
Supplementary Material for “The Bayesian Echo Chamber”

Fangjian Guo Charles Blundell Hanna Wallach Katherine Heller
Duke University

Durham, NC, USA
guo@cs.duke.edu

Gatsby Unit, UCL
London, UK

c.blundell@gatsby.ucl.ac.uk

Microsoft Research
New York, NY, USA
wallach@microsoft.com

Duke University
Durham, NC, USA

kheller@stat.duke.edu

1 INFLUENCE VIA TURN-TAKING

In this section, we provide appropriate priors and
details of an inference algorithm for the variant of
Blundell et al.’s model [2012] described in section 2
of the paper. For real-world group discussions, the
utterance start times T = {T (p)}Pp=1 and durations

D = {{∆t(p)n }N
(p)(T )

n=1 }Pp=1 are observed, while param-

eters Θ = {λ(p)0 , {ν(qp)}q ̸=p, τ
(p)
T }Pp=1 are unobserved;

however, information about the values of these param-
eters can be quantified via their posterior distribution
given T and D, obtained via Bayes’ theorem, i.e.,

P (Θ | T ,D) ∝ P (T |Θ,D)P (Θ). (1)

The likelihood term has the form

P (T |Θ,D) =

P∏
p=1

exp
(
−Λ(p)(T )

)N(p)(T )∏
n=1

λ(p)(t(p)n )

 , (2)

where Λ(p)(T ) =
∫ T

0
λ(p)(t) dt is the expected total

number of utterances made over the entire observation
interval from 0 to T [Daley and Vere-Jones, 1988].

Like Blundell et al., we place an improper prior over

λ
(p)
0 > 0. We also use priors to ensure that the mul-

tivariate Hawkes process is stationary. Specifically,
we employ the stationarity condition of Bremaud and
Massouli [1996]. If M is a P × P matrix given by

M (qp) =

∫ ∞

u

∣∣∣ g(qp)(t, u)∣∣∣ dt = ν(qp)τ
(p)
T , (3)

then this condition requires the spectral radius ofM to
be strictly less than one. This condition is not straight-
forward to enforce with tractable constraints; however,
since the spectral radius of M is upper-bounded by
any matrix norm, the condition may be enforced by
requiring that ∥M∥ < 1 for any norm ∥ · ∥. We use

the maximum absolute column sum norm:

∥M∥1→1 = max
∥x∥1=1

∥Mx∥1 (4)

= max
p=1,··· ,P

τ
(p)
T

∑
q ̸=p

ν(qp). (5)

Rewriting this expression implies an improper joint

prior over {τ (p)T }Pp=1 and {{ν(qp)}q ̸=p}Pp=1 in which

0 < τ
(p)
T <

1∑
q ̸=p ν

(qp)
and (6)

0 < ν(qp) <
1

τ
(p)
T −

∑
r ̸=q,r ̸=p

ν(rp). (7)

Although the resultant posterior distribution
P (Θ | T ,D) is analytically intractable, posterior
samples can be drawn using either the conditional
intensity function approach or the cluster process ap-
proach described by Rasmussen [2013]. Like Blundell
et al., we take the former approach and use a slice-
within-Gibbs algorithm [Neal, 2003] that sequentially
samples each parameter from its conditional posterior.

This slice-within-Gibbs algorithm requires frequent
evaluation of the likelihood in equation 2; however,
the computational cost can be reduced by noting that
the product over rate functions can be efficiently com-
puted using the following recurrence relation:

λ(p)(t(p)n ) =

λ
(p)
0 +

(
λ(p)(t

(p)
n−1)− λ

(p)
0

)
exp

(
−
t
(p)
n − t

(p)
n−1

τ
(p)
T

)
+

∑
q ̸=p

∑
m:t

(p)
n−1≤t′

(q)
m <t

(p)
n

ν(qp) exp

(
− t

(p)
n − t′

(q)
m

τ
(p)
T

)

for n = 2, 3, . . . , N (p)(T ). The initial term is

λ(p)(t
(p)
1 ) =

λ
(p)
0 +

∑
q ̸=p

∑
m:t′

(q)
m <t

(p)
1

ν(qp) exp

(
− t

(p)
1 − t′

(q)
m

τ
(p)
T

)
.
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2 INFLUENCE VIA LINGUISTIC
ACCOMMODATION

In this section, we provide a directed graphical model,
appropriate priors, and details of an inference algo-
rithm for our model, the Bayesian Echo Chamber.

The likelihood term implied by our model is

P (W |Θ, T ,D) =

P∏
p=1

N(p)(T )∏
n=1

P (w(p)
n | {{w(q)

m }
m:t′

(q)
m <t

(p)
n

}q ̸=p,Θ).

A directed graphical model depicting the structure of

P (w
(p)
n | {{w(q)

m }
m:t′

(q)
m <t

(p)
n

}q ̸=p,Θ) is in figure 1.

q : q 6= p

m : t
′(q)
m < t

(p)
n
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Figure 1: Directed Graphical Model Depicting the

Structure of P (w
(p)
n | {{w(q)

m }
m:t′

(q)
m <t

(p)
n

}q ̸=p,Θ).

We place a gamma prior over ρ(qp), with a shape
parameter chosen to encourage shrinkage towards

zero. Due to the additive nature of B
(p)
n , the

value of β
(p)
v should be comparable in magnitude to∑

q ̸=p ρ
(qp)ψ

(qp)
v,n . We therefore place a gamma prior

over each β
(p)
v , with shape and scale parameters cho-

sen to yield this property for real-world data sets. We

also place broad gamma priors over α(p) and τ
(p)
L . In

practice, inference is insensitive to the specific val-
ues of the shape and scale parameters of these pri-
ors, provided they are broad. For our experiments, we

used α(p) ∼ Gamma (10, 10), β
(p)
v ∼ Gamma (10, 20),

ρ(qp) ∼ Gamma (1, 2), and τ (p) ∼ Gamma (10, 10).

Although the resultant posterior distribution
P (Θ |W, T ,D) is intractable, posterior samples

of {α(p),β(p), {ρ(qp)}q ̸=p, τ
(p)
L }Pp=1 can be drawn using

a collapsed1 slice-with-Gibbs algorithm that sequen-
tially samples each parameter from its conditional
posterior. Pseudocode for this approach is given in

1Probability vectors {{ϕ(p)
n }N

(p)(T )
n=1 }Pp=1 can be inte-

grated out using Dirichlet–multinomial conjugacy.

algorithm 1. Each parameter is sampled in a uni-
variate fashion, except for β(p), which is drawn using
multivariate slice sampling with the hyperractangle
method [Neal, 2003]. To improve mixing, we drew
ten samples of β(p) during each Gibbs sweep. When
implemented in Python, we were able to draw 4,000
posterior samples (including 1,000 burn-in samples)

of {α(p),β(p), {ρ(qp)}q ̸=p, τ
(p)
L }Pp=1 in at most a couple

of hours for all data sets used in our experiments.

Algorithm 1 Inference Algorithm

for i = 1, 2, · · · , I do
for p = 1, 2, · · · , P do

Slice sample α(p)

Slice sample τ
(p)
L

for q ̸= p do
Slice sample ρ(qp)

end for
for j = 1, 2, · · · , 10 do

Slice sample β(p) (multivariate)
end for

end for
end for

3 EXPERIMENTS

The salient characteristics of all data sets used in
our experiments are provided in table 1. For each
data set obtained from TalkBank [MacWhinney, 2007],
the “TalkBank” column contains the data set iden-
tifier within the “Meetings” section of the TalkBank
database. The “No. Tokens” column indicates the to-
tal number of tokens in each data set after restricting
the vocabulary to the V = 600 most frequent stemmed
types. The “Tokens Removed” column contains the
percentage of tokens that were discarded via this step.

Table 2 contains predictive log probabilities for sev-
eral additional data sets. The “Family Discussion”
and “University Lecture” data sets are conversation
transcripts from the Santa Barbara Corpus of Spo-
ken American English [MacWhinney, 2007]. These
data sets capture the back-and-forth of real-world con-
versations. The “January 29, 2008 FOMC Meeting”
data set is one of the FOMC meeting transcripts used
our exploratory analysis. The salient characteristics of
these data sets are given in table 1. For all but one of
these additional data sets, the Bayesian Echo Cham-
ber out-performed a unigram language model and Blei
and Lafferty’s dynamic topic model [2006] by predict-
ing higher probabilities of held-out data for both a
90%–10% and an 80%–20% training–testing split.

Posterior means and standard deviations of the influ-
ence parameters {{ρ(qp)}q ̸=p}Pp=1 inferred from the DC
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Table 1: Salient Characteristics of Data Sets.

Data Set TalkBank No. People No. Utterances No. Tokens Tokens Removed

Synthetic – 3 300 15,070 0.00%
University Lecture SB/12 5 138 3,482 4.42%
Birthday Party SB/49 8 454 4,229 5.88%
DC v. Heller SCOTUS/07-290 10 365 15,104 7.21%
L&G v. Texas SCOTUS/02-102 6 200 8,573 5.47%
Citizens United v. FEC SCOTUS/08-205b 10 345 12,700 7.41%
12 Angry Men – 12 312 6,350 5.25%
January 29, 2008 FOMC Meeting – 4 101 13,505 13.74%

Table 2: Additional Predictive Log Probabilities of Held-Out Data.

10% Test Set 20% Test Set

Data Set Our Model Unigram DTM Our Model Unigram DTM

University Lecture -528.23±0.06 -541.23±0.05 -520.74 -1972.67±0.13 -2009.62±0.12 -2110.66
Birthday Party -1883.45±0.11 -1961.4±0.11 -1900.68 -4384.42±0.16 -4625.57±0.20 -4498.467
January 29, 2008 FOMC Meeting -3187.73±0.04 -3338.59±0.10 -3211.09 -17342.43±0.21 -17779.01±0.24 -17726.64

v. Heller Supreme Court case using our model are
given in tables 3 and 4, respectively. These values were
obtained using 3,000 samples from the posterior dis-
tribution. To further illustrate posterior uncertainty,
influence networks drawn using 25%, 50% (i.e., me-
dian), and 75% posterior quantiles are shown in fig-
ure 2. These networks look very similar to each other.

Posterior means and standard deviations of the in-
fluence parameters {{ρ(qp)}q ̸=p}Pp=1 inferred from “12
Angry Men” using our model are provided in tables 5
and 6, respectively. These values were obtained us-
ing 3,000 samples from the posterior distribution. To
further illustrate posterior uncertainty, influence net-
works drawn using 25%, 50%, and 75% posterior quan-
tiles are provided in figure 3. As with the DC v. Heller
case, these networks look very similar to one another.

Log probabilities, obtained using a 90%–10% training–
testing split and a vocabulary of V = 300 types, are
provided for the tied and untied combined models in
table 7. The tied model, whose likelihood is the prod-
uct of the Bayesian Echo Chamber’s likelihood and
that of Blundell et al.’s model but with shared influ-
ence parameters, assigned lower probabilities to held-
out data than the fully factorized (i.e., untied) model.

Data Set Tied Untied

L&G v. Texas -5507.11±0.15 -5502.87±0.15
DC v. Heller -6321.30±0.16 -6303.55±0.15
Citizens United v. FEC -4795.24±0.18 -4777.96±0.17
“12 Angry Men” -4014.56±0.24 -3987.20±0.23

Table 7: Log Probabilities of Held-Out Data for the
Combined Model with Tied and Untied Parameters.
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Table 3: Posterior Means of {{ρ(qp)}q ̸=p}Pp=1 Inferred from the DC v. Heller Case.

To

From DELLI GURA ROBE CLEME STEV SCAL KENN GINS SOUT BREY

DELLI – 65.85 109.92 109.36 86.78 125.29 143.29 71.21 82.77 72.98
GURA 10.18 – 4.79 2.43 7.75 3.27 2.62 3.17 6.84 5.08
ROBE 161.29 37.99 – 6.44 3.76 5.12 4.77 7.62 3.99 7.67
CLEME 5.12 37.41 11.02 – 16.53 4.84 6.03 15.77 12.53 32.13
STEV 3.93 9.27 3.89 4.37 – 3.10 2.70 2.91 4.42 3.12
SCAL 50.53 15.45 7.77 5.62 4.64 – 3.41 6.04 7.17 6.83
KENN 180.91 2.90 5.86 50.67 13.75 4.93 – 4.50 5.53 5.63
GINS 6.98 9.91 11.29 4.55 3.22 4.08 2.69 – 2.95 3.68
SOUT 3.34 4.34 3.86 5.90 3.55 3.54 2.59 3.22 – 4.50
BREY 8.24 16.48 5.18 2.45 3.71 3.22 2.99 4.31 5.26 –

Table 4: Posterior Standard Deviations of {{ρ(qp)}q ̸=p}Pp=1 Inferred from the DC v. Heller Case.

To

From DELLI GURA ROBE CLEME STEV SCAL KENN GINS SOUT BREY

DELLI – 7.36 11.08 8.99 10.30 12.25 12.73 10.12 10.94 9.22
GURA 6.12 – 3.88 2.34 5.90 3.07 2.51 3.12 5.20 4.39
ROBE 14.60 12.93 – 5.76 3.48 4.92 4.75 6.68 3.91 7.48
CLEME 4.69 6.32 7.11 – 9.73 4.45 5.15 9.35 8.49 8.81
STEV 3.65 7.56 3.68 4.16 – 3.12 2.73 2.99 4.40 3.08
SCAL 14.02 9.42 6.84 5.02 4.43 – 3.33 5.67 6.46 6.28
KENN 14.84 2.70 5.46 17.43 10.61 4.68 – 4.14 5.13 5.64
GINS 6.32 8.14 9.74 4.24 3.09 4.09 2.58 – 2.79 3.56
SOUT 3.52 4.11 3.75 5.85 3.72 3.25 2.47 3.16 – 4.86
BREY 7.19 8.40 4.89 2.43 3.58 3.05 2.95 3.91 4.53 –
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Figure 2: Influence Networks for the DC v. Heller Case Drawn Using (a) 25%, (b) 50%, and (c) 75% Quantiles.

Table 5: Posterior Means of {{ρ(qp)}q ̸=p}Pp=1 Inferred from “12 Angry Men.”

To

From Juror 8 Juror 3 Juror 10 Juror 7 Juror 1 Juror 4 Juror 6 Juror 11 Juror 12 Juror 9 Juror 2 Juror 5

Juror 8 – 82.09 61.82 61.08 39.80 80.38 75.30 48.96 80.12 72.86 43.58 33.98
Juror 3 134.35 – 112.40 47.76 27.56 59.83 10.62 6.46 16.85 5.28 5.51 6.84
Juror 10 53.38 88.01 – 30.65 24.54 4.71 12.72 3.41 9.48 4.08 4.25 5.50
Juror 7 19.56 11.53 13.97 – 8.24 3.69 5.19 3.35 4.46 4.25 4.86 4.08
Foreman 5.12 5.51 3.30 2.99 – 3.02 3.74 2.66 4.82 2.57 3.11 3.18
Juror 4 43.05 11.73 2.88 2.88 3.44 – 2.47 46.62 4.08 6.47 4.55 3.46
Juror 6 5.79 3.23 3.03 3.16 2.76 2.56 – 2.82 3.14 3.11 3.30 3.23
Juror 11 3.39 2.76 2.63 2.17 2.28 2.80 2.32 – 2.61 2.50 2.40 2.44
Juror 12 9.61 3.49 3.00 3.47 2.84 2.91 4.44 3.59 – 2.64 3.62 2.76
Juror 9 4.28 3.44 2.56 2.95 2.68 2.73 2.96 4.44 3.05 – 2.67 2.82
Juror 2 2.85 2.99 2.84 2.67 3.34 2.41 3.34 2.16 3.14 2.49 – 3.05
Juror 5 2.88 2.49 2.59 2.38 2.54 2.23 2.47 2.77 2.53 2.73 2.35 –
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Table 6: Posterior Standard Deviations of {{ρ(qp)}q ̸=p}Pp=1 Inferred from “12 Angry Men.”

To

From Juror 8 Juror 3 Juror 10 Juror 7 Juror 1 Juror 4 Juror 6 Juror 11 Juror 12 Juror 9 Juror 2 Juror 5

Juror 8 – 13.10 14.50 14.09 14.12 14.54 13.52 12.53 13.51 11.50 12.35 11.31
Juror 3 15.21 – 18.19 17.49 16.01 16.63 8.71 5.76 12.62 4.86 5.00 6.17

Juror 10 14.47 16.84 – 17.76 14.06 4.36 10.20 3.33 8.20 3.82 4.22 5.15
Juror 7 12.34 10.15 10.36 – 7.30 3.44 4.91 3.09 4.66 4.08 4.57 3.80

Foreman 4.58 5.18 3.42 3.12 – 3.10 3.80 2.63 4.66 2.57 3.16 3.06
Juror 4 12.45 9.17 2.84 2.81 3.32 – 2.44 15.45 4.04 6.41 4.27 3.38
Juror 6 5.51 3.42 3.04 3.14 2.66 2.44 – 2.72 3.06 3.06 3.43 3.30

Juror 11 3.46 2.75 2.55 2.26 2.26 2.77 2.28 – 2.60 2.47 2.33 2.41
Juror 12 8.14 3.38 3.00 3.44 2.76 2.87 4.24 3.51 – 2.63 3.46 2.63
Juror 9 4.35 3.39 2.51 2.97 2.64 2.70 2.90 4.59 3.00 – 2.58 2.76
Juror 2 2.79 2.90 2.68 2.64 3.42 2.23 3.41 2.20 3.07 2.49 – 3.21
Juror 5 2.83 2.53 2.68 2.49 2.46 2.28 2.55 2.76 2.63 2.80 2.35 –
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Figure 3: Influence Networks for “12 Angry Men” Drawn Using (a) 25%, (b) 50%, and (c) 75% Quantiles.
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