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SUPPLEMENTARY MATERIAL

Proof of Lemma 1. For any u
t

2 X , it holds that
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� u
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t
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t
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t

�M
t
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t

,M
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� u
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,r
t

i . (15)

First, observe that for any primal-dual norm pair we have
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t
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t

,r
t
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t

i  kx
t

� x̂
t
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t

�M
t

k⇤ .

Any update of the form a⇤ = argmin

a2X ha, xi+DR(a, c) satisfies for any d 2 X ,

ha⇤ � d, xi  DR(d, c)�DR(d, a⇤)�DR(a⇤, c) .

This entails
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)

�
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t
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⌘
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t

)�DR(x̂
t

, x̂
t�1

)

�

.

Combining the preceding relations and returning to (15), we obtain
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t
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t
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⌘
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⇢
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)

�
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t
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t
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t
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⌘
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⇢
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2
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t
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�
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�M
t
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t

k , (16)

where in the last step we appealed to strong convexity: DR(x, y) � 1

2

kx� yk2 for any x, y 2 X . Using the simple

inequality ab  ⇢a

2

2

+

b

2

2⇢

for any ⇢ > 0 to split the product term, we get
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t
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t

i  1
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2
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Applying the bound

1

2⌘
t+1
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t
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t
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t
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t

� x̂
t

k2  R2
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⌘
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⌘
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◆

,
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and summing over t 2 [T ] yields ,
T

X
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2
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k
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+
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,

where we used the Lipschitz continuity of DR in the penultimate step. Now let us set

⌘

t

=

L

q

P
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s
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s
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q

P
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,

and kr
0
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0

k2⇤ = 1 to have
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L

!

.

Appealing to convexity of {f
t

}T
t=1

, and replacing C
T

(3) and D
T

(4) in above, completes the proof . ⌅

Proof of Lemma 2. We define

U
T

,
⇢

u
1

, ..., u
T

2 X : �

T

X

t=1

ku
t

� u
t�1

k  L2 � 4R2
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�

, (17)

and

(u⇤
1

, ..., u⇤
T

) , argmin
u

1

,...,uT2UT

T

X

t=1

f
t

(u
t

).
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Our choice of L > 2R
max

guarantees that any sequence of fixed comparators u
t

= u for t 2 [T ] belongs to U
T

, and

hence, (u⇤
1

, ..., u⇤
T

) exists. Noting that (u⇤
1

, ..., u⇤
T

) is an element of U
T

, we have �
P
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�

�u⇤
t

� u⇤
t�1

�

�
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 L2.

We now apply Lemma 1 to {u⇤
t

}T
t=1

to bound the dynamic regret for arbitrary comparator sequence {u
t

}T
t=1

as

follows,
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) 

T

X
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, (18)

where the last step follows from the fact that
T

X

t=1

f
t

(u⇤
t

)�
T

X

t=1

f
t

(u
t

)  0 if (u
1

, ..., u
T

) 2 U
T

.

Given the definition of R2

max

, by strong convexity of DR(x, y), we get that kx� yk 
p
2R

max

, for any x, y 2 X .

This entails that once we divide the horizon into B number of batches and use a single, fixed point as a comparator

along each batch, we have
T

X
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t

� u
t�1

k  B
p
2R

max

, (19)

since there are at most B number of changes in the comparator sequence along the horizon. Now let B =

L

2�4R

2

max

�

p
2R

max

,

and for ease of notation, assume that T is divisible by B. Noting that f
t

(x⇤
t

)  f
t

(u
t

), we use an argument similar

to that of [14] to get for any fixed t
i

2 [(i� 1)(T/B) + 1, i(T/B)],
T
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f
t

(u⇤
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=

B
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X
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f
t
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t
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�


B
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X
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⇢

f
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�

(21)


✓

T

B

◆

B

X

i=1
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t2[(i�1)(T/B)+1,i(T/B)]

⇢

f
t

(x⇤
ti
)� f

t

(x⇤
t

)

�

. (22)

Note that x⇤
ti

is fixed for each batch i. Substituting our choice of B =

L

2�4R

2

max

�

p
2R

max

in (19) implies that the comparator

sequence u
t

= x⇤
ti
1
n

(i�1)T

B

+ 1  t  iT

B

o

belongs to U
T

, and (21) follows by optimality of (u⇤
1

, ..., u⇤
T

). We

now claim that for any t 2 [(i� 1)(T/B) + 1, i(T/B)], we have,

f
t

(x⇤
ti
)� f

t

(x⇤
t

)  2

i(T/B)

X

s=(i�1)(T/B)+1

sup

x2X
|f

s

(x)� f
s�1

(x)|. (23)
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Assuming otherwise, there must exist a ˆt
i

2 [(i� 1)(T/B) + 1, i(T/B)] such that

f
ˆ
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(x⇤
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)� f

ˆ
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ˆ
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) > 2

i(T/B)
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which results in

f
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X
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ti
),

The preceding relation for t = t
i

violates the optimality of x⇤
ti

, which is a contradiction. Therefore, Equation (23)

holds for any t 2 [(i� 1)(T/B) + 1, i(T/B)] Combining (20), (22) and (23) we have

T

X
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⇢

f
t
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t
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t

(u
t

)
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B

B
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T

L2 � 4R2

max

. (24)

Using the above in Equation (18) we conclude the following upper bound
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,

thereby completing the proof. ⌅

Proof of Proposition 5. Assume that the player I uses the prescribed strategy. This corresponds to using the

optimistic mirror descent update with R(x) =
P

n
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x
i

log(x
i

) as the function that is strongly convex w.r.t. k·k
1

.

Correspondingly, r
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A
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t

= f>
t�1

A
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. Following the line of proof in Lemma 1, in particular, using

Equation 16 for the specific case with DR as KL divergence, we get that for any t and any u
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Now let us bound for some i the term, log
⇣
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. Notice that if x̂
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Using this we can conclude that :
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Summing over t 2 [T ] we obtain that :
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Now note that we can rewrite the first sum in the above bound and get :
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Since by definition of x̂0
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using the above in Equation 25 we get
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Using the step-size specified above in the bound 26, we get
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Now note that by triangle inequality, we have
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since the entries of matrix sequence {A
t

}T
t=1

are bounded by one. Using the bound above in (28) and splitting the
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product term, we see that
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where we used the simple inequality ab  ⇢

2

a2 + 1

2⇢

b2 for ⇢ > 0.
a) When Player II follows prescribed strategy: In this case we would like to get convergence of payoffs to the

average value of the games. To get this, using the notation x⇤
t

= argmin

xt2�n

f>
t

A
t

x
t

and denoting the corresponding

sequence regularity for Player I by C
T

, we get

T

X

t=1

⇣

f

>
t

A

t

x

t

� f

>
t

A

t

x

⇤
t

⌘

 log(T

2

n) (C

T

+ 2)

0

@

2

q

P

T

t=1

�

�

f

>
t

A

t

� f

>
t�1

A

t�1

�

�

2

1

log(T

2

n)L

+ 32L

1

A

+ 2

T

X

t=1

kA
t

�A

t�1

k1 � 8L

T

X

t=1

kx̂
t

� x

t

k2
1

� 16L

T

X

t=1

�

�

x̂

0
t�1

� x

t

�

�

2

1

+

1

16L

T

X

t=1

�

�

�

f

t

� ˆ

f

t�1

�

�

�

2

1

+

1

16L

T

X

t=1

�

�

�

ˆ

f

t

� f

t

�

�

�

2

1

+

1

4L

,

where the term 1
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we get
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where the constant 256L/T appeared in the first line accounts for the identities
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Using the triangle inequality again,
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which also implies
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where we used the bound
p
c  c+1 for any c � 0 in the penultimate line. Similar bounds as Equations (31) and

(32) hold for the other player as well. Using them in Equation 30 after some calculations, we conclude that
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b) When Player II is dishonest: In this case we would like to bound Player I’s regret regardless of the strategy

adopted by Player II. Dropping one of the negative terms in Equation 26, we get :
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Noting to the telescoping sum
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as well as the choice of step-size (27) which entails
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we bound (33) to obtain
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A similar statement holds for Player II that her/his pay off converges at the provided rate to the average minimax

equilibrium value. ⌅
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