we have:
1 i g 1 .
Pr(|[PrRoW = Wlmax > 5lIWlmax) < Pr({PrRaW =W, £} > = || W max for any (v.i,j)) N

For each (v,,j), sample s = (Usl,isl, Js) according to the sampling distribution in Assumption 4.
Define U, ; ;) = (EWiI) | PrR W — o] LW). Recall the definition of R from the paper. Now each entry

of PrRoW — W is distributed as ELml gl , where \Ilgi)l ;) are iid samples of W, ; 5.

(U i,5)
We have that ’\Il vl])‘ = p(v,m HPT( gt )”2 <g(v7%73 >‘ < ’BlogNHWHmaX

Also, E[\If%v”)] = E[W(S(”“), W)2(EW4) ()2 < W, where the expectation is over s'.

Standard Bernstein inequality can be used with the above bounds to prove the lemma.
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