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6 Settings for the Synthetic Data

6.1 Generation of Synthetic Matrices

Let ΛA and ΛB be a pair of matrices. For our simula-
tion in Section 4.1, we generated matrices that satisfy
Assumption 1. Specifically, we generated matrices that
simultaneously satisfy three conditions:

• positive-definite: Λu � νId for u ∈ {A,B},

• sparse: Λu,ij = 0 for (i, j) ∈ Ωu with u ∈ {A,B},

• homogeneous: ΛA,ij = ΛB,ij for (i, j) ∈ Π,

where ν is some positive constant, and ΩA, ΩB, and Π
are properly chosen subsets of {1, 2, . . . , d}2. In par-
ticular, all pairs of healthy variable indices have to
be involved in Π so that the homogeneity is satisfied.
In addition, based on the sparseness and homogene-
ity conditions, ΩA ∩ ΩB ⊆ Π must be satisfied. We
note that, although the first condition is not necessary
for general adjacency matrices, we used it since both
the covariance and precision matrices we used in the
simulation are positive-definite matrices.

The matrix generation procedure starts by specifying
ν, ΩA, ΩB, Π, and two reference matrices CA, CB ∈
Rd×d. Here we chose CA and CB to be symmetric but
not necessarily to be positive-definite. We then derive
ΛA and ΛB as the solution to the problem:

min
{Λu}u∈{A,B}

1

2

∑
u∈{A,B}

‖Λu − Cu‖2F,

s.t. Λu � νId (u ∈ {A,B}),
Λu,ij = 0 for (i, j) ∈ Ωu (u ∈ {A,B}),
ΛA,ij = ΛB,ij for (i, j) ∈ Π,

where ‖·‖F denotes the Frobenius-norm of the matrix.
This problem corresponds to searching for the matrices

ΛA and ΛB that are closest to the reference matrices
CA and CB under the specified conditions. The prob-
lem is convex and we can solve it by using ADMM [24].
We first rewrite the problem into an equivalent form:

min
{Xu}u∈{A,B},{Yu}u∈{A,B}

1

2

∑
u∈{A,B}

(‖Xu − Cu‖2F

+ δΩu(Xu) + δ̃(Yu)),

s.t. Xu − Yu + νId = 0 (u ∈ {A,B}),
XA,ij −XB,ij = 0 for (i, j) ∈ Π,

where δΩu(Xu) and δ̃(Yu) are the indicator functions
defined as

δΩu
(Xu) :=

{
0 if Xu,ij = 0 for all (i, j) ∈ Ωu,

∞ otherwise,

δ̃(Yu) :=

{
0 if Yu � 0,

∞ otherwise,

and we have Λu = Yu as the solution for u ∈ {A,B}.
Let Zu ∈ Rd×d (u ∈ {A,B,O}) be the matrix of La-
grange multipliers. We then define the Augmented
Lagrangian (AL) function as

Lβ(X,Y, Z) =
1

2

∑
u∈{A,B}

(‖Xu − Cu‖2F + δΩu
(Xu) + δ̃(Yu))

+
β

2
(
∑

u∈{A,B}

‖Xu − Yu + νId +
1

β
Zu‖2F

+ ‖EΠ � (XA −XB) +
1

β
ZO‖2F),

where we set X := {Xu}u∈{A,B}, Y := {Yu}u∈{A,B},
and Z := {Zu}u∈{A,B,O} to simplify the notation, �
denotes the Hadamard product of matrices, and EΠ is
an indicator matrix of the set Π defined as

EΠ,ij :=

{
1 if (i, j) ∈ Π,

0 otherwise.
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The optimization procedure of ADMM is defined using
this AL function. Specifically, we repeat these steps
until one of the termination criteria is fulfilled:
X(k+1) ∈ argminX Lβ(X,Y (k), Z(k)),

Y (k+1) ∈ argminY Lβ(X(k+1), Y, Z(k)),

Z
(k+1)
u = Z

(k)
u + β(X

(k+1)
u − Y (k+1)

u + νId) (u ∈ {A,B}),
Z

(k+1)
O = Z

(k)
O + βEΠ � (X

(k+1)
A −X(k+1)

B ).

The first step, the update of X, can be decomposed
into individual problems on each (i, j)th entry given
as

min
XA,ij ,XB,ij

1

2

∑
u∈{A,B}

{(Xu,ij − Cu,ij)2 + β(Xu,ij − P (k)
u,ij)

2}

+
β

2
{EΠ,ij(XA,ij −XB,ij) +

1

β
ZO,ij}2,

s.t. Xu,ij = 0 for (i, j) ∈ Ωu (u ∈ {A,B}),

where P
(k)
u is the matrix defined as

P (k)
u = Y (k)

u − 1

β
Z(k)
u − νId (u ∈ {A,B}).

When EΠ,ij = 0 or (i, j) /∈ Π, the problem can be
further reduced into the individual problems on XA,ij

and XB,ij . Hence, we have the solution

X
(k+1)
u,ij =

{
1

1+β (Cu,ij + βP
(k)
u,ij) if (i, j) /∈ Ωu,

0 otherwise.

For the case of EΠ,ij = 1 and (i, j) /∈ Ωu (u ∈ {A,B}),
we have the solution[
XA,ij

XB,ij

]
=

1

(1 + β)(1 + 3β)

×
[
1 + 2β β
β 1 + 2β

][
CA,ij + βP

(k)
A,ij − Z

(k)
O,ij

CB,ij + βP
(k)
B,ij + Z

(k)
O,ij

]
.

The update problem for Y can be decomposed into
individual problems on YA and YB, which are given as

min
Yu

1

2
‖Yu −Q(k)

u ‖2F, s.t. Yu � 0 (u ∈ {A,B}),

Q(k)
u = X(k+1)

u +
1

β
Z(k)
u + νId.

This problem is equivalent to the Euclidean projec-

tion of the matrix Q
(k)
u onto the positive semidefinite

cone. Hence, this can be computed analytically us-
ing the eigenvalue decomposition. Here we assume
all of the matrices are symmetric, which can be as-
sured by initializing all of the matrices to be symmet-

ric. Let Q
(k)
u = UDU> be the eigenvalue decompo-

sition with D = diag(σ1, σ2, . . . , σd). We then have

Y
(k+1)
u = UD̃U> with D = diag(σ̃1, σ̃2, . . . , σ̃d) where
σ̃i = max(σi, 0).

6.2 Parameter Settings

This subsection explains how the sparsity patterns ΩA

and ΩB and the shared pattern Π are chosen. For
the sparsity pattern, we randomly pick index pairs so
that the average size of Ωu is 3, 000 when d = 100.
This corresponds to choosing 70% of the matrix entries
to be zero. For d = 200, they are set to be 8, 000
(80%). The set Π, the shared pattern, is chosen as
Π = (I ×I)∪ (ΩA∩ΩB)∪Π+. The first set is all pairs
of healthy variables and the second set corresponds to
the shared zero entries between the two matrices. The
set Π+ specifies the common non-zero entries, so that
Π+ ⊆ ΩcA ∩ΩcB holds where c denotes the compliment
of the set. For the construction of Π+, we consider the
subset of ΩcA ∩ ΩcB defined as

Π0 := (I × I)c ∩ (ΩcA ∩ ΩcB),

which means that Π0 specifies the set of index pairs
whose corresponding edges are non-zeros, and hence
connected to anomalous variables. We then randomly
pick index pairs (i, j) ∈ Π0 and add to Π+. We set the
size |Π| to be 70% of |Π0| for both d = 100 and 200.

Across all of the settings, the value of ν is set as
10−3. Here is how the reference matrices CA and
CB are generated. We first generate random matri-

ces LA, LB ∈ Rd×d
√
de where each entry of each of

the matrices is generated from a standard Gaussian
distribution N (0, 1). We then set CA = LAL

>
A and

CB = LBL
>
B , and rescale them so that their diagonals

are one. Note that the generated matrices have at most
rank d

√
de which implies that they are rank deficient.

Therefore, the resulting covariance and precision ma-
trices encourage variables to have higher dependencies
with other variables.

6.3 Generation of Matrices with a
Concentrated Anomaly Pattern

In Section 4.1, Figure 6, we used a concentrated
anomaly pattern for the simulation. The synthetic
matrices were generated by modifying the generated
matrices in Section 6.1. Here, we denote by MI×J the
sub-matrix consisting of the components of a matrix
M with indices in I × J . We choose a subset H ⊆ I
and update the matrix ΛA by ΛA,H×I ← aΛA,H×I
and ΛA,I×H ← aΛA,I×H where a > 1 is some large
positive value. The matrix ΛB is updated in the same
manner. Since the modified matrices ΛA and ΛB are
no longer positive definite, we add an identity matrix
ΛA ← ΛA + cId and ΛB ← ΛB + cId so that the ma-
trices become positive definite. In our simulation in
Section 4.1, we set the size of H to be 5 and a = 10.
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7 Proofs of Theorems

Here, we provide the proofs of the theorems in the
manuscript. We first enumerate key lemmas relevant
to a GGM estimator that are needed in the proofs, and
then present the proofs of theorems.

7.1 Key Lemmas on GGM estimators

Suppose that we have two groups of i.i.d. samples

{x(A)
i }

nA
i=1 ∼ pA and {x(B)

i }
nB
i=1 ∼ pB (x

(A)
i ∈ Rd and

x
(B)
i ∈ Rd). To estimate the precision matrices ΛA and

ΛB corresponding to pA and pB, respectively, we use
the following graphical–Lasso type estimators:

Λ̂A := argminΛ�0− log det(Λ) + tr[Σ̂AΛ] + λ(A)
n ‖Λ‖1,off ,

Λ̂B := argminΛ�0− log det(Λ) + tr[Σ̂BΛ] + λ(B)
n ‖Λ‖1,off ,

where Σ̂A :=
∑nA

i=1 x
(A)
i x

(A)>
i /nA, Σ̂B :=∑nB

i=1 x
(B)
i x

(B)>
i /nB, and ‖Λ‖1,off :=

∑
i 6=j |Λij |.

Here we write ΣA = Λ−1
A , and ΣB = Λ−1

B . We de-
fine a linear operator ΦA : Rd×d → Rd×d as ΦAΛ =
ΣAtr[ΣAΛ] (in other words, ΦA = ΣA ⊗ ΣA), and
ΦB : Rd×d → Rd×d in the same manner.

Now let SA := {(i, j) | ΛA,ij 6= 0} ∪ {(1, 1), . . . , (d, d)}
and similarly SB := {(i, j) | ΛB,ij 6= 0} ∪
{(1, 1), . . . , (d, d)}. Let sA := maxi=1,...,p |{j | ΛA,ij 6=
0}| and sB := maxi=1,...,p |{j | ΛB,ij 6= 0}|. For ma-
trix M ∈ Rp×p (p ∈ N), we denote by MI×J the
sub-matrix consisting of the components of M with
indices in I × J , and let ‖M‖∞,∞ be an operator
norm of M as an operator from `∞ to `∞, that is,
‖M‖∞,∞ := maxi=1,...,p

∑p
j=1 |Mij |.

Using these notations, we define

KΣA
:= ‖ΣA‖∞,∞,

KΨA
:= ‖(ΨA,S×S)−1‖∞,∞ = ‖((ΣA ⊗ ΣA)S×S)−1‖∞,∞,

and define KΣB
and KΨB

in the same manner.

Finally, we assume the following conditions on the dis-
tributions pA and pB.

Assumption 2

1. (Sub-Gaussianity) Both pA and pB have zero
means and sub-Gaussian tails: ∃σ > 0, ∀t ∈ R,

EpA [exp(tX)] ≤ exp(σ2t2),

EpB [exp(tX)] ≤ exp(σ2t2).

2. (Incoherence) There exists a real number α ∈

(0, 1] such that

‖ΨA,Sc×S(ΨA,S×S)−1‖∞,∞ ≤ 1− α,
‖ΨB,Sc×S(ΨB,S×S)−1‖∞,∞ ≤ 1− α.

Now let n := min{nA, nB} and we have the following
lemma.

Lemma 1 Under Assumption 2, if the sample size n
satisfies

n > C3s
2
A(1 + 3/α)2(2 log(2d/η) + log 4),

C3 := {48
√

2(1 + 4σ2) max
i

(ΣA,ii) max{KΣA
KΨA

,K3
ΣA
K2

ΨA
}}2,

and the regularization parameter λ
(A)
n satisfies

λ(A)
n = (8/α)

√
128(1 + 4σ2)2 max

i
(ΣA,ii)2

√
2 log(2d/η)

n
,

then with probability greater than 1−η/2 (∀η > 0), the
estimated Λ̂A satisfies the bound,

|||Λ̂A − ΛA|||∞ ≤16
√

2(1 + 4σ2) max
i

(ΣA,ii)(1 + 8α−1)

×KΨA

√
2 log(2d/η) + log 4

n
,

and the non-zero elements of Λ̂A are included in ΛA,

{(i, j) | Λ̂A,ij 6= 0} ⊆ SA.

(Proof of Lemma 1) The statement is a modification
of Corollary 1 of Ravikumar et al. [10]. Assump-
tion 2 yields the conditions assumed in Theorem 1
and Corollary 1 (sub-Gaussian condition) [10], thus
we can apply these theorems. The assertion is im-
mediately proven by replacing δ̄f (n, pτ ) and n̄f (n, pτ )
with δ̄f (n, η/(2d2)) and n̄f (n, η/(2d2)) in the proof of
Corollary 1 in the paper. If we replace dτ with η/(2d2),
then the tail probability of the noise can be evaluated
as

P [|||Σ̂− Σ∗|||∞ ≥ δ̄f (n, η/(2d2))] ≤ η

2
,

by Lemma 8 and its proof [10]. Finally, we notice
log(2d2/η) ≤ 2 log(2d/η), and obtain the assertion. �

We have the same statement for the estimation of ΛB.

Lemma 2 Under the conditions assumed in Lemma
1, Γ̂ − Γ satisfies the following inequality with proba-
bility greater than 1− η (η ∈ (0, 1)):

|||Γ̂− Γ|||∞ ≤ C1

√
2 log(2d/η) + log 4

n
,

C1 := 16
√

2(1 + 4σ2)(1 + 8α−1)

× (max
i

(Σ∗A,ii)KΓ∗A
+ max

i
(Σ∗B,ii)KΓ∗B

).
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In particular, we have

‖Γ̂− Γ‖S∞ ≤ ‖Γ̂− Γ‖F

≤ C1

√
dmin{sA + sB, d}{2 log(2d/η) + log 4}

n
,

with probability greater than 1−η, where ‖ · ‖S∞ is the
spectrum norm and ‖ · ‖F is the Frobenius norm.

(Proof of Lemma 2) Since

− |Λ̂A,ij − ΛA,ij − Λ̂B,ij + ΛB,ij |
≤ |Λ̂A,ij − Λ̂B,ij | − |ΛA,ij − ΛB,ij |
≤ |Λ̂A,ij − ΛA,ij − Λ̂B,ij + ΛB,ij |,

we obtain

|||Γ̂− Γ|||∞ ≤ |||Λ̂A − ΛA − Λ̂B + ΛB|||∞
≤ |||Λ̂A − ΛA|||∞ + |||Λ̂B − ΛB|||∞.

Thus, applying the bound derived in Lemma 1 to both
|||Λ̂A − ΛA|||∞ and |||Λ̂B − ΛB|||∞, we obtain the first
assertion.

As for the second assertion, since Γ̂ − Γ has at most
min{d(sA + sB), d2} non-zero components by the sec-
ond assertion of Lemma 1, the Frobenius norm be-
tween Γ̂− Γ has the bound,

‖Γ̂− Γ‖F ≤
√

min{d(sA + sB), d2}|||Γ̂− Γ|||2∞
=
√

min{d(sA + sB), d2}|||Γ̂− Γ|||∞,

which gives the assertion. �

This lemma gives a bound on the discrepancy between
λmin(Γ̂) and λmin(Γ) as follows.

Lemma 3 Under the conditions assumed in Lemma
1, we have the following bound with probability greater
than 1− η,

|λmin(Γ̂)− λmin(Γ)|

≤ C1

√
dmin{sA + sB, d}{2 log(2d/η) + log 4}

n
.

(Proof of Lemma 3) For a real symmetric matrix
Q ∈ Rd×d, let λi(Q) be the i-th smallest eigenvalue
(λ1(Q) ≤ λ2(Q) ≤ · · · ≤ λd(Q)). For all real symmet-
ric matrices Q,R ∈ Rd×d, the well-known Hoffman
and Wielandt inequality (see Theorem 6.3.5 and its
corollaries in Horn et al. [25]) yields√√√√ d∑

i=1

(λi(Q)− λi(R))2 ≤ ‖Q−R‖F .

Then applying Lemma 2 to the right-hand side of
this inequality and noticing the relation |λmin(Q) −
λmin(R)| ≤

√∑d
i=1(λi(Q)− λi(R))2, we obtain the

assertion. �

7.2 Proof of Theorem 1

The theorem is true for k = d and k = 0 since I =
Î = {1, 2, . . . , d} and I = Î = ∅ hold, respectively.
Therefore, we only need to consider the case when 1 ≤
k ≤ d− 1.

Let ε := |||Γ̂−Γ|||∞ and f(K,K′;M) :=
∑
i∈K,j∈K′Mij

for a matrix M . We also set the index sets P, Q, and
R as P := I\Î, Q := Î\I, and R := I ∩ Î. We now
have

f(I, I; Γ̂)− f(Î, Î; Γ̂)

= f(P,P; Γ̂) + 2f(P,R; Γ̂)− f(Q,Q; Γ̂)− 2f(Q,R; Γ̂)

≤ f(P,P; Γ) + 2f(P,R; Γ)− f(Q,Q; Γ)− 2f(Q,R; Γ)

+ ε(|P|2 + |Q|2 + 2|P||R|+ 2|Q||R|)
≤ f(I, I; Γ)− f(Î, Î; Γ) + ε(k2 + d2),

where, in the first inequality, we used the fact that
|f(K,K′; Γ̂)−f(K,K′; Γ)| ≤ ε|K||K′|, and in the second
inequality, we used |P|2 + |Q|2 + 2|P||R|+ 2|Q||R| ≤
(|P| + |R|)2 + (|Q| + |R|)2 = |I|2 + |Î|2 ≤ k2 + d2.
Since this inequality is valid for all Î 6= I, we have

f(I, I; Γ̂)− f(Î, Î; Γ̂) ≤ ε(k2 + d2)− h.

From the assumption that I is unique, we have h > 0.
If ε < h/(k2 + d2), then the right hand side becomes
negative implying I is the minimizer of (1), which
proves the claim. �

7.3 Proof of Theorem 2

The proof of the theorem immediately follows from the
next two lemmas:

Lemma 4 Let Âµ,I×I ∈ Rk×k and Âµ,J×I ∈
R(d−k)×k be sub-matrices of Âµ indexed by I and
J . Suppose the following conditions hold for some
τ, τ ′ > 0:

Â−1
µ,I×I1k ≥ τ1k, (5)

Âµ,J×I1k ≥
1 + τ ′

τ
1d−k. (6)

Then Ĩ0 = I.

Lemma 5 Suppose the conditions in Theorem 2 hold
true. Then there exists τ, τ ′ > 0 that satisfy the con-
ditions (5) and (6).

(Proof of Lemma 4) Since the problem (3) is a convex
quadratic programming with a positive-definite matrix
Âµ, the KKT conditions given here are both necessary
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and sufficient for the optimality of the solution:

Âµs̃− ζ̃ − ν̃1d = 0d, (7)

s̃, ζ̃ ≥ 0d, (8)

s̃� ζ̃ = 0d, (9)

1>d s̃− 1 = 0, (10)

where ζ̃ and ν̃ are the dual parameters, and � denotes
the Hadamard product.

Here, let tI , tJ , ξI , and ξJ be sub-vectors of t, ξ ∈ Rd
indexed by I and J . We define vectors t and ξ
by tI = Â−1

µ,I×I1k, tJ = 0d−k, ξI = 0k, ξJ =

Âµ,J×IÂ
−1
µ,I×I1k − 1d−k. We also define a scalar γ

by γ = 1/1>k Â
−1
µ,I×I1k. We show that setting s̃← γt,

ζ̃ ← γξ, and ν̃ ← γ satisfies the conditions (7)–(10).
From the definitions of t, ξ, and γ, the conditions (7),
(9), and (10) are obvious, and there remains only the
condition (8) to be verified. The condition s̃ ≥ 0d is
guaranteed from the condition (5). By combining (5)
and (6), we also have

ξJ ≥ τÂµ,J×I1k − 1d−k ≥ τ ′1d−k > 0d−k,

which guarantees ζ̃ ≥ 0d. This result indicates the
vector s̃ defined here is the optimal solution to the
problem (3) with Ĩ0 = I, which completes the proof.
�

(Proof of Lemma 5) Let ε := |||Âµ − Aµ|||∞. Since
Bδ ≤ 1/2 for any δ > 0, we have ε < µ/2d.

We first consider the condition (5). We note that,
from Assumption 1, ΓI×I = 0|I|×|I| holds and thus

Aµ,I×I = µIk. Hence, Âµ,I×I can be expressed as

Âµ,I×I = µIk + E with |||E|||∞ ≤ ε. From Ravikumar
et al. [10, pp. 972], we have

(µIk + E)−11k =
1

µ
1k −

1

µ2
E1k +

1

µ3
E2J1k,

where J =
∑∞
m=0(−1)m(µ−1E)m. From |||E|||∞ ≤

ε, we have ‖E2‖∞,∞ ≤ d2ε2 and ‖J‖∞,∞ ≤∑∞
m=0 ‖µ−1E‖m∞,∞ ≤

∑∞
m=0(µ−1dε)m ≤ 2 where we

used ε < µ/2d for the last inequality. Hence, we have

|||E2J1k|||∞ ≤ ‖E
2J‖∞,∞ ≤ ‖E2‖∞,∞‖J‖∞,∞ ≤ 2d2ε2.

Thus, we can conclude

(Â−1
µ,I×I1k)i ≥

1

µ
− d

µ2
ε− 2d2

µ3
ε2,

where (·)i denotes the ith entry of the vector in the
parenthesis. In addition, the right hand side of this
inequality becomes positive when ε < µ/2d, which is
assured by the assumption. This indicates that we can

choose τ = 1/µ− dε/µ2 − 2d2ε2/µ3 and the condition
(5) holds.

We now turn to the condition (6). We have

(Âµ,J×I1k)i ≥ (Aµ,J×I1k)i − kε ≥ (1 + δ)µ− kε,

from the assumption in Theorem 2, and we can choose
τ ′ as τ ′ = τ{(1 + δ)µ− kε} − 1. The condition τ ′ > 0
is assured when

τ ′ = δ − k

µ
ε−

(
d

µ
ε+ 2

d2

µ2
ε2
)(

1 + δ − k

µ
ε

)
≥ δ − (2 + δ)

d

µ
ε− 2(1 + δ)

d2

µ2
ε2 > 0,

which is guaranteed by the assumption ε < Bδµ/d,
and therefore the condition (6) holds. �

7.4 Proof of Theorem 3

From Lemma 2, we have |||Γ̂ − Γ|||∞ < h/(k2 + d2)
when η > 4d exp{−h2n/2C2

1 (k2 + d2)2}, which proves
the claim. �

7.5 Proof of Theorem 4

From Lemmas 2 and 3, with probability greater than
1− η, we have

|||Âµ −Aµ|||∞ ≤ |||Γ̂− Γ|||∞ + |λmin(Γ̂)− λmin(Γ)|

≤ C1

(
1 +

√
dmin{sA + sB, d}

)
×
√

2 log(2d/η) + log 4

n

= C2

√
2 log(2d/η) + log 4

n
,

where C2 := C1

(
1 +

√
dmin{sA + sB, d}

)
.

From Lemma 2, we have |||Âµ−Aµ|||∞ < Bδµ/d when
η > 4d exp{−B2

δµ
2n/2C2

2d
2}, which proves the claim.

�
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