
A Consistent Method for Graph Based Anomaly Localization

Satoshi Hara Tetsuro Morimura Toshihiro Takahashi Hiroki Yanagisawa
IBM Research – Tokyo, Japan, {satohara, tetsuro, e30137, yanagis}@jp.ibm.com

Taiji Suzuki
Tokyo Institute of Technology & PRESTO, JST, Japan, s-taiji@is.titech.ac.jp

Abstract

The anomaly localization task aims at detect-
ing faulty sensors automatically by monitor-
ing the sensor values. In this paper, we pro-
pose an anomaly localization algorithm with
a consistency guarantee on its results. Al-
though several algorithms were proposed in
the last decade, the consistency of the local-
ization results was not discussed in the liter-
ature. To the best of our knowledge, this is
the first study that provides theoretical guar-
antees for the localization results. Our new
approach is to formulate the task as solving
the sparsest subgraph problem on a difference
graph. Since this problem is NP-hard, we
then use a convex quadratic programming ap-
proximation algorithm, which is guaranteed
to be consistent under suitable conditions.
Across the simulations on both synthetic and
real world datasets, we verify that the pro-
posed method achieves higher anomaly lo-
calization performance compared to existing
methods.

1 Introduction

Anomaly localization is the task of detecting faulty
sensors by monitoring sensor values. This problem dif-
fers from the outlier detection [1, 2] and change point
detection [3, 4] problems in that it requires specify-
ing the error causes rather than evaluating whether
each data point is healthy or not. The development
of the anomaly localization algorithms seeks to au-
tomate the error-cause-detection procedure, which is
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conducted by skilled engineers in many cases.

Several anomaly localization algorithms were proposed
in the last decade. Idé et al. [5, 6] proposed using the
changes of the statistical dependencies between the
sensor values. They used a graph to represent the
inter-sensor dependency structure, and constructed
anomaly localization algorithms for the graphs. Hi-
rose et al. [7] proposed a heuristic algorithm based
on the inter-sensor correlations, while Jiang et al. [8]
used a PCA-based method to identify the erroneous
subspace.

Despite the practical usefulness of these algorithms,
the consistency of the localization results remains an
open question: Can we localize faulty sensors properly
when there is a sufficiently large number of samples?
To the best of our knowledge, this consistency issue
has not been discussed in the literature.

The contributions of this paper are twofold. First, we
formulate the anomaly localization problem so that its
solution is consistent. That is, the solution to the pro-
posed problem coincides with the faulty sensors when
there is a sufficiently large number of samples. The
proposed formulation is based on the ideas of Idé et
al. [5, 6]. We use the dependency graph among the
sensors, and formulate the task as finding the sparsest
subgraph on a difference graph. The resulting problem
is a sparsest subgraph problem [9].

The second contribution is the development of a con-
sistent polynomial-time approximation method. Since
the problem is NP-hard in general [9], we use con-
vex quadratic programming (QP) to derive an approx-
imate solution. There are three advantages on the
proposed QP approximation. First, the convex QP
is polynomial-time solvable, and thus it is applicable
to high dimensional problems. Second, the solution of
the QP approximation is guaranteed to be consistent
under suitable conditions. Third, we do not need to
specify a volatile hyper-parameter.
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Figure 1: An overview of the graph-based anomaly localization: We transform datasets into graphs and then
localize anomalies by comparing the graphs using an anomaly localization algorithm.

We also verified the consistency of the proposed
method numerically by using synthetic datasets.
Across the experiments, we found that the proposed
method shows better anomaly localization perfor-
mance compared to existing algorithms owing to its
consistency guarantee.

2 Graph-based Anomaly Localization

The objective of the anomaly localization problem is
to identify the contributions of each of d random vari-
ables (or sensor values), x = (x1, x2, . . . , xd)

> ∈ Rd,
to the differences between a reference dataset and a
target dataset. In most practical cases, the reference
dataset is past sensor values under no anomalies while
the target dataset consists of the current observations.
In the anomaly localization problem, we assume some
sensor values in the target dataset are behaving dif-
ferently from the ones in the reference dataset, and
these values cause anomalies resulting in a distribu-
tional change. The task is to determine which sensors
are and are not contributing to the changes.

We assume two conditions: (i) the number of vari-
ables in each dataset is the same, so they are both
d dimensions, and (ii) the identity of each variable is
the same, so the value of each corresponding element
always comes from the same sensor.

2.1 Problem Definition

Across the paper, we follow the graph-based anomaly
localization approach proposed by Idé et al. [5, 6]. In
their approach, we use a dependency graph as the data
model. Each node of the dependency graph corre-
sponds to each of the random variables, and each edge
represents a certain kind of dependency between the
two variables. There are several dependency graphs we
can use depending on the type of anomalies we want to
detect. We discuss some representative graphs in Sec-
tion 2.2. The anomaly is then defined as a structural
change of this dependency graph, and the anomaly lo-
calization problem is reduced to finding a set of nodes
causing the change. Figure 1 shows the overview of
the graph-based anomaly localization problem.

Here, we give a formal definition of the graph-based
anomaly localization problem. Let pA be the healthy
data distribution of the reference dataset, and pB be
the faulty data distribution of the target dataset. We
also let ΛA,ΛB ∈ Rd×d be weighted adjacency matri-
ces of the inter-sensor dependency graphs represent-
ing the distributions pA and pB, respectively (see Sec-
tion 2.2 for the detail of ΛA and ΛB). We then model
the anomaly as follows, which is a modification of the
assumption discussed by Idé et al. [6, Assumption 1]:

Assumption 1 (Neighborhood Preservation)
Let I and J be the partition of {1, 2, . . . , d}, where
I is a set of healthy sensor indices and J is a set
of faulty sensor indices. We assume the interactions
among the healthy sensors are unchanged, which
means ΛA,ij = ΛB,ij for all i, j ∈ I. In contrast, the
anomalous sensors have at least one neighbor whose
interaction is changing, that is, for any i′ ∈ J , there
exists an index j′ 6= i′ such that ΛA,i′j′ 6= ΛB,i′j′ .

Intuitively, we assume the dependencies between the
healthy sensors are kept constant, but this is not the
case for the faulty sensors. There are some changes in
the dependency structure caused by the faulty sensors.
The detailed background and motivating examples of
this assumption can be found in Idé et al. [5, 6]. We
now define the anomaly localization problem using As-
sumption 1:

Problem 1 (Anomaly Localization) Let the ref-

erence dataset DA = {x(n)
A }

NA
n=1 be i.i.d. draw from the

healthy data distribution pA parameterized by ΛA, and

the reference dataset DB = {x(n′)
B }NB

n′=1 be i.i.d. draw
from the faulty data distribution pB parameterized by
ΛB. The anomaly localization task is to identify the
sets I and J from the datasets DA and DB.

Here, we import one technical assumption that the set
I is uniquely identifiable (or otherwise the problem is
ill-posed).

2.2 Graph Representation of Data

We introduce two representative graphs used by Idé et
al. [5, 6]. The first one is a covariance graph (or cor-
relation graph, defined in a similar manner), which is
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Table 1: The convex QP approximation is advantageous in that it is both polynomial-time solvable and the
solution is guaranteed to be consistent. Also, we do not need to specify the number of healthy sensors k.

Solution Algorithms Time Complexity Consistency Need to specify k
Exact Method Exponential Consistent Yes

Greedy Method Polynomial Not Consistent Yes
Convex QP Approximation Polynomial Consistent No

suitable for detecting anomalies in the sensors them-
selves. The adjacency matrix of the covariance graph
Λ ∈ Rd×d is defined by Λii = Vii, and Λij = |Vij | for
i, j ∈ {1, 2, . . . , d}, where Vij is a covariance between
xi and xj . Suppose the error occurs on the variable
xj , that is, J = {j}. The error on xj only changes
the covariance Vij for all i, and thus the graph struc-
ture change occurs only in the negihbor of xj . This is
exactly what Assumption 1 expected for the set J .

The second representation [6] is a Gaussian Graphical
Model (GGM). In a GGM, a variable x is assumed
to follow a Gaussian distribution N (0d,Λ

−1) where
Λ ∈ Rd×d is a precision matrix. The weight of the node
xi is given by Λii, and the edge weight between nodes
xi and xj is given by Λij . GGM is capable of cap-
turing conditional dependency structures among vari-
ables. This property is useful when we aim to detect
the changes in an underlying physical system, which
may affect the observations of several sensors. This is
because, even when such changes occur, the functional
relationships among the healthy parts tend to remain
constant and GGM is capable of capturing these con-
sistent relationships. There are several methods avail-
able to estimate the matrix Λ from the data such as
the `1-regularized maximum likelihood [10]. We can
use the existing methods to derive a GGM-based graph
representation (see Olsen et al. [11, Section 1]).

There are also some other representations available.
In particular, the use of a GGM is instructive in that
the idea can be naturally extended to some other
graphical models. For instance, the nonparanormal
model [12, 13], which is a generalization of a GGM,
can also be used for the graph representation. An-
other example is the Ising model [14], which is a pop-
ular model to express the dependencies among binary
random variables. More generally, we can represent
data with any type of graphical model. Our proposed
method accepts any type of graph representation as
long as the graph is undirected, which is the case when
the adjacency matrix is a symmetric matrix.

3 A Consistent Anomaly Localization
Method

We now describe an anomaly localization method for
solving Problem 1 with a consistency guarantee. We

cast the problem as finding the most similar subgraph
between the two graphs, which is formulated as the
sparsest k-subgraph problem [9]. We show that the
solution to the problem is a consistent estimator of
the faulty sensor set J . We then describe a convex
Quadratic Programming (QP) approximation method
to tackle the NP-hardness of the problem. In Table 1,
we see the advantage of the proposed approximation.
The approximate problem is polynomial-time solvable
and its approximate solution is guaranteed to be con-
sistent under suitable conditions.

3.1 The Sparsest k-Subgraph Problem
Formulation

Our approach is to formulate the task as finding the
set of healthy variables I, which also exposes the set
of anomalous variables J as its complement. We start
the discussion by assuming the number of healthy vari-
ables |I| is known to be k, which we relax to the gen-
eral unknown case in Section 3.3. The problem can
then be transformed to the well-known independent
set problem [15]. Figure 2 shows an example. The
central idea is the use of a graph whose adjacency ma-
trix Γ ∈ Rd×d is given by Γij := |ΛA,ij − ΛB,ij |. From
Assumption 1, for all i, j ∈ I, the corresponding edge
weights ΛA,ij and ΛB,ij coincide and Γij = 0 holds.
This implies that any pairs (i, j) with i, j ∈ I are
disconnected in the graph specified by Γ. Such a set
I is known as an independent set [15] of the graph.
An independent set of size k can be found by solving
the independent set problem. Hence, since the set I
is uniquely determined, the independent set coincides
with I. This property contrasts with other anomaly
localization methods where no consistency guarantees
are given for the result.

We now develop this idea into a practical formulation.
In practice, the problem cannot be handled as an inde-
pendent set problem. This is because we only have ac-
cess to the estimated adjacency matrices from DA and
DB, which are Λ̂A and Λ̂B. For these estimated matri-
ces, Γ̂ij := |Λ̂A,ij − Λ̂B,ij | will not be zero even for the
unchanged edges, but will still have some small posi-
tive value. We tackle the problem by generalizing the
independent set problem into the sparsest k-subgraph
problem [9]. The sparsest k-subgraph problem asks us
to find a set of k nodes that minimizes the sum of the
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Figure 2: The healthy variable set I becomes an independent
set in the graph specified by Γ.

Independent
set

Sparsest
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Figure 3: The sparsest k-subgraph
problem allows edges to have small
weights.

edge weights in the induced subgraph by the set of
nodes, while the sum is constrained to be zero in the
independent set problem. See Figure 3 for an example.
The sparsest k-subgraph problem is formulated as

Î = argminK⊆{1,2,...,d}
∑

i,j∈K
Γ̂ij , s.t. |K| = k. (1)

The problem (1) coincides with the independent set
problem when Γ̂ij = 0 for i, j ∈ I. The next theorem

guarantees that the solution Î coincides with I un-
der suitable conditions, and the consistency guarantee
follows as its corollary 1.

Theorem 1 Let Î be the solution to the problem (1),
and h := minK6=I

∑
i,j∈K Γij −

∑
i′,j′∈I Γi′j′ . If |||Γ̂ −

Γ|||∞ < h/(k2 + d2), then we have Î = I where ||| ·
|||∞ denotes an element-wise infinity norm |||M |||∞ :=
maxi,j |Mij |.

Corollary 1 Let the dimensionality d be a fixed value.
If Λ̂A and Λ̂B are consistent estimators of ΛA and ΛB,
respectively, then the estimated set Î is a consistent
estimator of I, which means limnA,nB→∞ P (Î 6= I) =
0, where nA and nB are the number of samples used
to estimate Λ̂A and Λ̂B, respectively.

We note that there are several well-known consistent
estimators such as the maximum likelihood estimator
of the covariance matrix and the `1-penalized maxi-
mum likelihood estimator of the precision matrix for
GGM [10].

3.2 Simple Approach: Exact and Greedy
Methods

A naive way to solve the problem (1) is to use general
combinatorial methods. For instance, we can use an
exact method to solve the problem. The solution can
be derived by solving the binary quadratic problem:

ŝ = argmins∈{0,1}d s
>Γ̂s, s.t. 1>d s = k. (2)

The set Î can be recovered from the solution by
Î = {i; ŝi > 0}. The problem can also be transformed

1The proof of theorems in this manuscript can be found
in the supplemental material.

into an integer linear programming using a well-known
technique [16]. We note that integer programming is
in general NP-hard. In Section 4, we find that the
problem is tractable up to d = 200 in reasonable times
by using a state-of-the-art method.

A greedy method is a popular alternative choice when
the exact method is not tractable. For instance, we
can use a variant of the method given by Asahiro et
al. [17] for the densest k-subgraph problem. We note
that the algorithm outputs only a local optima and the
solution is no longer guaranteed to be consistent. The
detail of the algorithm can be found in Algorithm 1.
In the pseudo-code, we defined f(K) :=

∑
i,j∈K Γ̂ij .

The method terminates in d − k steps and each step
requires at most O(d2) time complexity in a naive im-
plementation. This time complexity could be reduced
to O(d log d) by using a binary heap [18], though we
used a naive implementation for our simulation study
in Section 4.1, since it was sufficiently fast. We can
use other heuristics such as a local search method (Al-
gorithm 2), to improve the quality of the local optima.

One shortcoming of the formulation (1) is that we need
access to the number of healthy variables k. In many
practical cases, we do not know the number k in ad-
vance, and we need some way to handle this problem.
We present one such method in the next section.

3.3 Proposed Approximation with Convex
Quadratic Programming

We now propose a convex quadratic programming
(QP) approximation to solve the problem (1). There
are three advantages of the proposed QP approxima-
tion (Table 1). First, convex QP is polynomial-time
solvable [19], resembling the greedy method. In par-
ticular, Kozma et al. [20] recently reported that the
state-of-the-art methods can solve convex QP with
more than 10,000 variables in a few seconds. Second,
the solution of the QP approximation is guaranteed to
be consistent under suitable conditions, while this is
not generally true for the greedy method. Third, we
can avoid specifying the parameter k in the QP ap-
proximation, which is not true for the exact and the
greedy methods.

336



Satoshi Hara, Tetsuro Morimura, Toshihiro Takahashi, Hiroki Yanagisawa

Algorithm 1 Greedy Method

Input: Γ̂ ∈ Rd×d and an integer parameter k
Output: Î ⊆ {1, 2, . . . , d}

let K = {1, 2, . . . , d}
repeat
i′ = argmini∈K f(K \ {i})
K ← K \ {i′}

until |K| = k
return Î ← K

Algorithm 2 Local Search

Input: Γ̂ ∈ Rd×d, K ⊆ {1, 2, . . . , d}
Output: Î ⊆ {1, 2, . . . , d}

repeat
i′, j′ = argmini∈K,j /∈K f((K \ {i}) ∪ {j})
if f((K \ {i′}) ∪ {j′}) < f(K) then
K ← (K \ {i′}) ∪ {j′}

end if
until K is not updated in this iteration
return Î ← K

We first describe a convex QP approximation for the
problem (2), and then present the conditions under
which the approximate solution coincides with I.

To derive the convex QP approximation, we apply
three modifications to the problem (2). First, we re-
place the domain of s from the binary value {0, 1}d
into the continuous interval [0, 1]d. Second, we replace
Γ̂ with Âµ := Γ̂ + µId where the parameter µ satisfies

µ + λmin(Γ̂) > 0. Here, λmin(·) denotes the minimum
eigenvalue of the matrix. With those two modifica-
tions, we arrive at a simple convex problem:

s = argmins∈[0,1]d s
>Âµs, s.t. 1>d s = r,

where r ∈ R+. Similar modifications have also been
considered for the densest k-subgraph problem [21].
Here, we replaced the integer k with r, since s is in
the continuous domain. Since the solution s̃ has at
least dre non-zero elements, we can interpret r as the
lower bound of the number of healthy variables. In the
third modification, we set r = 1. This corresponds to
using the most pessimistic assumption so that, in the
worst case, there is only one healthy variable and the
remaining variables may all be faulty. Although this
modification may seem to be a heuristic, we provide a
rigorous justification later. With r = 1, the constraint
s̃i ≤ 1 automatically holds for all i ∈ {1, 2, . . . , d} and
we can safely replace the constraint s ∈ [0, 1]d with s ∈
Rd+. We finally have the convex QP approximation as

s̃ = argmins∈Rd s>Âµs, s.t. 1>d s = 1, s ≥ 0d. (3)

Analogous to the discrimination rule in the binary
problem (2), we can interpret the value s̃i as the
score of the healthiness of xi, and we can discrim-
inate healthy and faulty variables by introducing a
threshold. Specifically, we let the estimated index sets
of the healthy variables and the faulty variables be
Ĩt := {i; s̃i > t} and J̃t := {i; s̃i ≤ t}, respectively, for
a threshold t.

We now provide the justification for our modifications.
The next theorem and corollary guarantee that Ĩ0, the

estimated set with t = 0, coincides with I under suit-
able conditions. In particular, Ĩ0 is a consistent esti-
mator of I.

Theorem 2 Let s̃ be the solution to (3) and Ĩ0 :=
{i; s̃i > 0}. Suppose there exists δ > 0 such that

minj∈J
∑
i∈I Γji ≥ (1 + δ)µ (4)

holds where µ + λmin(Γ) > 0. Then we have
Ĩ0 = I if |||Âµ − Aµ|||∞ < Bδµ/d holds with Bδ ={√

(2 + δ)2 + 8δ(1 + δ)− (2 + δ)
}
/4(1 + δ).

Corollary 2 Let the dimensionality d be a fixed value.
Suppose Λ̂A and Λ̂B are consistent estimators of ΛA

and ΛB, respectively, and there exists δ > 0 such that
the condition (4) holds. Then Ĩ0 is a consistent esti-
mator of I.

The condition (4) implies that the parameter µ for
relaxing the problem has to be smaller than the mini-
mum significance of the anomaly (left hand side of (4)).
The condition requires us not to modify the problem
too much, or small anomalies will be overlooked.

We note that the results reveal one important fact in
that, even if we do not know the correct number of
healthy variables k, the solution to the problem (3)
will recover the true set I if the specified conditions
are satisfied. We note that Theorem 2 indicates that
there is a trade-off on the choice of µ. The smaller µ is
desirable to satisfy the condition (4), while the larger
µ is desirable for the condition |||Âµ−Aµ|||∞ < Bδµ/d.
In our preliminary experiment, we found that µ does
not have significant effects on the result as long as it
is kept small. We therefore set µ = 10−6−λmin(Γ̂) for
all of the simulations in Section 4.

3.4 Finite Sample Consistency

Theorems 1 and 2 can be further elaborated into a
finite sample consistency guarantee for each specific
graph representation. Here, we introduce the GGM
case as an example.
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Theorem 3 Let Î be the solution to the problem (1).
Suppose Λ̂A and Λ̂B are graphical–Lasso type esti-
mators [10, Eq.(11)]. Under the conditions of The-
orem 1, and the conditions specified by Ravikumar
et al. [10, Theorem 1], there exists a constant C1

such that Î = I holds with probability greater than
1 − η

(
η ∈ (4d exp

{
−h2n/2C2

1 (k2 + d2)2
}
, 1)
)
, where

n := min{nA, nB}.

Theorem 4 Let s̃ be the solution to the problem
(3) and Ĩ0 := {i; s̃i > 0}. Suppose Λ̂A and Λ̂B

are graphical–Lasso type estimators [10, Eq.(11)],
and there exists δ > 0 such that the condition (4)
holds. Under the conditions of Theorem 2, and
the conditions specified by Ravikumar et al. [10,
Theorem 1], there exists a constant C2 such that
Ĩ0 = I holds with probability greater than 1 − η(
η ∈ (4d exp

{
−B2

δµ
2n/2C2

2d
2
}
, 1)
)
.

We can derive similar results for any other graph rep-
resentation. For example, we can use the results from
Ravikumar et al. [10, Lemma 1] for the covariance case
and Liu et al. [13, Theorem 4.3] for the nonparanormal
model case.

We note that these results may not be optimal. It
will be possible to improve the convergence rate by
using more sophisticated estimators for Λ̂A and Λ̂B.
For example, in the GGM case, the use of the node-
based learning method proposed by Mohan et al. [22]
would be beneficial, although the convergence rate is
still unknown. The improvement of the convergence
rate remains as future work.

4 Numerical Evaluation

We investigated the anomaly localization perfor-
mances of the proposed QP approximation method
both on synthetic and real world datasets. For all of
the simulations, we compared the performance of the
proposed method against the exact method, the greedy
method, and existing anomaly localization methods.
We used IBM ILOG CPLEX 12.5.1 for the exact
method and for the QP approximation to solve the
problems (2) and (3). The greedy method and the
local search method were implemented in C.

4.1 Synthetic Experiments

In the experiments, we considered two graph represen-
tations, covariance graphs and the GGMs, since they
were already studied by Idé et al. [5, 6].

We prepared two different data settings with dimen-
sion d = 100 and 200 with the number of healthy
variables k = 90 and 180, respectively. For each set-
ting, we first generated the synthetic matrices ΛA and

ΛB
2. We then generated two datasets by i.i.d. sam-

plings from N (0d,ΛA) and N (0,ΛB) for the covari-
ance graph case, and from N (0d,Λ

−1
A ) and N (0,Λ−1

B )
for the GGM case. We set the number of data points
in each dataset to be rd where we varied the ratio r
from 1 to 10 on a logarithmic scale.

In the anomaly localization stage, we first estimated
the matrices Λ̂A and Λ̂B from the datasets, and then
used the QP approximation method. For Λ̂A and Λ̂B,
we used the empirical covariances for the covariance
graph case, and the `1-regularized maximum likelihood
estimators [10] for the GGM case. The regularization
parameter was chosen by the 2-fold cross validation
from seven values in [10−4, 100] on a logarithmic scale.
We set the parameter µ in the approximate method to
µ = 10−6 − λmin(Γ̂). We evaluated the anomaly local-
ization result using the Area Under the Curve (AUC)
of the precision-recall curve.

We used the exact and the greedy methods as the
baseline methods. We assumed an ideal situation in
which the number of healthy variables is known to be
k for those methods. We also used Idé’s method in
ICDM’07 [5] (Idé’07 ) for the covariance graph case,
and Idé’s method in SDM’09 [6] (Idé’09 ) for the GGM
case to contrast with. For Idé’07, we varied the degree
of the graph from six values in [d/10, d/2] and picked
the value that maximized the AUC.

The simulation results over 100 random data realiza-
tions are shown in Figure 4. In these simulations, we
found that the results of the greedy method were al-
most identical to those of the exact method, and there-
fore we did not use the local search. Figure 4(a)–(d)
show the high effectiveness of the proposed QP ap-
proximation method. In particular, it showed perfect
localization performance when there were a sufficiently
large number of samples. This is the consistency guar-
antee that Corollary 2 implied. This contrasts with
Idé’07 and Idé’09, which achieved the median AUC
around 0.96 even at the maximum. We can also ob-
serve that, although the AUC is slightly lower, the
QP approximation performs nearly as well as the ex-
act method. We emphasize that this result was at-
tained without specifying the number k, which shows
the practical utility of the QP approximation.

Figure 5 compares the computation times of the three
proposed methods. We ran all of the methods on 64-
bit Windows 7 with an Intel Core i5-3320M and 8 GB
of RAM. The figure shows the median runtimes for d =
100 and 200 with the number of samples n = 10d. The
graph shows that the greedy method was the fastest
and the QP approximation came next. The computa-

2The generation procedure of these matrices can be
found in the supplemental material.
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Figure 4: The median AUCs of the anomaly localization methods: Vertical bar extends from the 25% to the
75% quantile. We used Idé’07 for the covariance graph case ((a), (b)) and Idé’09 for the GGM case ((c), (d)).
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Figure 6: Comparison of the exact, the greedy, and the QP approximation methods (Cov.,
d = 100) with concentrated anomaly patterns: The colored parts in the figures (b) and
(c) are the non-zero elements in Γ with a darker color indicating a larger value.

tion time for the exact method was around few seconds
and the results show that the exact method is feasible
up to d = 200.

We also conducted another experiment to compare two
polynomial-time algorithms, the greedy method and
the QP approximation. The result is shown in Fig-
ure 6(a) for the covariance graph case with d = 100.
This time, we used the concentrated anomaly pattern
as shown in Figure 6(b) instead of the uniform pattern
(Figure 6(c)) used in the previous simulation. The per-
formance of the greedy method is worse than the other
methods because the greedy method tends to choose
the healthy variables surrounded by the dotted line in
Figure 6(b) as anomalies in the first few iterations in-
stead of the true anomalies (solid line in Figure 6(b)).
The use of the local search was helpful this time, in
particular, for the case when the number of sample
is large. In contrast, the QP approximation performs
similarly to the exact method owing to its consistency
guarantee, and the result indicates that the QP ap-
proximation would be a safer polynomial-time alter-
native for the exact method compared to the greedy

method (and the local search).

4.2 The Sun Spot Sensor Data

Next we used the proposed methods for the real prob-
lem used by Jiang et al. [8]. The original datasets were
provided by the authors. Although there are three
datasets used in their paper, we used only two of them,
since the true anomaly label is missing for one dataset.

The first dataset, the Sun Spot Sensor Data, was
collected in an automotive trial for transport chain
security validation using seven wireless Sun Small
Programmable Object Technologies (SPOTs). These
SPOTs were fixed in separate boxes and loaded in
the back seat of a car. The dataset was the mag-
nitudes of the accelerations sampled by each SPOT
(a2
x + a2

y + a2
z)

1/2 where ax, ay, and az were the accel-
erations in x, y, and z directions, respectively. During
the data collection, one of the seven sensors was re-
moved and replaced six times. We used the sensor
signals from one minute before the replacement event
as the healthy data, and the signals from one minute
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after the event as the anomalous data, where only the
removed sensor was causing an error. Since the sen-
sor signals were sampled each 390 ms, there were 154
observations in each dataset.

We applied the approximate methods to these six
events and evaluated the AUC. Since the task was to
localize anomalies of the sensors, we used the covari-
ance graph as the data representation (see Section 2.2
for the choice of the graph). We adopted the exact
method, Idé’07 [5], and the PCA-based method named
JSPCA [8] as the baseline methods. We did not use
the greedy method since the problem size was small
and the exact method was applicable. The parameter
settings of the proposed methods and Idé’07 were the
same as in Section 4.1. We used 2-fold cross validation
for the parameter selection in JSPCA. Since JSPCA is
a non-convex problem, we solved the problem 5 times
with random initializations and chose the solution with
the smallest objective function value.

The results are shown in Figure 7(a). The exact
method achieved the best median AUC and the QP
approximation came next. Although JSPCA had a
comparable AUC to the QP approximation for the 75%
quantile, we found that the JSPCA solution is sensitive
to the choice of initial parameters because of its non-
convexity. This difficulty is increased because of the
need to search over several different hyper-parameters.
The QP approximation does not have such an initial-
ization sensitivity thanks to its convexity, and it has
only one parameter µ to be tuned, with only minor
effects on the solution. As a result, the QP approxi-
mation showed quite stable performance.

4.3 The Motor Current Data

The second dataset, the Motor Current Data, was
20-dimension current signals sampled from the state
space simulations available at the UCR Time Series
Archive [23]. In this dataset, several different types
of machinery failures are simulated and we used them
as the anomalies in this simulation. Specifically, the
data consists of observations sampled from 21 differ-
ent operating conditions; one is sampled under the
completely healthy condition while the remaining 20
datasets are sampled under various specific failure
modes. We generated two datasets to be contrasted.
The first dataset was generated by randomly picking
200 consecutive observations from the healthy dataset.
The second dataset was also 200 consecutive observa-
tions just after the first dataset, but where 10 sen-
sor values were randomly replaced with one of the 20
faulty datasets so that they behave differently from the
healthy state. The goal is to localize these 10 replaced
sensors.
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Figure 7: The median AUCs of anomaly localization
methods: Vertical bar extends from the 25% to the
75% quantile.

We used the nonparanormal model [12, 13], a general-
ization of the GGM, with 2-fold cross validation for the
data representation to handle the non-linearity of the
data. We adopted the exact method, Idé’09 [6], and
JSPCA [8] with the same setting in Section 4.2 as the
baseline. The results over 50 random data realizations
are shown in Figure 7(b). This again shows the ad-
vantages of the proposed QP approximation method.

5 Conclusion

We proposed a consistent anomaly localization method
based on the inter-sensor dependency structure. We
formulated the anomaly localization problem as a
sparsest k-subgraph problem, and proposed a convex
QP approximation to solve the problem. We also pro-
vided consistency proofs for the proposed approxima-
tion. To the best of our knowledge, this is the first
study on anomaly localization methods with theoret-
ical justifications. Simulations on both synthetic and
real world data verified that the proposed method out-
performs existing methods. We also showed that the
proposed approximation performs comparably with
the exact method.
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