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A Operator Bernstein Inequality

Theorem 1 (Operator Bernstein Inequality [4]). Let Si, i = 1, 2, . . . ,m be i.i.d self–adjoint operators of
dimension N . If there exists constants R and σ2, such that ∀i ‖Si‖op ≤ R a.s., and

∑
i ‖E[S2

i ]‖op ≤ σ2,

then ∀ t > 0 Pr
(
‖
∑

i Si‖op > t
)
≤ N exp

(
−t2/2
σ2+Rt

3

)
(25)

B Proof of Lemma 1

Recall that:

• T (X ) = aff{Y ∈ X̄ : ∀ v, rowSpan(Yrv) ⊆ rowSpan(Xrv) or rowSpan(Ycv) ⊆ rowSpan(Xcv)}
• T⊥(X ) = {Y ∈ X̄ : ∀ v, rowSpan(Yv) ⊥ rowSpan(Mv) and colSpan(Yv) ⊥ colSpan(Mv)}

We need to show that ∀X ∈ X̄, X ∈ T⊥ iff 〈X ,Y〉 = 0, ∀Y ∈ T .

=⇒ Let X ∈ {X ∈ X̄ : 〈X ,Y〉 = 0,∀Y ∈ T}, if X /∈ T⊥, then ∃v such that atleast one of the statements
below hold true:

(a) rowSpan(Xv) 6⊥ rowSpan(Mv), or
(b) colSpan(Xv) 6⊥ colSpan(Mv)

WLOG let us assume that (a) is true, the proof for the other case is analogous. Consider the decompo-

sition Xv = X
(1)
v +X

(2)
v such that rowSpan(X

(1)
v ) ⊥ rowSpan(Mv) and rowSpan(X

(2)
v ) ⊆ rowSpan(Mv).

Consider the collective matrix Y such that Yv′ = X
(2)
v if v′ = v, and Yv′ = 0 otherwise. Clearly, Y ∈ T

as ∀ v, rowSpan(Yrv) ⊆ rowSpan(Xrv), but 〈X ,Y〉 6= 0, a contradiction.

⇐= If X ∈ T⊥, then by the definitions, ∀Y ∈ T , 〈X ,Y〉 =
∑

v〈Xv, Yv〉 = 0.

C Proof of Lemma 3

RecallRs andRΩ from (18) and (19). Also recall that ∀X ∈ X, X =
∑V

v=1

∑
(i,j)∈I(v)〈X , E(v,i,j)〉E(v,i,j).

Thus, PT (X ) =
∑V

v=1

∑
(i,j)∈I(v)〈PT (X ), E(v,i,j)〉E(v,i,j) =

∑V
v=1

∑
(i,j)∈I(v)〈X , PT (E(v,i,j))〉E(v,i,j)

Define Vs := PTRsPT : X → 1
p(vs,is,js)〈X , PT (E(s))〉PT (E(s)), where p(v, i, j) = |Ωrv |

2nrvmrv
+ |Ωcv |

2ncvmcv
.
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We then have E[Vs] = 1
|Ω|PT , and

‖Vs‖op = sup
‖X‖F =1

1

p(vs, is, js)
〈X , PT (E(s))〉‖PT (E(s))‖F =

1

p(vs, is, js)
‖PT (E(s))‖2F

(a)

≤ 1

p(vs, is, js)

(
µ0R

mrvs

+
µ0R

mcvs

)
(b)

≤ 1

c0β logN
, (26)

where (a) follows from the incoherence condition in Assumption 2, and (b) follows as ∀k, |Ωk| >
c0µ0nkRβ logN .

(i) Bound on ‖Vs − E[Vs]‖op

‖Vs − E[Vs]‖op

(a)

≤ max (‖Vs‖op, ‖E[Vs]‖op) ≤ max (
1

c0β logN
,

1

Ω
) =

1

c0β logN
(27)

where (a) follows as both Vs and E[Vs] are positive semidefinite.

(ii) Bound on
∑|Ω|

s=1 ‖E[(Vs − E[Vs])2]‖op.

E[(Vs)2(X)] = E

[
1

p(vs, is, js)2
〈X , PT (E(s))〉‖PT (E(s))‖2FPT (E(s))

]
≤ 1

c0β logN
E

[
1

p(vs, is, js)
〈X , PT (E(s))〉PT (E(s))

]
=

1

|Ω|c0β logN
PT (X ). (28)

‖E[(Vs − E[Vs])2]‖op = ‖E[V2
s ]− (E[Vs])2]‖op≤max (‖E[V2

s ]‖op, ‖(E[Vs])2‖op)
(a)

≤ 1

|Ω|c0β logN
, (29)

where (a) follows as ‖PT ‖op ≤ 1.

Thus, σ2 :=
∑|Ω|

s=1 ‖E[(Vs − E[Vs])2]‖op ≤ 1
c0β logN

(iii) The lemma follows by using (i) and (ii) above in the operator Bernstein inequality in (25).

D Proof of Lemma 4

Recall that under the assumptions made in the paper ‖ · ‖A is norm, and by the sub differential
characterization of norms we have the following:

∂‖M‖A = {E +W : E ∈ E (M) ∩ T,W ∈ T⊥, ‖W‖∗A ≤ 1} (30)

Recall E (M) from (4). In particular the set {EM+W :W ∈ T⊥, ‖W‖∗A ≤ 1} ⊂ ∂‖M‖A , where EM is
the sign vector from Assumption 2.

Given any ∆,with PΩ(∆) = 0, consider any W ∈ T⊥, such that ‖PT⊥(∆)‖A = 〈W, PT⊥(∆)〉 and
EM + W ∈ ∂‖M‖A . Let Y = PΩ(Y) be a dual certificate satisfying the conditions stated in the
Lemma.

‖M+ ∆‖A
(a)

≥ ‖M‖A + 〈EM +W −Y,∆〉 = ‖M‖A + 〈EM − PT (Y), PT (∆)〉+ 〈W − PT⊥(Y), PT⊥(∆)〉
(b)

≥ ‖M‖A − ‖EM − PT (Y)‖F ‖PT (∆)‖F + ‖PT⊥(∆)‖A (1− ‖PT⊥(Y)‖∗A )

(c)

≥ ‖M‖A −
1

2
κΩ(N)‖EM − PT (Y)‖F ‖PT⊥(∆)‖F +

1

2
‖PT⊥(∆)‖A

(d)
> ‖M‖A , (31)

where (a) follows as 〈∆,Y〉 = 0, (b) follows from Holder’s inequality, (c) follows as ‖PT⊥(Y)‖∗A ≤
1
2

and 1
2κΩ(N)‖PT⊥(∆)‖F ≥ ‖PT (∆)‖F w.h.p. (from (22)), and (d) follows as ‖EM − PT (Y)‖F < 1

κΩ(N)

and using ‖X‖A = minZ<0 tr(Z) s.t.Pv[Z] = Xv ∀v ≥ minZ<0 ‖Z‖F s.t.Pv[Z] = Xv ∀v ≥ ‖X‖F .



E Dual Certificate–Bound on ‖PT⊥Yp‖∗A

Recall that Yp was constructed through a iterative process described in Sec. 5.2 following a golfing
scheme introduced by Gross et al. [1]. The proof for the second property of the dual certificate,
extends directly from the analogous proof for matrix completion by Recht [2]. We note that:

‖PT⊥Yp‖∗A ≤
p∑
j=1

‖PT⊥RΩ(j)Wj−1‖∗A =

p∑
j=1

‖PT⊥(RΩ(j) − I)Wj−1‖∗A ≤
p∑
j=1

‖(RΩ(j) − I)Wj−1‖∗A

(32)

Denote max(v,i,j) |〈X , E(v,i,j)〉| = ‖X‖max.

We state the following lemmas which are directly adapted from Theorem 3.5 and Lemma 3.6 in [2]:

Lemma 5. Let Ω be any subset of entries of size |Ω| sampled independently according to Assumption 4,
such that E[Rs(W)] = 1

|Ω|W, then for all β > 1 and N ≥ 2, the following holds with probability greater

than 1−N1−β provided |Ω| > 6Nβ logN , and |Ωk|
nkmk

≥ |Ω|
N2 ;∀k:

‖(RΩ − I)W‖∗A ≤ ‖B(RΩW −W)‖2 ≤

√
8βN3 logN

3|Ω|
‖W‖max (33)

Proof. The proof is obtained by applying the steps described for the analogous proof in [2] on

‖B(RΩW −W)‖2. For s = 1, 2, . . . , |Ω|, let Vs = B(Rs(W)), then B(RΩW −W) =
∑|Ω|

s=1(Vs − E[Vs])
is a sum of independent zero mean random variables. From the proof of Theorem 3.5 in the work by
Recht [3], we have that for any N ×N matrix Z, ‖Z‖2 ≤ N‖Z‖max.

(i) ‖Vs −E[Vs]‖2 ≤ ‖Vs‖2 + ‖E[Vs]‖2
(a)

≤ N2

|Ω| ‖W‖max + N
|Ω|‖W‖max ≤ 3N2

2|Ω| ‖W‖max for N ≥ 2, where (a)

follows as 1
p(v,i,j) ≤

1

mink
|Ωk|
nkmk

≤ N2

|Ω| if |Ωk|
nkmk

≥ |Ω|
N2 , ∀k; and ‖E[Vs]‖2 = 1

|Ω|‖B(W)‖2.

(ii) ‖E[(Vs − E[Vs])2]‖2 = ‖E[V2
s ]− (E[Vs])2‖2 ≤ max {‖E[V2

s ]‖2, ‖(E[Vs])2‖2}.

Now, ‖(E[Vs])2‖2 = 1
|Ω|2 ‖B(W) ∗ B(W)‖2 ≤ N2

|Ω|2 ‖W‖
2
max.

Also, ‖E[V2
s ]‖2 = 1

|Ω|

∥∥∥ V∑
v=1

∑
(i,j)∈I(v)

1

p(v, i, j)
〈W, E(v,i,j)〉B(E(v,i,j))

∥∥∥
2
≤ N4

|Ω|2
‖W‖2max.

Thus σ2 := ‖E[(Vs − E[Vs])2]‖2 ≤ N4

|Ω|2 ‖W‖
2
max

The proof follows by using the above bounds in operator Bernstein’s inequality with t =√
8βN3 logN

3|Ω| ‖W‖max

Lemma 6. If ∀k, |Ωk| ≥ c0βnkR logN , and the Assumptions in 3.1 are satisfied, then for sufficiently
large c0, the following holds with probability greater that 1−N1−β:

∀ W ∈ T ‖PTRΩW −W‖max ≤
1

2
‖W‖max (34)

Using the above lemmas in (32), we have:

‖PT⊥Yp‖∗A ≤
p∑
j=1

‖(RΩ(j) − I)Wj−1‖∗A
(a)

≤
p∑
j=1

√
8βN3 logN

3|Ω(j)|
‖Wj−1‖max

(b)

≤ 2

p∑
j=1

2−j

√
8βN3 logN

3|Ω(j)|
‖EM‖max

(c)

≤ 2

p∑
j=1

2−j

√
8βµ1RN logN

3|Ω(j)|
(d)

≤ 1

2
, (35)



where (a) follows from Lemma 5, (b) from Lemma 6 as Wj =Wj−1−PTRΩWj−1, (c) from the second
incoherence condition in Assumption 2, and finally (d) if for large enough c1, |Ω(j)| > c1µ1βRN logN .

Finally, the probability that the proposed dual certificate Yp fails the conditions of Lemma 4 is
given by a union bound of the failure probabilities of (24), Lemma 5, and 6 for any partition Ω(j):
3c1 log (NκΩ(N))N1−β; thus proving Theorem 1.

E.1 Proof of Lemma 6

Using union bound and noting that
∑

v nrvncv ≤ N2, we have:

Pr(‖PTRΩW −W‖max >
1

2
‖W‖max) ≤ Pr(〈PTRΩW −W, E(v,i,j)〉 > 1

2
‖W‖max for any (v,i,j))N2

For each (v, i, j), sample s′ = (vs′ , is′ , js′) according to the sampling distribution in Assumption 4.
Define Ψ(v,i,j) = 〈E(v,i,j), PTRs′W− 1

|Ω|W〉. Recall the definition of Rs from the paper. Now each entry

of PTRΩW −W is distributed as
∑|Ω|

s=1 Ψ
(s)
(v,i,j), where Ψ

(s)
(v,i,j) are iid samples of Ψ(v,i,j).

We have that : |Ψ(v,i,j)| ≤ 1
p(v,i,j)‖PT (E(v,i,j))‖2F 〈E(v,i,j),W〉| ≤ 1

c′β logN ‖W‖max

Also, E[Ψ2
(v,i,j)] = E[ 1

p(v,i,j)2 〈E(v,i,j),W〉2〈E(v,i,j), E(s′)〉2] ≤ 1
|Ω|c′β logN , where the expectation is over s′.

Standard Bernstein inequality can be used with the above bounds to prove the lemma.
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