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Abstract

We introduce a class of discrete point pro-
cesses that we call the Submodular Point Pro-
cesses (SPPs). These processes are charac-
terized via a submodular (or supermodular)
function, and naturally model notions of in-
formation, coverage and diversity, as well
as cooperation. Unlike Log-submodular and
Log-supermodular distributions (Log-SPPs)
such as determinantal point processes (DPPs),
SPPs are themselves submodular (or super-
modular). In this paper, we analyze the com-
putational complexity of probabilistic infer-
ence in SPPs. We show that computing the
partition function for SPPs (and Log-SPPs),
requires exponential complexity in the worst
case, and also provide algorithms which ap-
proximate SPPs up to polynomial factors.
Moreover, for several subclasses of interesting
submodular functions that occur in applica-
tions, we show how we can provide efficient
closed form expressions for the partition func-
tions, and thereby marginals and conditional
distributions. We also show how SPPs are
closed under mixtures, thus enabling maxi-
mum likelihood based strategies for learning
mixtures of submodular functions. Finally,
we argue how SPPs complement existing Log-
SPP distributions, and are a natural model
for several applications.

1 Introduction

Submodular functions provide a rich class of express-
ible models for a variety of machine learning problems.
Submodular functions occur naturally for two purposes:
In minimization problems, they model notions of
cooperation, attractive potentials, and economies of
scale [29, 23, 2] while in maximization problems, they
model aspects of coverage, diversity, and informa-
tion [39, 50]. A set function f : 2V → R is submodular
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if ∀S, T ⊆ V , f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).
An equivalent characterization is the “diminishing
returns” property, which says that for S ⊆ T and
j /∈ T, f(S ∪ j)− f(S) ≥ f(T ∪ j)− f(T ). Submodular
functions have properties that make their exact or
approximate optimization efficient and often practical.

While significant research has gone into providing op-
timal and near optimal algorithms for various forms of
submodular optimization problems [15, 22, 26, 45, 51],
limited work has investigated submodular functions
from a probabilistic perspective. Most research has
focused on a special class of Log-Submodular and Log-
Supermodular distributions, namely pairwise Markov
Random Fields (also called Ising models) [16] and De-
terminantal Point Processes [36, 43]. Recently, [10]
investigate the general class of Log-Submodular dis-
tributions, and provide algorithms for approximate
probabilistic inference. In this paper, we make at-
tempts to model submodular functions as probabilistic
point processes, which we call the “Submodular Point
Processes“ (SPP). These distributions are defined via a
non-negative submodular (supermodular) function as:

P (X) ∝ f(X), for X ⊆ V, (1)

where f is a submodular (or supermodular) function de-
fined so that when normalized, P (X) is a valid distribu-
tion. A related but different class of distributions is the
Log-submodular (or Log-supermodular) distributions,
which we call Log-SPPs. These [10] are defined as:

P (X) ∝ exp(f(X)). (2)

where f is submodular (or supermodular). Determi-
nantal Point Processes (DPPs) [36, 43] are special cases
of Log-submodular distributions, while Ising models
are special cases of Log-supermodular distributions.

2 Submodular Point Processes

Discrete Point processes have in general widely been
studied in mathematics and statistics [28]. Simply
put1, a finite discrete point process P over a set V =
{1, 2, · · · , n} is defined as a probability distribution
over 2V .

1In this paper, we use the term point process in a limited
finite sense rather than the much more general sense of
[28, 8].
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Existing Work: An important class of discrete
point processes are the Log-Submodular and Log-
Supermodular distributions: P(X) ∝ exp(f(X)),
where f is submodular (or supermodular). This class
of distributions was recently studied in the general
context in [10], where they provide algorithms for
approximate probabilistic inference. A special case of
these are the Determinantal Point Processes [36, 17, 43],
which have gained much attention in machine learning:
P(Y ) = det(LA) for some positive semidefinite n× n
matrix L, with LA as the submatrix induced by the
rows and columns in A. DPPs are Log-submodular,
since logP(Y ) = log det(LA) is a submodular set func-
tion in A. Another class of distributions, which also
naturally occur in practice, are pairwise distributions
induced via a Markov random field on a grid graph [16],
which have been used extensively [2] in computer vision
and in particular in image segmentation. The model
in this context is p(X) ∝ exp(−φ(X)) for a certain
function φ. Under certain regularity assumptions,
the function φ is submodular in X, and p(X) is then
Log-supermodular. Hence for this class of distributions,
MAP inference can be efficiently solved in polynomial
time by submodular function minimization [15].
Other inference problems like normalization and
marginalization can be approximated efficiently in
certain special cases [30]. A related class of models are
log-linear models of the form p(X) ∝ exp(−λᵀT (X))
for a linear function λᵀT (X) of statistics T (X).

In this paper, we define a new class of probability distri-
butions via a non-negative submodular (or supermodu-
lar) function that we call the submodular (or supermod-
ular) point process. Given a non-negative submodular
(or supermodular) function f , define p(X) ∝ f(X). We
extensively study the properties of this class of distribu-
tion by characterizing the hardness and approximation
factors of probabilistic inference, and also investigating
several useful subclasses of SPPs which exhibit exact
algorithms for inference.

Given a constraint set X ∈ C ⊆ 2V , the generalized
partition function of SPPs and Log-SPPs can be de-
fined, with A ⊆ B, as ZCf (A,B) =

∑
A⊆X⊆B,X∈C f(X)

for SPPs, and ZCef (A,B) =
∑
A⊆X⊆B,X∈C exp(f(X)),

for Log-SPPs. C represents a particular combinatorial
structure of interest, and could be for example a size
constraint (all sets of size k), matchings in a graphs,
s-t cuts, etc. An SPP then becomes any distribution

that is representable as follows: PCf (Y ) = f(Y )

ZCf (∅,V )
.

Similarly, Log-SPPs are, PCf (Y ) = exp(f(Y ))

ZC
ef

(∅,V )
[10]. A

necessary condition for computing the partition func-
tion, along with marginals and conditionals, is that
ZCf (A,B) can be computed exactly or approximately
for any given sets A ⊆ B and given constraints C. In
the current paper, we mostly restrict ourselves either
to the unconstrained setting, C = 2V , or to cardinality
constraints, C = {X : |X| = k}. We denote the corre-
sponding normalization quantities as Zf (A,B) for the
unconstrained case, and Zkf (A,B) for the cardinality

constraints {X : |X| = k}. We later relax this, and con-
sider more general matroid and knapsack constraints.
The condition that ZCf (A,B) be computable in poly-
nomial time for every set A,B seems very strong at
first, since it involves a sum over exponential number
of terms. In the following section, we show that we can
approximately compute ZCf (A,B), for any submodular
function and a number of useful constraints C. We
also show that we can compute the partition function
exactly for several subclasses of submodular functions
that often occur in applications. While we define these
distributions via submodular functions (and for maxi-
mization applications), we show how they can be easily
extended to supermodular functions for minimization
problems.

The following are the main contributions of this paper:
1) We investigate the hardness of computing the par-
tition function for SPPs and Log-SPPs. In particular,
we show that exact computation of the normalization
constants for SPPs and Log-SPPs, could require expo-
nential complexity in the worst case (independent of P
v/s NP). 2) We show that the Log Partition function
of SPPs can be approximated within O(log n), and
contrast this with the corresponding results of Log-
SPPs [10], where the worst case factor is O(n). 3) We
then investigate several subclasses of useful submodular
functions and show how the partition function can be
computed exactly for several of these subclasses. We
show how these results for computing the normalization
constant extend to computing marginals, conditional
distributions, and other probabilistic inference prob-
lems. 4) We investigate the problem of learning mix-
tures of submodular functions, and show how SPPs and
Log-SPPs both provide natural maximum-likelihood
learning strategies for this problem. 5) Finally, we
argue that while the SPPs are similar to the Log-SPP
models from a modeling perspective, they have several
key differences, thereby providing a complementary
class of models. In particular, we argue that SPPs
are natural for modeling submodular mixtures, and
have quite different concentration-of-diversity proper-
ties than Log-SPPs. This paper is almost entirely
theoretical, but we have implemented SPPs and offer
some empirical observations in Section 5.

3 Probabilistic Inference

We here investigate the computation of the partition
function for SPPs, the conditionals, and the marginals.
We first investigate the hardness of probabilistic infer-
ence, and provide approximation algorithms for com-
puting these for general SPPs. We contrast these with
the corresponding guarantees and hardness results for
Log-SPPs, and show how this problem is significantly
harder in the context of Log-SPPs as opposed to SPPs.
We then consider several subclasses of SPPs and show
how the partition function can be computed either ex-
actly, or up to a factor of 1 + ε, for these subclasses.
Finally, we show how these result in algorithms for com-
puting marginals, conditionals, sampling, and learning
mixtures of submodular functions.
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3.1 Hardness And Approximation Factors

In this section, we provide hardness results and worst
case approximation factors for the general classes of
SPPs and Log-SPPs. In the case of Log-SPPs, the worst
case approximation factors are provided in [10]. In
terms of hardness, the partition function computation
was known to be #P hard [30]. In the current paper,
we show that the partition function computation is
provably exponential for both SPPs and Log-SPPs,
in the worst case. We also provide the worst case
approximation factor for SPPs, and show that the log-
partition function can be approximated within a factor
of O(log n), which is in contrast to the approximation
factor for Log-SPPs shown in [10] and is O(n).

Denote Zf as the true partition function, and Ẑf as
the approximate partition function. We define the
approximation factor of the Log-Partition function as

α = | logZf − log Ẑf | = | log
Zf

Ẑf
|.

The approximation factors for the general class were
provided in [10] where they show that submodular
sub- and super-gradients [26] provide lower and upper
bounds on the partition function. In particular, the

semigradients yield, in polynomial time, Ẑuf , Ẑ
l
f such

that Ẑlf ≤ Zf ≤ Ẑuf , where Zf is the partition function
of f . Here we offer a new result showing that computing
the partition function has provably exponential cost.

Lemma 1. There exists a submodular (or supermod-
ular) function f , such that computing the partition
function of P(X) ∝ exp(f(X)) requires exponential
complexity (independent of the P 6= NP question).

Proof in [24]. Next, we study the hardness of SPPs.

Lemma 2. There exists a submodular (or supermodu-
lar) function f , such that computing the partition func-
tion of P(X) ∝ f(X) requires exponential complexity
(independent of the P 6= NP question). Proof in [24].

Similar to Log-SPPs, we can use the sub and super-
gradients to provide upper and lower bounds for the
partition function. The sub/super gradients provide,
for any X ⊆ V , modular functions mX

l (Y ) + cl
and mX

u (Y ) + cu such that mX
l (Y ) + cl ≤ f(Y ) ≤

mX
u (Y ) + cu and that are tight at Y = X. Moreover,

submodular functions also admit tighter approxima-
tions via non-modular functions. For example, the
class of coverage functions (equivalently concave over
modular functions) approximates the class of monotone
submodular functions up to a factor of O(

√
n), which

is the tightest possible bound for the general class of
submodular functions. The main idea of the algorithm
for computing an approximate partition function is to

compute an approximation f̂(X) of f(X), such that

f̂(X) ≤ f(X) ≤ αf̂(X),∀X ⊆ V . Then, define

Ẑf =
∑
X⊆V

f̂(X). (3)

The following lemma shows that this approximation

results in an approximation factor of O(logα) for the
log partition function:

Lemma 3. Given a submodular function f , and

an approximation f̂ , such that f̂(X) ≤ f(X) ≤
αf̂(X),∀X ⊆ V , it holds that Ẑf ≤ Zf ≤ αẐf . More-

over, | log Ẑf − logZf | ≤ logα.

Using the Lemma above, we can compute the approxi-
mation guarantees for the log partition function.

Theorem 1. Given a submodular function f , there
exists a poly-time algorithm which computes an approx-
imation Ẑf of the partition function Zf of the distri-

bution P(X) ∝ f(X), such that | log Ẑf − logZf | ≤
O(log n).

Proof. The proof of the above result relies on the
following facts, and Lemma 3. For a monotone
submodular function, the sub and supergradients,
approximate the submodular function up to a factor
of O(n) [25], implying a O(log n) approximation
guarantee. Furthermore, a coverage function [9, 18]
approximates a monotone submodular function within
a factor of O(

√
n) [9, 18], which again provides a

O(log n) approximation guarantee to the log-partition
function.2 We as shall see later, the partition function
can exactly be computed for the coverage functions.
Finally, general non-monotone submodular functions
can be approximated within a factor of O(n2/4) by
directed graph-cut functions. Since the partition func-
tion of directed graph-cut functions can also be exactly
computed (see the next section), we can provide a
multiplicative approximation factor of O(n2/4), which
again provides an approximation factor of O(log n).

Note, k-SPPs (which are analogous to k-DPPs in [36]
but for SPPs) have same approximation guarantee.

3.2 Subclasses Of SPPs

In this section, we investigate several subclasses of sub-
modular functions, and show, surprisingly, how proba-
bilistic inference is exact for certain of these functions,
independent of the underlying tree-width [34] of the
function. In the interest of space, we just provide
expressions for Zf and Zkf , and defer the exact ex-
pressions and corresponding proofs for computing the
generalized partition function Zf (A,B) and Zkf (A,B)

to [24].

3.2.1 Graph Based Submodular Functions

A number of submodular functions are graph based
functions, defined on a graph G = (V,E), with |V | = n
and E denoting the objects that interact. The submod-
ular functions are typically parameterized by a kernel

2While the guarantee for the log-partition function
is the same order, the multiplicative guarantee of the
partition function is O(

√
n), which is tighter than the

sub/supergradient approximations which is O(n).
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L which represents the pairwise interactions between
objects. We denote sij = L(i, j), which represents the
similarity between item i and j. In the context of docu-
ment summarization, this could represent the similarity
between sentences. Similarly, in image summarization
this would be the similarity between images. These
matrices are often symmetric, where sij = sji, which
is true in most applications so we assume this in the
below. We also assume, with no loss of generality, that
the similarities are normalized (i.e., 0 ≤ sij ≤ 1).

Facility Location and its generalizations: Given
a similarity matrix {sij}i,j∈V the facility location func-
tion is f(X) =

∑
i∈V maxj∈X sij . This function has

successfully been used in document summarization [38],
image summarization [46] and data subset selection [42].
Denote Pfac(Y ) as the corresponding point process,
with, Pfac(Y ) ∝

∑
i∈V maxj∈Y sij . This function is

monotone submodular, since it models coverage. The
normalization constants Zfac of the facility location
can be computed efficiently.

Zfac =
∑
i∈V

n∑
l=1

2l−1sijli , (4)

Zkfac =
∑
i∈V

k∑
l=1

(
n− l
k − 1

)
sijn−l+1

i
, (5)

where jli is as defined in [24]. We can also generalize
this to the k-facility location case [41], where instead
of a single max, we take the k-best maximum.

Graph Cut and Generalizations: This class of
functions have been used extensively both in sum-
marization problems (modeling coverage and diver-
sity [42, 38]) as well in image segmentation and denois-
ing (by capturing cooperation [2]). This general class
can be defined as: f(X) = M + λ

∑
i∈V

∑
j∈X sij −

µ
∑
i,j∈X sij ; µ = λ = 1,M = 0 is the standard graph

cut, and λ = 0 gives the redundancy penalty [42].
M ≥ 0 is just a factor to ensure that f(X) ≥ 0.

Notice that the similarity penalty models diversity
in a manner very similar to the DPPs. Also note
that the redundancy penalty can be used with any
submodular function capturing coverage (like facility
location or asymmetric graph cut) to define an objective
for summarization. This has been used, for example,
with the facility location and asymmetric graph cut [46,
42, 19]). Define,

Pgc(X) ∝M + λ
∑
i∈V

∑
j∈X

sij − µ
∑
i,j∈X

sij , (6)

where λ, µ,M are appropriately chosen so that the
objective is non-negative. This function is monotone
for λ > 2µ. Define S =

∑
i,j∈V sij , S

d =
∑
i∈V sii.

The normalization constants for these processes have a
simple expression:

Zf = 2nM + (2λ− µ)2n−2S − 2n−2µSd,

Zk
f = M

(
n

k

)
+ λ

(
n− 1

k − 1

)
S − µ

(
n− 2

k − 2

)
S − µ

(
n− 2

k − 1

)
Sd

This class of point processes can thus be normalized
in O(n2).

Saturated Coverage Function: The saturated cov-
erage function, f(X) =

∑
i∈V min{

∑
j∈X sij , αi}, has

successfully been used in document summarization [39].
Instead of average coverage (like the graph cut type
functions), or the maximum coverage (which is the facil-
ity location), this function chooses a certain fraction of
coverage for every item. We can define the correspond-
ing point process Psc(Y ) ∝

∑
i∈V min{

∑
j∈X sij , αi}.

Unlike the graph-cut and facility location, the nor-
malization constant for this one is hard to obtain in
polynomial time, since it involves knapsack counting,
which is #P complete [32]. Fortunately, it can be ap-
proximated to an arbitrary factor close to one, by using
an fully polynomial time approximation scheme (FP-
TAS) for knapsack counting. In the interest of space,
we defer the formal result to [24].

3.2.2 Coverage Functions

Set Cover: One can define a submodular function via
“concepts“, and assume that each object covers a set of
concepts. Hence, given a set S, Γ(S) denotes the set
of concepts covered by S. Let V be the set of all items
and W be the set of all concepts, so ∀S ⊆ V,Γ(S) ⊆W .
Given a modular function c : 2W → R+, the set cover
function is defined as fcov(S) = c(Γ(S)). This function
simultaneously models aspects of coverage [37] in max-
imization, and the notion of complexity (like the size
of the vocabulary in a speech corpus) in minimization
problems [40]. We can also define an inverse map, Γ−1

such that for every w ∈ W , Γ−1(w) denotes the set
of elements v ∈ V such that Γ(v) 3 w. Since this
is a monotone non-negative submodular function, we
can define a distribution, Pcov(Y ) ∝ c(Γ(Y )). The
normalization factors Zf and Zkf are:

Zcov =
∑
w∈W

cw[2n − 2n−|Γ
−1(w)|], (7)

Zkcov =
∑
w∈W

cw[

(
n

k

)
−
(
n− |Γ−1(w)|

k

)
] (8)

Probabilistic Coverage Functions: This is a gen-
eralization of the set cover function, which has been
used in a number of models for summarization prob-
lems [11]. This provides a probabilistic notion to the set
cover function, and is defined as f(X) =

∑
i∈U wi[1−∏

j∈X(1− pij)] where U is some set (e.g., of features).
The normalization factor of this class of functions can
be obtained as Zf =

∑
i∈U wi[2

n−
∏
j∈V (2−pij)]. One

can similarly obtain Zkf [24].

3.2.3 Independent Distributions

Modular Functions: The simplest class of set func-
tions is a modular function f(X) =

∑
i∈X mi. The

items in the set do not interact with each other. The
normalization constant for this class of distributions is
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Zf = 2n−1m(V ) and Zkf =
(
n−1
k−1

)
m(V ).

Log-Modular & Product Bernoulli distri-
butions: Log Modular distributions are defined
with f(X) = e−m(X) which is supermodular
and log-modular. The normalization constant is,
Zf =

∏
i∈V [1 + e−mj ]. A related class of distributions

is the Product of independent Bernoulli distribution,
where we independently sample each j ∈ V with
a probability pj . The resulting distribution is
f(X) =

∏
i∈X pi

∏
j /∈X(1 − pj) which is submodu-

lar, also log-modular, and is already a probability
distribution (i.e., Zf = 1).

3.2.4 Concave over modular Functions

A general class of submodular functions is sums of
concave over modular. Given modular functions mi

and concave functions ψi, we can define a submod-

ular function: fCM (X) =
∑M
i=1 wiψ(mi(X)). They

appear in maximization problems as feature based
functions, defined as f(X) =

∑
e∈F ψ(me(X)) (where

|F| = M), and have been used in data subset selec-
tion applications [52, 33]. me(j) captures how much
item j covers feature F . Another related function is

f(X) =
∑M
j=1 ψ(mj(X ∩CM )), where C1, C2, · · · , CM

are clusters of similar items in the ground set V . This
function simultaneously captures diversity in maximiza-
tion problems [39], and notions of cooperation in min-
imization problems [29, 21]. Moreover, the saturated
coverage function discussed above is also a special case
of this class of functions.

Similar to the saturated coverage function, we expect
that computing the exact normalization constant is
#P complete. However, we can approximate it using
ideas similar to the saturated coverage function. First,
we restrict our attention to sums of piecewise linear
concave over modular functions. These functions have
finite number of breakpoints, and the function is mod-
ular within each piece. Hence, one can use knapsack
counting within each component of the modular func-
tion, and approximately compute the normalization
constant up to a factor of 1 + ε [48]. Moreover, since it
is possible to approximate any concave function with a
truncation up to any desired factor [35], one can extend
this result to general sums of concave over modular
functions.

While the FPTAS for knapsack counting gives an
FPTAS for sums of concave over modular functions,
the resulting algorithm can be quite computationally
expensive. A much simpler approximation can be
used for functions which can be expressed as f(X) =∑M
i=1[mi(X)]a, where a ∈ (0, 1]. It is known that the

function f̂(X) =
∑M
i=1

∑
j∈X [mi(j)]

a approximates f

up to a factor of O(|X|1−a) [25]. Since f̂ is a modular
function, and following Lemma 3, it is easy to see that
the resulting approximation factor is (1− a) log n.

3.2.5 Sparse Pseudo-Boolean functions

For graphical models, in particular in computer vi-
sion, set functions are often written as polynomi-
als [20]. Any set function can be written as a poly-
nomial, pf (x) =

∑
T⊆V αT

∏
i∈T xi, where x ∈ {0, 1}n

is the characteristic vector of a set. In other words,
f(S) =

∑
T⊆S αT . Submodular functions are a sub-

class of these polynomials. Often the polynomial is
sparse, i.e., has few nonzero coefficients αT . This is
the case for graph cut like functions above and for the
functions considered in [49, 20]. The partition func-
tion in this case is Zf = 2npf (1/2). The reason for
this is that the pseudo-Boolean representation is ex-
actly the multilinear extension of the submodular func-
tion corresponding to f . Furthermore, the multilinear
extension F (x) =

∑
X⊆V f(X)

∏
i∈X xi

∏
i/∈X(1 − xi)

is closely related to the partition function F (1/2) =∑
X⊆V f(X)/2n = Zf/2

n.

3.2.6 Fourier Sparse Submodular Functions

A class of set functions introduced in [49] – given

a set function f , its Fourier transform is f̂(B) =
1

2n

∑
A⊆V f(A)ψB(A), where ψB(A) = (−1)|B∩A|.

Given f̂(B), the inverse Fourier transform recovers

f(A) as f(A) =
∑
B⊆V f̂(B)ψB(A). Fourier sparse

submodular functions are functions where supp(f) =

{B ⊆ V : f̂(B) 6= 0} is polynomial in n. In
this case, we can evaluate the partition function

as Zf =
∑
B∈supp(f) f̂(B)

∑
A⊆V ψB(A) and since∑

A⊆V ψB(A) =
∑|B|
i=0(−1)i

(|B|
i

)
2n−|B|, we may evalu-

ate the partition function in closed form.

3.3 Mixtures of Submodular Point Processes

Often it is desirable to consider not just one sub-
modular function, but a mixture of many submodular
component functions [41], i.e., f(X) =

∑m
i=1 wifi(X),

where fis are component submodular functions (any
of the aforementioned instances), and wis are weights.
Given the normalization constants for the individual
fi’s, we can easily obtain the resulting expressions for
Zf =

∑m
i=1 wiZfi and Zkf =

∑m
i=1 wiZ

k
fi

. Soon, we
argue that SPPs are natural for handling mixtures.

3.4 Supermodular Point Processes

Most of the examples we investigated so far are
submodular functions, occurring in maximization
problems where we want to model notions of coverage
and diversity. We may want to model similarity and
cooperation for which supermodularity is natural.
Given a submodular function f , we may easily define
a supermodular point process via a supermodular
function M − f(X), where M ≥ maxX⊆V f(X)
is a positive number ensuring the distribution is
non-negative. If f is a SPP as a submodular function,
the M − f is a SPP as a supermodular function.
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3.5 Difference of Submodular Point
Processes

Given a submodular SPP f and a supermodular
SPP g, we can combine both to obtain λ1f(X) +
λ2g(X), λ1, λ2 ≥ 0, which is a difference of submodular
functions. These functions occur naturally in problems
where one wants to simultaneously model coverage/
diversity and attraction or cooperation [21, 31].

3.6 Extensions to more General Constraints

Applications sometimes require richer constraints, some
common examples of which this section investigates.

Knapsack Constraints: Knapsack constraints are
commonly used in, e.g., document summarization,
where we require sentence sets satisfying a character or
word budget constraint. Knapsack constraints involve
counting problems which are often #P complete, easily
seen by noting that the knapsack counting problem
is exactly computing the partition function, under a
knapsack constraint, for the distribution obtained by
setting f(X) = 1. For a general submodular function,
we can use the sub/supergradient based approxima-
tion, and the problem then requires computing the
normalization constant of a modular function m(X),
subject to a knapsack constraint w(X) ≤ c. This can
be computed easily via knapsack counting [32]. Denote
Ni = |{X ⊆ V \i : w(X) ≤ c−wi}|. The normalization
constant is Zf =

∑
i∈V miNi. Since each of the Nis

can be computed via knapsack counting up to a factor
of 1 + ε, the normalization factor can also be computed
up to a factor of 1 + ε.

Matroid Constraints: Matroid independent sets of-
fer another class of constraints useful in applications.
An important class of sampling algorithms use stratified
sampling [6], where one partitions the set of items into
strata, and independently samples within each block.
Interestingly, the stratified sampling scheme can be seen
as an product Bernoulli SPP under a partition matroid
constraint. One can generalize this to other submodular
functions under a partition matroid. In particular, de-
note a partition matroid as C = {X : |X∩Pi| ≤ ki,∀i =
1, 2, · · · , p}. It is easy to see that ZC(A,B), can be ex-

pressed as ZC(A,B) =
∑p
i=1

∑ki
k=1 Z

k(A ∩ Pi, B ∩ Pi).
For the general class of matroid constraints, we can
again use the sub/super gradient approximation m(X),
and compute the approximate partition function of
m(X) : X ∈ C. The partition function in this set-
ting is Zf =

∑
i∈V miNi, where Ni = |{X ⊆ V \i :

X ∪ {i} is independent in the matroid}|.

3.7 Efficient Probabilistic Inference

We analyze the properties of SPPs regarding probabilis-
tic inference and learning. We show how efficient com-
putation of the generalized partition function leads to
efficient probabilistic inference, sampling, and learning.

Normalization: Notice that the normalization factors

can be easily obtained from the expressions of ZCf (A,B).

In particular, ZCf =
∑
X⊆V,X∈C f(X) = ZCf (∅, V ).

Marginalization: We can similarly compute various
marginals efficiently. Its not hard to see that,

PCf (A ⊆ Y ) =
∑
A⊆Y

P Cf (Y ) =
ZCf (A, V )

ZCf
. (9)

The singleton marginals Pf (i ∈ Y ) =
Zf (i,V )
Zf (∅,V ) pro-

vide interesting intuition about these functions. For
example, consider the generalized graph-cut function.
Denote the coverage of the object u as Su =

∑
i∈V siu.

The marginal probabilities P(i ∈ Y ) takes a very intu-

itive form: Pgc(u ∈ Y ) = 1
2 + (λ−µ)Su

4M+(2λ−µ)S−µSd . Clearly

we see that this probability is proportional to the cov-
erage of the function (when λ ≥ µ). The marginal
probability Pgc({i, j} ∈ Y ) is also similarly enlighten-
ing. We define here Suv = suu + svv + suv. Then,

Pgc({u, v} ∈ Y ) = 1
4 + (w−λ)(Su+Sv)−λSuv

8M+(4w−2λ)S−2λSd . The above

expression clearly conveys the trade-off between cov-
erage and diversity. In particular, the term Su + Sv

captures the coverage of the objects u and v. Similarly
Suv captures the redundancy. The more diverse (less
similar) u and v become, the greater the probability of
them co-occurring.

Conditional Distributions: We can also define
conditional models Pf (Y = C|E) given different events
E. For example, we might be interested in the condi-
tional distribution, given that A ⊆ Y ⊆ B. This can
be easily characterized in an SPP:

PCf (Y = C|A ⊆ Y ⊆ B) =
PCf (Y = C)

PCf (A ⊆ Y ⊆ B)
=

f(C)

ZCf (A,B)

We can also extend this to compute marginals of these
conditional distributions.

Expectations: Another interesting quantity we ana-

lyze is E(|Y |) and Var(|Y |). Notice that Pf (|Y |) =
Zk

f

Zf
.

Hence, these expressions take the form:

E(|Y |) =

n∑
k=1

k
Zkf
Zf

, Var(|Y |) =

n∑
k=1

k2
Zkf
Zf
− E2(|Y |)

These expressions also take very intuitive forms. For
example, consider the generalized graph cut functions.

Then, E(|Y |) = n
2 + (λ−µ)S

4M+(2λ−µ)S−µSd and Var(|Y |) =

n
4 −

µ(S−Sd)
8M+2S(2λ−µ)−2µSd − (λ−µ)2S2

(4M+(2λ−µ)S−µSd)2
. Hence,

as λ− µ gets larger, more coverage occurs.

Sampling: The interesting structural properties of
SPPs entail very simple algorithms for exact and ap-
proximate sampling a set Y distributed according to a
SPP. Due to limited space, this is discussed only in [24].

MAP Inference: Finally we consider the problem of
finding the mode of the distribution Pf . When f is sub-
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modular, the MAP inference problem corresponds to
submodular maximization argmaxX∈C f(X). Though
this problem is NP hard in general, a large class of
optimization algorithms provide near optimal solutions.
Many of these algorithms are combinatorial, like the
greedy and local search based algorithms [26, 45, 3].
Another class of algorithms deal with the continuous
extension of a submodular function, and use relaxation
methods to round the continuous solution to a discrete
set [5, 12, 4]. In general, the multilinear extension re-
quires an exponential sum, and hence can only approx-
imately be computed through sampling. Surprisingly,
many of the submodular functions which characterize
SPPs have an efficient form for the multilinear exten-
sion [27]. In fact, there is a close connection between
the multilinear extension and the normalization fac-
tor – the normalization factor satisfies Zf = 2nF (1/2),
where F is the multilinear extension of f . Similarly,
when f is supermodular, the MAP inference problem
in an SPP corresponding to submodular minimization,
which is polynomial time in the unconstrained setting
and admits bounded approximation factors in the con-
strained setting [26, 1].

3.8 Properties of SPPs

Submodularity: SPPs are submodular by definition.

Restriction: Restrictions of SPPs are also SPPs.
Hence if a set Y is distributed as a submodular point
process over 2V , the sets Y ∩ T are also distributed
as SPPs over 2T . The reason for this is that the con-
traction of a submodular function is also submodular.
Furthermore, since Zf (A,B) is computable in polyno-
mial time, so is Zf (T ∩A, T ∩B).

Complements: A complement process of a SPP is
also an SPP. This is closely related to the submodular
dual f# of a submodular function [15]. The main
reason is that f c(X) = f(V \X) is also submodular, for
submodular f . Furthermore, if Zf (A,B) is computable
in polynomial time, so is Zfc(A,B).

Combinations of SPPs: If P1 and P2 are SPPs, so
is λP1 + (1− λ)P2 (with 0 ≤ λ ≤ 1). Similarly if two
submodular functions f1, f2 generate SPPs, so is the
combination λf1 + (1− λ)f2. This means that SPPs
are closed under mixtures which, as we shall see, are
an important characteristic for these distributions.

Log Submodularity: Not only are the SPPs sub-
modular, but many of them are log submodular (like
DPPs). In particular, it is known that given a mono-
tone non-negative submodular function f , log f(X) and
log(1 + f(X)) is also monotone submodular.

4 Learning Mixtures of Submodular
Functions

In many machine learning applications [38, 39, 41, 42,
46, 13, 50] the optimization objective utilizes a weighted
combination of submodular components (as mentioned
above). In these settings, the goal is to learn the weights

using a large margin learning approach [41, 47, 14, 50].
In this section, we show how one can learn mixtures of
submodular functions via SPPs and Log-SPPs as well.

Learning using SPPs: We can define maximum
likelihood learning for SPPs. We consider a supervised
setting, where, as in [41, 36], we have training pairs
{Xt, Y t}Tt=1, where Xt ∈ X is an input and Y t ∈
2Y(Xt) corresponds to a chosen subset (which, e.g.,
could be a human generated summary, in the case
of summarization). Y(X) stands for the ground set
associated with input X. We can define the conditional
probability as P(Y |X) ∝ f(Y ),∀Y ⊆ Y(X). We may
define a simple mixture model, where ∀i, wi ≥ 0 and∑m
i=1 wi = 1, as:

Pmix(Y |X,w) =
m∑
i=1

wiPi(Y |X) =
m∑
i=1

wi
fi(Y )

Zfi(∅,Y(X))

Maximum likelihood parameter estimation becomes:

w∗ = argmax
w:∀i,wi≥0,

∑
i wi=1

T∑
t=1

logPmix(Y t|Xt|w),

= argmax
w:∀i,wi≥0,

∑
i wi=1

T∑
t=1

log
m∑
i=1

wi
fi(Y

t)

Zfi(∅,Y(Xt))

This is a simple concave maximization subject to a
simplex constraint, which can be easily done using one
of a variety of convex optimization methods.

Learning with Log-SPPs: We assume the same
setting: we have training samples {Xt, Y t}Tt=1, where
Xt ∈ X is an input and Y t ∈ 2Y(X) is a subset. Define:

∀Y ⊆ Y(X), Pmix(Y |X,w) ∝ exp(
m∑
i=1

wifi(Y )),

where ∀i, wi ≥ 0,
∑m
i=1 wi = 1. Define Z(w, f,X t) =∑

X⊆Y(Xt) exp(
∑m
i=1 wifi(X)).

The ML estimation then becomes,

w∗ = argmax
w:∀i,wi≥0,

∑
i wi=1

T∑
t=1

logPmix(Y t|Xt, w),

= argmax
w:∀i,wi≥0,

∑
i wi=1

T∑
t=1

{
m∑
i=1

wifi(Y
t)− logZ(w, f,X t)}

This is again a concave maximization problem. Un-
fortunately however, though Z(w, f,X t) is a con-
cave function in w, evaluating it requires an expo-
nential sum. Given an approximation Ẑ(w, f,X t),
such that | log Ẑ(w, f,X t) − logZ(w, f,X t)| ≤ α, we
can solve the optimization problem with the poly-
time approximation Ẑ(w, f,X t) (computable, say using
sub/supergradients [25, 10]). The ML estimation prob-
lem can be solved up to an additive approximation
factor of α.
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2D points DPP Max

SPP Max Independent

Figure 1: MAP estimates obtained with DPPs and
SPPs for points on a 2D grid.

5 Simulation

Figure 1 shows the MAP estimates obtained with DPPs
and SPPs. We see that the resulting subsets are sim-
ilar, and capture diversity and coverage. The MAP
estimates shows the result using the saturated cover-
age function, but most of the submodular functions
discussed here capture the same intuition.

In looking at samples of both SPPs and Log-SPPs
(e.g., DPPs), we noticed empirically a fundamental
difference that is explained by their definitions. SPPs
are directly proportional to the submodular function,
and thus very often the probabilities themselves have
a relatively low dynamic range. Log-Submodular dis-
tributions, like DPPs, on the other hand, have a high
dynamic range since the probabilities are proportional
to the exponential. Indeed, a large number of statistical
and probabilistic models are defined via exponentials,
and thus also have high dynamic range. This is partic-
ularly useful in sampling and inference, due to the high
confidence in their decisions and concentration of their
distributions. This property however can also some-
times be undesirable. For example, in the multi-class
classification setting, classifiers built using low entropy
distributions can be overconfident of their decisions
(whether right or wrong), thereby motivating investiga-
tion of smoother transitions via linear models [7, 44].

6 Discussion

In this paper, we introduced a novel class of point pro-
cesses, which we called the Submodular Point Processes
(SPPs), which are distinct from the Log-Submodular
and Log-Supermodular distributions (Log-SPPs) stud-
ied in literature [10]. While SPPs have properties anal-
ogous to Log-SPPs (like DPPs and Ising models), from
a model perspective, there are significant differences.
One important distinction between SPPs and Log-SPPs
is in handling mixtures. Most machine learning appli-
cations (like for example, summarization, and subset
selection), do not inherently define single submodular
functions, both most often, are modeled via a mixture of
submodular functions. Handling and learning mixtures

of submodular functions is very important, in consider-
ing models for submodular functions. SPPs are closed
under mixtures (viz. positive conic combinations), and
hence all the attractive properties for inference still
hold. This is not true with Log-SPPs. In particular,
given submodular f1, f2 which are both Log-SPPs, one
particular characterization of a mixture distribution is
P ∝ exp(w1f1(X) + w2f2(X)). While this is still Log-
Submodular, it may not have the nice properties of f1

and f2 (i.e all the inference quantities like the normal-
ization factor, etc. might not any longer be computable).
On the other hand, one could define a mixture distribu-
tion as P ∝ w1 exp(f1(X))+w2 exp(f2(X)). While this
retains the nice properties with respect to inference, it
is no longer Log submodular. In particular, this means
that MAP inference is no longer guaranteed. The same
holds for Log-Supermodular distributions. When seen
in the context of mixtures, the low dynamic range of
SPPs also makes sense. Given two submodular func-
tions f1, f2 which measure two different, and possibly
complementary aspects of the application, we might
not want any of the individual functions to be over-
confident of its selection. Furthermore, the property
of conic combinations also enables us to combine Sub-
modular and Supermodular SPPs to obtain a difference
of submodular point process, which is very important
from a modeling perspective.

In this paper, we show several subclasses of SPPs which
admit efficient computation of the partition function.
Such exact computations are available only for DPPs
and approximately for Ising models. An open question
is, are there other classes of Log-SPPs which admit
these characterizations? Another difference between
SPPs and Log-SPPs is that Log-SPPs are closed under
product distributions. One can model submodular
functions as priors in this case. This does not hold
for SPPs. On a whole, SPPs provide a new class of
distributions, which are distinct from and complemen-
tary to Log-SPPs and other existing point processes
used in applications. While the main contribution of
this paper is the introduction of this new class, and
hence is primarily theoretical, in future work, we plan
to test these distributions in real world applications
of summarization and data subset selection.

Acknowledgments: We thank the UW-MELODI
group for discussions. This material is based upon
work supported by the National Science Foundation
under Grant No. IIS-1162606, and by a Google, a Mi-
crosoft, and an Intel research award. Rishabh Iyer
also acknowledges support from a Microsoft Research
Ph.D Fellowship Award. This work was also supported
in part by TerraSwarm, one of six centers of STAR-
net, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA.

References

[1] F. Bach. Learning with Submodular functions:
A convex Optimization Perspective (updated ver-
sion). Arxiv, 2013.

395



Iyer and Bilmes

[2] Y. Boykov and V. Kolmogorov. An experimental
comparison of min-cut/max-flow algorithms for
energy minimization in vision. TPAMI, 26(9):1124–
1137, 2004.

[3] N. Buchbinder, M. Feldman, J. Naor, and
R. Schwartz. A tight (1/2) linear-time approxima-
tion to unconstrained submodular maximization.
In FOCS, 2012.

[4] G. Calinescu, C. Chekuri, M. Pal, and J. Vondrák.
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